Properties

Label 7105.2.a.s
Level $7105$
Weight $2$
Character orbit 7105.a
Self dual yes
Analytic conductor $56.734$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7105,2,Mod(1,7105)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7105.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7105, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7105 = 5 \cdot 7^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7105.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,3,-1,7,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.7337106361\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 6x^{5} + 21x^{4} + 3x^{3} - 31x^{2} + 14x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1015)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - \beta_{5} q^{3} + (\beta_{2} + 1) q^{4} + q^{5} + ( - \beta_{6} - \beta_{5} - \beta_{4}) q^{6} + (\beta_{5} - \beta_{4} + \beta_{2} + \beta_1) q^{8} + (\beta_{5} - \beta_{4} + \cdots + 2 \beta_1) q^{9}+ \cdots + (\beta_{6} + 2 \beta_{5} - \beta_{4} + \cdots - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{2} - q^{3} + 7 q^{4} + 7 q^{5} + 4 q^{6} + 6 q^{8} + 12 q^{9} + 3 q^{10} + 7 q^{11} + 3 q^{12} - 5 q^{13} - q^{15} + 7 q^{16} - 14 q^{17} + 29 q^{18} + 9 q^{19} + 7 q^{20} + 9 q^{22} + 12 q^{23}+ \cdots - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 3x^{6} - 6x^{5} + 21x^{4} + 3x^{3} - 31x^{2} + 14x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - \nu^{4} - 7\nu^{3} + 5\nu^{2} + 10\nu - 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{6} - 2\nu^{5} - 7\nu^{4} + 13\nu^{3} + 10\nu^{2} - 17\nu + 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{6} - 2\nu^{5} - 7\nu^{4} + 14\nu^{3} + 9\nu^{2} - 22\nu + 5 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\nu^{6} + 3\nu^{5} + 7\nu^{4} - 21\nu^{3} - 10\nu^{2} + 30\nu - 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - \beta_{4} + \beta_{2} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{6} + \beta_{5} - \beta_{3} + 6\beta_{2} + 2\beta _1 + 14 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{6} + 8\beta_{5} - 7\beta_{4} + 8\beta_{2} + 27\beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 9\beta_{6} + 10\beta_{5} - 7\beta_{3} + 35\beta_{2} + 20\beta _1 + 74 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.19292
−1.51361
0.0885540
0.454212
1.23413
2.38681
2.54283
−2.19292 0.358243 2.80892 1.00000 −0.785599 0 −1.77389 −2.87166 −2.19292
1.2 −1.51361 −1.54354 0.291015 1.00000 2.33632 0 2.58674 −0.617478 −1.51361
1.3 0.0885540 −3.13167 −1.99216 1.00000 −0.277322 0 −0.353521 6.80736 0.0885540
1.4 0.454212 2.15181 −1.79369 1.00000 0.977378 0 −1.72314 1.63028 0.454212
1.5 1.23413 0.558672 −0.476927 1.00000 0.689473 0 −3.05685 −2.68789 1.23413
1.6 2.38681 3.09210 3.69684 1.00000 7.38025 0 4.05003 6.56111 2.38681
1.7 2.54283 −2.48561 4.46600 1.00000 −6.32050 0 6.27063 3.17828 2.54283
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( -1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7105.2.a.s 7
7.b odd 2 1 1015.2.a.k 7
21.c even 2 1 9135.2.a.be 7
35.c odd 2 1 5075.2.a.y 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1015.2.a.k 7 7.b odd 2 1
5075.2.a.y 7 35.c odd 2 1
7105.2.a.s 7 1.a even 1 1 trivial
9135.2.a.be 7 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7105))\):

\( T_{2}^{7} - 3T_{2}^{6} - 6T_{2}^{5} + 21T_{2}^{4} + 3T_{2}^{3} - 31T_{2}^{2} + 14T_{2} - 1 \) Copy content Toggle raw display
\( T_{3}^{7} + T_{3}^{6} - 16T_{3}^{5} - 13T_{3}^{4} + 68T_{3}^{3} + 32T_{3}^{2} - 64T_{3} + 16 \) Copy content Toggle raw display
\( T_{17}^{7} + 14T_{17}^{6} + 43T_{17}^{5} - 129T_{17}^{4} - 632T_{17}^{3} + 192T_{17}^{2} + 2048T_{17} + 256 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} - 3 T^{6} + \cdots - 1 \) Copy content Toggle raw display
$3$ \( T^{7} + T^{6} + \cdots + 16 \) Copy content Toggle raw display
$5$ \( (T - 1)^{7} \) Copy content Toggle raw display
$7$ \( T^{7} \) Copy content Toggle raw display
$11$ \( T^{7} - 7 T^{6} + \cdots - 32 \) Copy content Toggle raw display
$13$ \( T^{7} + 5 T^{6} + \cdots - 32 \) Copy content Toggle raw display
$17$ \( T^{7} + 14 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$19$ \( T^{7} - 9 T^{6} + \cdots - 2012 \) Copy content Toggle raw display
$23$ \( T^{7} - 12 T^{6} + \cdots + 2752 \) Copy content Toggle raw display
$29$ \( (T - 1)^{7} \) Copy content Toggle raw display
$31$ \( T^{7} - 7 T^{6} + \cdots - 16556 \) Copy content Toggle raw display
$37$ \( T^{7} - 23 T^{6} + \cdots - 18244 \) Copy content Toggle raw display
$41$ \( T^{7} + 13 T^{6} + \cdots - 81556 \) Copy content Toggle raw display
$43$ \( T^{7} - 31 T^{6} + \cdots + 69404 \) Copy content Toggle raw display
$47$ \( T^{7} - 6 T^{6} + \cdots + 82096 \) Copy content Toggle raw display
$53$ \( T^{7} - 23 T^{6} + \cdots - 283600 \) Copy content Toggle raw display
$59$ \( T^{7} + 4 T^{6} + \cdots + 634112 \) Copy content Toggle raw display
$61$ \( T^{7} - 4 T^{6} + \cdots + 32 \) Copy content Toggle raw display
$67$ \( T^{7} - 13 T^{6} + \cdots - 137600 \) Copy content Toggle raw display
$71$ \( T^{7} + 11 T^{6} + \cdots + 78512 \) Copy content Toggle raw display
$73$ \( T^{7} + 8 T^{6} + \cdots + 3409216 \) Copy content Toggle raw display
$79$ \( T^{7} - 97 T^{5} + \cdots + 39968 \) Copy content Toggle raw display
$83$ \( T^{7} - 6 T^{6} + \cdots + 6935600 \) Copy content Toggle raw display
$89$ \( T^{7} - 5 T^{6} + \cdots - 354628 \) Copy content Toggle raw display
$97$ \( T^{7} + 4 T^{6} + \cdots + 5888 \) Copy content Toggle raw display
show more
show less