Properties

Label 712.1.y.a.427.1
Level $712$
Weight $1$
Character 712.427
Analytic conductor $0.355$
Analytic rank $0$
Dimension $20$
Projective image $D_{44}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 712 = 2^{3} \cdot 89 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 712.y (of order \(44\), degree \(20\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.355334288995\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\Q(\zeta_{44})\)
Defining polynomial: \(x^{20} - x^{18} + x^{16} - x^{14} + x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{44}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{44} - \cdots)\)

Embedding invariants

Embedding label 427.1
Root \(-0.909632 + 0.415415i\) of defining polynomial
Character \(\chi\) \(=\) 712.427
Dual form 712.1.y.a.707.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.654861 + 0.755750i) q^{2} +(1.12299 - 1.50013i) q^{3} +(-0.142315 + 0.989821i) q^{4} +(1.86912 - 0.133682i) q^{6} +(-0.841254 + 0.540641i) q^{8} +(-0.707571 - 2.40977i) q^{9} +O(q^{10})\) \(q+(0.654861 + 0.755750i) q^{2} +(1.12299 - 1.50013i) q^{3} +(-0.142315 + 0.989821i) q^{4} +(1.86912 - 0.133682i) q^{6} +(-0.841254 + 0.540641i) q^{8} +(-0.707571 - 2.40977i) q^{9} +(-0.909632 - 0.584585i) q^{11} +(1.32505 + 1.32505i) q^{12} +(-0.959493 - 0.281733i) q^{16} +(0.989821 + 0.857685i) q^{17} +(1.35782 - 2.11281i) q^{18} +(-0.936593 + 1.71524i) q^{19} +(-0.153882 - 1.07028i) q^{22} +(-0.133682 + 1.86912i) q^{24} +(-0.415415 + 0.909632i) q^{25} +(-2.65381 - 0.989821i) q^{27} +(-0.415415 - 0.909632i) q^{32} +(-1.89846 + 0.708089i) q^{33} +1.30972i q^{34} +(2.48594 - 0.357424i) q^{36} +(-1.90963 + 0.415415i) q^{38} +(1.13214 - 0.847507i) q^{41} +(-0.0303285 - 0.139418i) q^{43} +(0.708089 - 0.817178i) q^{44} +(-1.50013 + 1.12299i) q^{48} +(0.909632 + 0.415415i) q^{49} +(-0.959493 + 0.281733i) q^{50} +(2.39820 - 0.521696i) q^{51} +(-0.989821 - 2.65381i) q^{54} +(1.52131 + 3.33121i) q^{57} +(-1.19550 - 1.59700i) q^{59} +(0.415415 - 0.909632i) q^{64} +(-1.77836 - 0.971061i) q^{66} +(-0.0801894 - 0.557730i) q^{67} +(-0.989821 + 0.857685i) q^{68} +(1.89806 + 1.64468i) q^{72} +(-1.74557 - 0.512546i) q^{73} +(0.898064 + 1.64468i) q^{75} +(-1.56449 - 1.17116i) q^{76} +(-2.35225 + 1.51170i) q^{81} +(1.38189 + 0.300613i) q^{82} +(1.19550 - 0.0855040i) q^{83} +(0.0855040 - 0.114220i) q^{86} +1.08128 q^{88} +(-0.415415 - 0.909632i) q^{89} +(-1.83107 - 0.398326i) q^{96} +(-1.61435 + 1.03748i) q^{97} +(0.281733 + 0.959493i) q^{98} +(-0.765084 + 2.60564i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q + 2q^{2} - 2q^{3} - 2q^{4} + 2q^{6} + 2q^{8} + O(q^{10}) \) \( 20q + 2q^{2} - 2q^{3} - 2q^{4} + 2q^{6} + 2q^{8} - 2q^{12} - 2q^{16} - 2q^{19} + 2q^{24} + 2q^{25} - 22q^{27} + 2q^{32} - 20q^{38} + 2q^{41} + 2q^{43} - 2q^{48} - 2q^{50} + 4q^{51} - 4q^{57} - 2q^{59} - 2q^{64} + 22q^{72} + 2q^{75} - 2q^{76} - 2q^{81} - 2q^{82} + 2q^{83} - 2q^{86} + 2q^{89} + 2q^{96} - 4q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/712\mathbb{Z}\right)^\times\).

\(n\) \(357\) \(535\) \(537\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{31}{44}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.654861 + 0.755750i 0.654861 + 0.755750i
\(3\) 1.12299 1.50013i 1.12299 1.50013i 0.281733 0.959493i \(-0.409091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(4\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(5\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(6\) 1.86912 0.133682i 1.86912 0.133682i
\(7\) 0 0 −0.977147 0.212565i \(-0.931818\pi\)
0.977147 + 0.212565i \(0.0681818\pi\)
\(8\) −0.841254 + 0.540641i −0.841254 + 0.540641i
\(9\) −0.707571 2.40977i −0.707571 2.40977i
\(10\) 0 0
\(11\) −0.909632 0.584585i −0.909632 0.584585i 1.00000i \(-0.5\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(12\) 1.32505 + 1.32505i 1.32505 + 1.32505i
\(13\) 0 0 −0.800541 0.599278i \(-0.795455\pi\)
0.800541 + 0.599278i \(0.204545\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.959493 0.281733i −0.959493 0.281733i
\(17\) 0.989821 + 0.857685i 0.989821 + 0.857685i 0.989821 0.142315i \(-0.0454545\pi\)
1.00000i \(0.5\pi\)
\(18\) 1.35782 2.11281i 1.35782 2.11281i
\(19\) −0.936593 + 1.71524i −0.936593 + 1.71524i −0.281733 + 0.959493i \(0.590909\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.153882 1.07028i −0.153882 1.07028i
\(23\) 0 0 −0.877679 0.479249i \(-0.840909\pi\)
0.877679 + 0.479249i \(0.159091\pi\)
\(24\) −0.133682 + 1.86912i −0.133682 + 1.86912i
\(25\) −0.415415 + 0.909632i −0.415415 + 0.909632i
\(26\) 0 0
\(27\) −2.65381 0.989821i −2.65381 0.989821i
\(28\) 0 0
\(29\) 0 0 0.212565 0.977147i \(-0.431818\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(30\) 0 0
\(31\) 0 0 0.877679 0.479249i \(-0.159091\pi\)
−0.877679 + 0.479249i \(0.840909\pi\)
\(32\) −0.415415 0.909632i −0.415415 0.909632i
\(33\) −1.89846 + 0.708089i −1.89846 + 0.708089i
\(34\) 1.30972i 1.30972i
\(35\) 0 0
\(36\) 2.48594 0.357424i 2.48594 0.357424i
\(37\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(38\) −1.90963 + 0.415415i −1.90963 + 0.415415i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.13214 0.847507i 1.13214 0.847507i 0.142315 0.989821i \(-0.454545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(42\) 0 0
\(43\) −0.0303285 0.139418i −0.0303285 0.139418i 0.959493 0.281733i \(-0.0909091\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(44\) 0.708089 0.817178i 0.708089 0.817178i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(48\) −1.50013 + 1.12299i −1.50013 + 1.12299i
\(49\) 0.909632 + 0.415415i 0.909632 + 0.415415i
\(50\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(51\) 2.39820 0.521696i 2.39820 0.521696i
\(52\) 0 0
\(53\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(54\) −0.989821 2.65381i −0.989821 2.65381i
\(55\) 0 0
\(56\) 0 0
\(57\) 1.52131 + 3.33121i 1.52131 + 3.33121i
\(58\) 0 0
\(59\) −1.19550 1.59700i −1.19550 1.59700i −0.654861 0.755750i \(-0.727273\pi\)
−0.540641 0.841254i \(-0.681818\pi\)
\(60\) 0 0
\(61\) 0 0 0.349464 0.936950i \(-0.386364\pi\)
−0.349464 + 0.936950i \(0.613636\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.415415 0.909632i 0.415415 0.909632i
\(65\) 0 0
\(66\) −1.77836 0.971061i −1.77836 0.971061i
\(67\) −0.0801894 0.557730i −0.0801894 0.557730i −0.989821 0.142315i \(-0.954545\pi\)
0.909632 0.415415i \(-0.136364\pi\)
\(68\) −0.989821 + 0.857685i −0.989821 + 0.857685i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(72\) 1.89806 + 1.64468i 1.89806 + 1.64468i
\(73\) −1.74557 0.512546i −1.74557 0.512546i −0.755750 0.654861i \(-0.772727\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(74\) 0 0
\(75\) 0.898064 + 1.64468i 0.898064 + 1.64468i
\(76\) −1.56449 1.17116i −1.56449 1.17116i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(80\) 0 0
\(81\) −2.35225 + 1.51170i −2.35225 + 1.51170i
\(82\) 1.38189 + 0.300613i 1.38189 + 0.300613i
\(83\) 1.19550 0.0855040i 1.19550 0.0855040i 0.540641 0.841254i \(-0.318182\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.0855040 0.114220i 0.0855040 0.114220i
\(87\) 0 0
\(88\) 1.08128 1.08128
\(89\) −0.415415 0.909632i −0.415415 0.909632i
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −1.83107 0.398326i −1.83107 0.398326i
\(97\) −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i \(0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(98\) 0.281733 + 0.959493i 0.281733 + 0.959493i
\(99\) −0.765084 + 2.60564i −0.765084 + 2.60564i
\(100\) −0.841254 0.540641i −0.841254 0.540641i
\(101\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(102\) 1.96476 + 1.47080i 1.96476 + 1.47080i
\(103\) 0 0 −0.479249 0.877679i \(-0.659091\pi\)
0.479249 + 0.877679i \(0.340909\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(108\) 1.35742 2.48594i 1.35742 2.48594i
\(109\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.0855040 + 1.19550i −0.0855040 + 1.19550i 0.755750 + 0.654861i \(0.227273\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(114\) −1.52131 + 3.33121i −1.52131 + 3.33121i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0.424047 1.94931i 0.424047 1.94931i
\(119\) 0 0
\(120\) 0 0
\(121\) 0.0702757 + 0.153882i 0.0702757 + 0.153882i
\(122\) 0 0
\(123\) 2.65009i 2.65009i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.977147 0.212565i \(-0.0681818\pi\)
−0.977147 + 0.212565i \(0.931818\pi\)
\(128\) 0.959493 0.281733i 0.959493 0.281733i
\(129\) −0.243204 0.111067i −0.243204 0.111067i
\(130\) 0 0
\(131\) 0.822373 + 0.118239i 0.822373 + 0.118239i 0.540641 0.841254i \(-0.318182\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(132\) −0.430703 1.97991i −0.430703 1.97991i
\(133\) 0 0
\(134\) 0.368991 0.425839i 0.368991 0.425839i
\(135\) 0 0
\(136\) −1.29639 0.186393i −1.29639 0.186393i
\(137\) 1.59700 1.19550i 1.59700 1.19550i 0.755750 0.654861i \(-0.227273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(138\) 0 0
\(139\) 1.61435 0.474017i 1.61435 0.474017i 0.654861 0.755750i \(-0.272727\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 2.51150i 2.51150i
\(145\) 0 0
\(146\) −0.755750 1.65486i −0.755750 1.65486i
\(147\) 1.64468 0.898064i 1.64468 0.898064i
\(148\) 0 0
\(149\) 0 0 0.212565 0.977147i \(-0.431818\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(150\) −0.654861 + 1.75575i −0.654861 + 1.75575i
\(151\) 0 0 −0.936950 0.349464i \(-0.886364\pi\)
0.936950 + 0.349464i \(0.113636\pi\)
\(152\) −0.139418 1.94931i −0.139418 1.94931i
\(153\) 1.36645 2.99211i 1.36645 2.99211i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −2.68287 0.787761i −2.68287 0.787761i
\(163\) −0.697148 0.0498610i −0.697148 0.0498610i −0.281733 0.959493i \(-0.590909\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(164\) 0.677760 + 1.24123i 0.677760 + 1.24123i
\(165\) 0 0
\(166\) 0.847507 + 0.847507i 0.847507 + 0.847507i
\(167\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(168\) 0 0
\(169\) 0.281733 + 0.959493i 0.281733 + 0.959493i
\(170\) 0 0
\(171\) 4.79604 + 1.04331i 4.79604 + 1.04331i
\(172\) 0.142315 0.0101786i 0.142315 0.0101786i
\(173\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.708089 + 0.817178i 0.708089 + 0.817178i
\(177\) −3.73825 −3.73825
\(178\) 0.415415 0.909632i 0.415415 0.909632i
\(179\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(180\) 0 0
\(181\) 0 0 0.599278 0.800541i \(-0.295455\pi\)
−0.599278 + 0.800541i \(0.704545\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.398983 1.35881i −0.398983 1.35881i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.800541 0.599278i \(-0.795455\pi\)
0.800541 + 0.599278i \(0.204545\pi\)
\(192\) −0.898064 1.64468i −0.898064 1.64468i
\(193\) 1.75089 + 0.125226i 1.75089 + 0.125226i 0.909632 0.415415i \(-0.136364\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(194\) −1.84125 0.540641i −1.84125 0.540641i
\(195\) 0 0
\(196\) −0.540641 + 0.841254i −0.540641 + 0.841254i
\(197\) 0 0 0.479249 0.877679i \(-0.340909\pi\)
−0.479249 + 0.877679i \(0.659091\pi\)
\(198\) −2.47023 + 1.12812i −2.47023 + 1.12812i
\(199\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(200\) −0.142315 0.989821i −0.142315 0.989821i
\(201\) −0.926721 0.506028i −0.926721 0.506028i
\(202\) 0 0
\(203\) 0 0
\(204\) 0.175087 + 2.44803i 0.175087 + 2.44803i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.85466 1.01272i 1.85466 1.01272i
\(210\) 0 0
\(211\) 0.133682 0.0498610i 0.133682 0.0498610i −0.281733 0.959493i \(-0.590909\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 2.76767 0.602069i 2.76767 0.602069i
\(217\) 0 0
\(218\) 0 0
\(219\) −2.72914 + 2.04301i −2.72914 + 2.04301i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(224\) 0 0
\(225\) 2.48594 + 0.357424i 2.48594 + 0.357424i
\(226\) −0.959493 + 0.718267i −0.959493 + 0.718267i
\(227\) −1.65486 0.755750i −1.65486 0.755750i −0.654861 0.755750i \(-0.727273\pi\)
−1.00000 \(\pi\)
\(228\) −3.51381 + 1.03175i −3.51381 + 1.03175i
\(229\) 0 0 0.977147 0.212565i \(-0.0681818\pi\)
−0.977147 + 0.212565i \(0.931818\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.284630i 0.284630i −0.989821 0.142315i \(-0.954545\pi\)
0.989821 0.142315i \(-0.0454545\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.75089 0.956056i 1.75089 0.956056i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.349464 0.936950i \(-0.386364\pi\)
−0.349464 + 0.936950i \(0.613636\pi\)
\(240\) 0 0
\(241\) 0.114220 + 1.59700i 0.114220 + 1.59700i 0.654861 + 0.755750i \(0.272727\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(242\) −0.0702757 + 0.153882i −0.0702757 + 0.153882i
\(243\) −0.171732 + 2.40113i −0.171732 + 2.40113i
\(244\) 0 0
\(245\) 0 0
\(246\) 2.00281 1.73544i 2.00281 1.73544i
\(247\) 0 0
\(248\) 0 0
\(249\) 1.21426 1.88943i 1.21426 1.88943i
\(250\) 0 0
\(251\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(257\) 0.474017 1.61435i 0.474017 1.61435i −0.281733 0.959493i \(-0.590909\pi\)
0.755750 0.654861i \(-0.227273\pi\)
\(258\) −0.0753254 0.256535i −0.0753254 0.256535i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0.449181 + 0.698939i 0.449181 + 0.698939i
\(263\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(264\) 1.21426 1.62207i 1.21426 1.62207i
\(265\) 0 0
\(266\) 0 0
\(267\) −1.83107 0.398326i −1.83107 0.398326i
\(268\) 0.563465 0.563465
\(269\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(270\) 0 0
\(271\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(272\) −0.708089 1.10181i −0.708089 1.10181i
\(273\) 0 0
\(274\) 1.94931 + 0.424047i 1.94931 + 0.424047i
\(275\) 0.909632 0.584585i 0.909632 0.584585i
\(276\) 0 0
\(277\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(278\) 1.41542 + 0.909632i 1.41542 + 0.909632i
\(279\) 0 0
\(280\) 0 0
\(281\) 0.203743 + 0.373128i 0.203743 + 0.373128i 0.959493 0.281733i \(-0.0909091\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(282\) 0 0
\(283\) 1.89945 + 0.557730i 1.89945 + 0.557730i 0.989821 + 0.142315i \(0.0454545\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.89806 + 1.64468i −1.89806 + 1.64468i
\(289\) 0.101808 + 0.708089i 0.101808 + 0.708089i
\(290\) 0 0
\(291\) −0.256535 + 3.58682i −0.256535 + 3.58682i
\(292\) 0.755750 1.65486i 0.755750 1.65486i
\(293\) 0 0 −0.0713392 0.997452i \(-0.522727\pi\)
0.0713392 + 0.997452i \(0.477273\pi\)
\(294\) 1.75575 + 0.654861i 1.75575 + 0.654861i
\(295\) 0 0
\(296\) 0 0
\(297\) 1.83536 + 2.45175i 1.83536 + 2.45175i
\(298\) 0 0
\(299\) 0 0
\(300\) −1.75575 + 0.654861i −1.75575 + 0.654861i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 1.38189 1.38189i 1.38189 1.38189i
\(305\) 0 0
\(306\) 3.15612 0.926721i 3.15612 0.926721i
\(307\) −0.258908 0.118239i −0.258908 0.118239i 0.281733 0.959493i \(-0.409091\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(312\) 0 0
\(313\) 0.373128 + 1.71524i 0.373128 + 1.71524i 0.654861 + 0.755750i \(0.272727\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2.39820 + 0.894482i −2.39820 + 0.894482i
\(324\) −1.16155 2.54345i −1.16155 2.54345i
\(325\) 0 0
\(326\) −0.418852 0.559521i −0.418852 0.559521i
\(327\) 0 0
\(328\) −0.494217 + 1.32505i −0.494217 + 1.32505i
\(329\) 0 0
\(330\) 0 0
\(331\) −0.698939 + 1.53046i −0.698939 + 1.53046i 0.142315 + 0.989821i \(0.454545\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(332\) −0.0855040 + 1.19550i −0.0855040 + 1.19550i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.203743 0.373128i 0.203743 0.373128i −0.755750 0.654861i \(-0.772727\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(338\) −0.540641 + 0.841254i −0.540641 + 0.841254i
\(339\) 1.69739 + 1.47080i 1.69739 + 1.47080i
\(340\) 0 0
\(341\) 0 0
\(342\) 2.35225 + 4.30783i 2.35225 + 4.30783i
\(343\) 0 0
\(344\) 0.100889 + 0.100889i 0.100889 + 0.100889i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.557730 + 1.89945i 0.557730 + 1.89945i 0.415415 + 0.909632i \(0.363636\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(348\) 0 0
\(349\) 0 0 −0.977147 0.212565i \(-0.931818\pi\)
0.977147 + 0.212565i \(0.0681818\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.153882 + 1.07028i −0.153882 + 1.07028i
\(353\) 1.05195 1.40524i 1.05195 1.40524i 0.142315 0.989821i \(-0.454545\pi\)
0.909632 0.415415i \(-0.136364\pi\)
\(354\) −2.44803 2.82518i −2.44803 2.82518i
\(355\) 0 0
\(356\) 0.959493 0.281733i 0.959493 0.281733i
\(357\) 0 0
\(358\) −1.25667 1.45027i −1.25667 1.45027i
\(359\) 0 0 0.599278 0.800541i \(-0.295455\pi\)
−0.599278 + 0.800541i \(0.704545\pi\)
\(360\) 0 0
\(361\) −1.52421 2.37172i −1.52421 2.37172i
\(362\) 0 0
\(363\) 0.309763 + 0.0673848i 0.309763 + 0.0673848i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(368\) 0 0
\(369\) −2.84336 2.12851i −2.84336 2.12851i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(374\) 0.765644 1.19136i 0.765644 1.19136i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.841254 + 0.459359i 0.841254 + 0.459359i 0.841254 0.540641i \(-0.181818\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.936950 0.349464i \(-0.886364\pi\)
0.936950 + 0.349464i \(0.113636\pi\)
\(384\) 0.654861 1.75575i 0.654861 1.75575i
\(385\) 0 0
\(386\) 1.05195 + 1.40524i 1.05195 + 1.40524i
\(387\) −0.314505 + 0.171732i −0.314505 + 0.171732i
\(388\) −0.797176 1.74557i −0.797176 1.74557i
\(389\) 0 0 0.936950 0.349464i \(-0.113636\pi\)
−0.936950 + 0.349464i \(0.886364\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.989821 + 0.142315i −0.989821 + 0.142315i
\(393\) 1.10089 1.10089i 1.10089 1.10089i
\(394\) 0 0
\(395\) 0 0
\(396\) −2.47023 1.12812i −2.47023 1.12812i
\(397\) 0 0 0.800541 0.599278i \(-0.204545\pi\)
−0.800541 + 0.599278i \(0.795455\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.654861 0.755750i 0.654861 0.755750i
\(401\) −0.368991 + 0.425839i −0.368991 + 0.425839i −0.909632 0.415415i \(-0.863636\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(402\) −0.224443 1.03175i −0.224443 1.03175i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −1.73544 + 1.73544i −1.73544 + 1.73544i
\(409\) −1.89945 + 0.273100i −1.89945 + 0.273100i −0.989821 0.142315i \(-0.954545\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(410\) 0 0
\(411\) 3.73825i 3.73825i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.10181 2.95406i 1.10181 2.95406i
\(418\) 1.97991 + 0.738467i 1.97991 + 0.738467i
\(419\) 0.125226 + 1.75089i 0.125226 + 1.75089i 0.540641 + 0.841254i \(0.318182\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(420\) 0 0
\(421\) 0 0 0.0713392 0.997452i \(-0.477273\pi\)
−0.0713392 + 0.997452i \(0.522727\pi\)
\(422\) 0.125226 + 0.0683785i 0.125226 + 0.0683785i
\(423\) 0 0
\(424\) 0 0
\(425\) −1.19136 + 0.544078i −1.19136 + 0.544078i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.479249 0.877679i \(-0.659091\pi\)
0.479249 + 0.877679i \(0.340909\pi\)
\(432\) 2.26745 + 1.69739i 2.26745 + 1.69739i
\(433\) −0.494217 0.494217i −0.494217 0.494217i 0.415415 0.909632i \(-0.363636\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −3.33121 0.724660i −3.33121 0.724660i
\(439\) 0 0 0.997452 0.0713392i \(-0.0227273\pi\)
−0.997452 + 0.0713392i \(0.977273\pi\)
\(440\) 0 0
\(441\) 0.357424 2.48594i 0.357424 2.48594i
\(442\) 0 0
\(443\) −1.29639 1.49611i −1.29639 1.49611i −0.755750 0.654861i \(-0.772727\pi\)
−0.540641 0.841254i \(-0.681818\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.281733 + 1.95949i −0.281733 + 1.95949i 1.00000i \(0.5\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(450\) 1.35782 + 2.11281i 1.35782 + 2.11281i
\(451\) −1.52527 + 0.109089i −1.52527 + 0.109089i
\(452\) −1.17116 0.254771i −1.17116 0.254771i
\(453\) 0 0
\(454\) −0.512546 1.74557i −0.512546 1.74557i
\(455\) 0 0
\(456\) −3.08080 1.97991i −3.08080 1.97991i
\(457\) −0.677760 0.677760i −0.677760 0.677760i 0.281733 0.959493i \(-0.409091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(458\) 0 0
\(459\) −1.77785 3.25588i −1.77785 3.25588i
\(460\) 0 0
\(461\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(462\) 0 0
\(463\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0.215109 0.186393i 0.215109 0.186393i
\(467\) −0.186393 1.29639i −0.186393 1.29639i −0.841254 0.540641i \(-0.818182\pi\)
0.654861 0.755750i \(-0.272727\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 1.86912 + 0.697148i 1.86912 + 0.697148i
\(473\) −0.0539138 + 0.144548i −0.0539138 + 0.144548i
\(474\) 0 0
\(475\) −1.17116 1.56449i −1.17116 1.56449i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −1.13214 + 1.13214i −1.13214 + 1.13214i
\(483\) 0 0
\(484\) −0.162317 + 0.0476607i −0.162317 + 0.0476607i
\(485\) 0 0
\(486\) −1.92712 + 1.44262i −1.92712 + 1.44262i
\(487\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(488\) 0 0
\(489\) −0.857685 + 0.989821i −0.857685 + 0.989821i
\(490\) 0 0
\(491\) 0.0903680 + 0.415415i 0.0903680 + 0.415415i 1.00000 \(0\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(492\) 2.62312 + 0.377148i 2.62312 + 0.377148i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 2.22311 0.319635i 2.22311 0.319635i
\(499\) 0.559521 + 1.50013i 0.559521 + 1.50013i 0.841254 + 0.540641i \(0.181818\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.118239 + 0.258908i 0.118239 + 0.258908i
\(503\) 0 0 0.877679 0.479249i \(-0.159091\pi\)
−0.877679 + 0.479249i \(0.840909\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.75575 + 0.654861i 1.75575 + 0.654861i
\(508\) 0 0
\(509\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.142315 + 0.989821i 0.142315 + 0.989821i
\(513\) 4.18333 3.62487i 4.18333 3.62487i
\(514\) 1.53046 0.698939i 1.53046 0.698939i
\(515\) 0 0
\(516\) 0.144548 0.224922i 0.144548 0.224922i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.114220 + 0.0855040i 0.114220 + 0.0855040i 0.654861 0.755750i \(-0.272727\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(522\) 0 0
\(523\) 1.53046 + 0.983568i 1.53046 + 0.983568i 0.989821 + 0.142315i \(0.0454545\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(524\) −0.234072 + 0.797176i −0.234072 + 0.797176i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 2.02105 0.144548i 2.02105 0.144548i
\(529\) 0.540641 + 0.841254i 0.540641 + 0.841254i
\(530\) 0 0
\(531\) −3.00250 + 4.01087i −3.00250 + 4.01087i
\(532\) 0 0
\(533\) 0 0
\(534\) −0.898064 1.64468i −0.898064 1.64468i
\(535\) 0 0
\(536\) 0.368991 + 0.425839i 0.368991 + 0.425839i
\(537\) −2.15499 + 2.87874i −2.15499 + 2.87874i
\(538\) 0 0
\(539\) −0.584585 0.909632i −0.584585 0.909632i
\(540\) 0 0
\(541\) 0 0 −0.977147 0.212565i \(-0.931818\pi\)
0.977147 + 0.212565i \(0.0681818\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.368991 1.25667i 0.368991 1.25667i
\(545\) 0 0
\(546\) 0 0
\(547\) −0.340335 0.254771i −0.340335 0.254771i 0.415415 0.909632i \(-0.363636\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(548\) 0.956056 + 1.75089i 0.956056 + 1.75089i
\(549\) 0 0
\(550\) 1.03748 + 0.304632i 1.03748 + 0.304632i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.239446 + 1.66538i 0.239446 + 1.66538i
\(557\) 0 0 −0.877679 0.479249i \(-0.840909\pi\)
0.877679 + 0.479249i \(0.159091\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −2.48645 0.927399i −2.48645 0.927399i
\(562\) −0.148568 + 0.398326i −0.148568 + 0.398326i
\(563\) 0.0903680 0.415415i 0.0903680 0.415415i −0.909632 0.415415i \(-0.863636\pi\)
1.00000 \(0\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.822373 + 1.80075i 0.822373 + 1.80075i
\(567\) 0 0
\(568\) 0 0
\(569\) 0.334961 + 0.898064i 0.334961 + 0.898064i 0.989821 + 0.142315i \(0.0454545\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(570\) 0 0
\(571\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −2.48594 0.357424i −2.48594 0.357424i
\(577\) −0.415415 1.90963i −0.415415 1.90963i −0.415415 0.909632i \(-0.636364\pi\)
1.00000i \(-0.5\pi\)
\(578\) −0.468468 + 0.540641i −0.468468 + 0.540641i
\(579\) 2.15408 2.48594i 2.15408 2.48594i
\(580\) 0 0
\(581\) 0 0
\(582\) −2.87874 + 2.15499i −2.87874 + 2.15499i
\(583\) 0 0
\(584\) 1.74557 0.512546i 1.74557 0.512546i
\(585\) 0 0
\(586\) 0 0
\(587\) −1.66538 + 0.239446i −1.66538 + 0.239446i −0.909632 0.415415i \(-0.863636\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(588\) 0.654861 + 1.75575i 0.654861 + 1.75575i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.574406 0.767317i −0.574406 0.767317i 0.415415 0.909632i \(-0.363636\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(594\) −0.651007 + 2.99263i −0.651007 + 2.99263i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.0713392 0.997452i \(-0.477273\pi\)
−0.0713392 + 0.997452i \(0.522727\pi\)
\(600\) −1.64468 0.898064i −1.64468 0.898064i
\(601\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(602\) 0 0
\(603\) −1.28726 + 0.587871i −1.28726 + 0.587871i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(608\) 1.94931 + 0.139418i 1.94931 + 0.139418i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 2.76719 + 1.77836i 2.76719 + 1.77836i
\(613\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(614\) −0.0801894 0.273100i −0.0801894 0.273100i
\(615\) 0 0
\(616\) 0 0
\(617\) 0.697148 0.0498610i 0.697148 0.0498610i 0.281733 0.959493i \(-0.409091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(618\) 0 0
\(619\) 0.118239 0.822373i 0.118239 0.822373i −0.841254 0.540641i \(-0.818182\pi\)
0.959493 0.281733i \(-0.0909091\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.654861 0.755750i −0.654861 0.755750i
\(626\) −1.05195 + 1.40524i −1.05195 + 1.40524i
\(627\) 0.563541 3.91951i 0.563541 3.91951i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(632\) 0 0
\(633\) 0.0753254 0.256535i 0.0753254 0.256535i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.449181 + 0.698939i −0.449181 + 0.698939i −0.989821 0.142315i \(-0.954545\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(642\) 0 0
\(643\) 1.74557 0.797176i 1.74557 0.797176i 0.755750 0.654861i \(-0.227273\pi\)
0.989821 0.142315i \(-0.0454545\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.24649 1.22668i −2.24649 1.22668i
\(647\) 0 0 0.0713392 0.997452i \(-0.477273\pi\)
−0.0713392 + 0.997452i \(0.522727\pi\)
\(648\) 1.16155 2.54345i 1.16155 2.54345i
\(649\) 0.153882 + 2.15156i 0.153882 + 2.15156i
\(650\) 0 0
\(651\) 0 0
\(652\) 0.148568 0.682956i 0.148568 0.682956i
\(653\) 0 0 −0.599278 0.800541i \(-0.704545\pi\)
0.599278 + 0.800541i \(0.295455\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −1.32505 + 0.494217i −1.32505 + 0.494217i
\(657\) 4.56908i 4.56908i
\(658\) 0 0
\(659\) 0.822373 0.118239i 0.822373 0.118239i 0.281733 0.959493i \(-0.409091\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(660\) 0 0
\(661\) 0 0 0.977147 0.212565i \(-0.0681818\pi\)
−0.977147 + 0.212565i \(0.931818\pi\)
\(662\) −1.61435 + 0.474017i −1.61435 + 0.474017i
\(663\) 0 0
\(664\) −0.959493 + 0.718267i −0.959493 + 0.718267i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(674\) 0.415415 0.0903680i 0.415415 0.0903680i
\(675\) 2.00281 2.00281i 2.00281 2.00281i
\(676\) −0.989821 + 0.142315i −0.989821 + 0.142315i
\(677\) 0 0 −0.349464 0.936950i \(-0.613636\pi\)
0.349464 + 0.936950i \(0.386364\pi\)
\(678\) 2.24597i 2.24597i
\(679\) 0 0
\(680\) 0 0
\(681\) −2.99211 + 1.63382i −2.99211 + 1.63382i
\(682\) 0 0
\(683\) −0.148568 + 0.682956i −0.148568 + 0.682956i 0.841254 + 0.540641i \(0.181818\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(684\) −1.71524 + 4.59874i −1.71524 + 4.59874i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −0.0101786 + 0.142315i −0.0101786 + 0.142315i
\(689\) 0 0
\(690\) 0 0
\(691\) 0.215109 0.186393i 0.215109 0.186393i −0.540641 0.841254i \(-0.681818\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −1.07028 + 1.66538i −1.07028 + 1.66538i
\(695\) 0 0
\(696\) 0 0
\(697\) 1.84751 + 0.132136i 1.84751 + 0.132136i
\(698\) 0 0
\(699\) −0.426983 0.319635i −0.426983 0.319635i
\(700\) 0 0
\(701\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −0.909632 + 0.584585i −0.909632 + 0.584585i
\(705\) 0 0
\(706\) 1.75089 0.125226i 1.75089 0.125226i
\(707\) 0 0
\(708\) 0.532008 3.70020i 0.532008 3.70020i
\(709\) 0 0 0.599278 0.800541i \(-0.295455\pi\)
−0.599278 + 0.800541i \(0.704545\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.273100 1.89945i 0.273100 1.89945i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.977147 0.212565i \(-0.931818\pi\)
0.977147 + 0.212565i \(0.0681818\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.794278 2.70506i 0.794278 2.70506i
\(723\) 2.52399 + 1.62207i 2.52399 + 1.62207i
\(724\) 0 0
\(725\) 0 0
\(726\) 0.151926 + 0.278231i 0.151926 + 0.278231i
\(727\) 0 0 −0.997452 0.0713392i \(-0.977273\pi\)
0.997452 + 0.0713392i \(0.0227273\pi\)
\(728\) 0 0
\(729\) 1.29600 + 1.12299i 1.29600 + 1.12299i
\(730\) 0 0
\(731\) 0.0895567 0.164011i 0.0895567 0.164011i
\(732\) 0 0
\(733\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.253098 + 0.554206i −0.253098 + 0.554206i
\(738\) −0.253382 3.54275i −0.253382 3.54275i
\(739\) 1.64468 + 0.613435i 1.64468 + 0.613435i 0.989821 0.142315i \(-0.0454545\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.877679 0.479249i \(-0.159091\pi\)
−0.877679 + 0.479249i \(0.840909\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −1.05195 2.82038i −1.05195 2.82038i
\(748\) 1.40176 0.201543i 1.40176 0.201543i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(752\) 0 0
\(753\) 0.426983 0.319635i 0.426983 0.319635i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(758\) 0.203743 + 0.936593i 0.203743 + 0.936593i
\(759\) 0 0
\(760\) 0 0
\(761\) −0.983568 0.449181i −0.983568 0.449181i −0.142315 0.989821i \(-0.545455\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 1.75575 0.654861i 1.75575 0.654861i
\(769\) −0.822373 1.80075i −0.822373 1.80075i −0.540641 0.841254i \(-0.681818\pi\)
−0.281733 0.959493i \(-0.590909\pi\)
\(770\) 0 0
\(771\) −1.88943 2.52399i −1.88943 2.52399i
\(772\) −0.373128 + 1.71524i −0.373128 + 1.71524i
\(773\) 0 0 0.349464 0.936950i \(-0.386364\pi\)
−0.349464 + 0.936950i \(0.613636\pi\)
\(774\) −0.335743 0.125226i −0.335743 0.125226i
\(775\) 0 0
\(776\) 0.797176 1.74557i 0.797176 1.74557i
\(777\) 0 0
\(778\) 0 0
\(779\) 0.393328 + 2.73566i 0.393328 + 2.73566i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.755750 0.654861i −0.755750 0.654861i
\(785\) 0 0
\(786\) 1.55293 + 0.111067i 1.55293 + 0.111067i
\(787\) −0.767317 1.40524i −0.767317 1.40524i −0.909632 0.415415i \(-0.863636\pi\)
0.142315 0.989821i \(-0.454545\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −0.765084 2.60564i −0.765084 2.60564i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\)