Properties

Label 72.1
Level 72
Weight 1
Dimension 2
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 288
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(288\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(72))\).

Total New Old
Modular forms 50 11 39
Cusp forms 2 2 0
Eisenstein series 48 9 39

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q - q^{2} - q^{3} - q^{4} - q^{6} + 2 q^{8} - q^{9} + q^{11} + 2 q^{12} - q^{16} - 2 q^{17} + 2 q^{18} - 2 q^{19} + q^{22} - q^{24} - q^{25} + 2 q^{27} - q^{32} + q^{33} + q^{34} - q^{36}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(72))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
72.1.b \(\chi_{72}(19, \cdot)\) None 0 1
72.1.e \(\chi_{72}(17, \cdot)\) None 0 1
72.1.g \(\chi_{72}(55, \cdot)\) None 0 1
72.1.h \(\chi_{72}(53, \cdot)\) None 0 1
72.1.j \(\chi_{72}(5, \cdot)\) None 0 2
72.1.k \(\chi_{72}(7, \cdot)\) None 0 2
72.1.m \(\chi_{72}(41, \cdot)\) None 0 2
72.1.p \(\chi_{72}(43, \cdot)\) 72.1.p.a 2 2