Properties

Label 7105.2.a.r
Level $7105$
Weight $2$
Character orbit 7105.a
Self dual yes
Analytic conductor $56.734$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7105,2,Mod(1,7105)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7105.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7105, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7105 = 5 \cdot 7^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7105.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,-3,-1,9,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.7337106361\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 11x^{5} + 8x^{4} + 30x^{3} - 17x^{2} - 20x + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1015)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{6} q^{2} - \beta_1 q^{3} + (\beta_{6} - \beta_{4} + 1) q^{4} + q^{5} + ( - \beta_{4} + \beta_{2} + \beta_1) q^{6} + ( - \beta_{6} + \beta_{5} + \beta_{2} + \cdots - 1) q^{8} + (\beta_{6} + \beta_{5}) q^{9}+ \cdots + ( - 3 \beta_{6} - \beta_{5} - \beta_{4} + \cdots - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 3 q^{2} - q^{3} + 9 q^{4} + 7 q^{5} - 12 q^{8} + 2 q^{9} - 3 q^{10} - 5 q^{11} + 5 q^{12} + 3 q^{13} - q^{15} + 9 q^{16} + 16 q^{17} - 17 q^{18} - 7 q^{19} + 9 q^{20} - 11 q^{22} - 22 q^{23} + 8 q^{24}+ \cdots - 23 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - x^{6} - 11x^{5} + 8x^{4} + 30x^{3} - 17x^{2} - 20x + 12 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} + \nu^{5} - 13\nu^{4} - 10\nu^{3} + 42\nu^{2} + 15\nu - 30 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{6} + \nu^{5} + 35\nu^{4} - 2\nu^{3} - 102\nu^{2} - 9\nu + 62 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -5\nu^{6} + 3\nu^{5} + 53\nu^{4} - 14\nu^{3} - 126\nu^{2} + \nu + 54 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -7\nu^{6} + \nu^{5} + 79\nu^{4} + 10\nu^{3} - 210\nu^{2} - 49\nu + 110 ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 7\nu^{6} - \nu^{5} - 79\nu^{4} - 10\nu^{3} + 214\nu^{2} + 49\nu - 122 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + \beta_{5} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - \beta_{4} + 2\beta_{2} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 9\beta_{6} + 9\beta_{5} - \beta_{4} + 2\beta_{3} + \beta_{2} + \beta _1 + 17 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 3\beta_{6} + 11\beta_{5} - 9\beta_{4} + 3\beta_{3} + 20\beta_{2} + 32\beta _1 + 14 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 72\beta_{6} + 74\beta_{5} - 14\beta_{4} + 23\beta_{3} + 17\beta_{2} + 16\beta _1 + 121 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.768424
−2.55866
2.93471
−1.55877
1.78557
0.698490
−1.06975
−2.77653 −0.768424 5.70911 1.00000 2.13355 0 −10.2985 −2.40952 −2.77653
1.2 −2.25469 2.55866 3.08364 1.00000 −5.76899 0 −2.44327 3.54673 −2.25469
1.3 −1.61034 −2.93471 0.593195 1.00000 4.72588 0 2.26543 5.61251 −1.61034
1.4 −0.670735 1.55877 −1.55011 1.00000 −1.04552 0 2.38119 −0.570221 −0.670735
1.5 0.867803 −1.78557 −1.24692 1.00000 −1.54952 0 −2.81769 0.188244 0.867803
1.6 1.23295 −0.698490 −0.479834 1.00000 −0.861204 0 −3.05751 −2.51211 1.23295
1.7 2.21154 1.06975 2.89092 1.00000 2.36581 0 1.97031 −1.85563 2.21154
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( -1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7105.2.a.r 7
7.b odd 2 1 1015.2.a.j 7
21.c even 2 1 9135.2.a.bg 7
35.c odd 2 1 5075.2.a.z 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1015.2.a.j 7 7.b odd 2 1
5075.2.a.z 7 35.c odd 2 1
7105.2.a.r 7 1.a even 1 1 trivial
9135.2.a.bg 7 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7105))\):

\( T_{2}^{7} + 3T_{2}^{6} - 7T_{2}^{5} - 22T_{2}^{4} + 12T_{2}^{3} + 39T_{2}^{2} - 8T_{2} - 16 \) Copy content Toggle raw display
\( T_{3}^{7} + T_{3}^{6} - 11T_{3}^{5} - 8T_{3}^{4} + 30T_{3}^{3} + 17T_{3}^{2} - 20T_{3} - 12 \) Copy content Toggle raw display
\( T_{17}^{7} - 16T_{17}^{6} + 81T_{17}^{5} - 89T_{17}^{4} - 420T_{17}^{3} + 1200T_{17}^{2} - 800T_{17} - 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} + 3 T^{6} + \cdots - 16 \) Copy content Toggle raw display
$3$ \( T^{7} + T^{6} + \cdots - 12 \) Copy content Toggle raw display
$5$ \( (T - 1)^{7} \) Copy content Toggle raw display
$7$ \( T^{7} \) Copy content Toggle raw display
$11$ \( T^{7} + 5 T^{6} + \cdots - 96 \) Copy content Toggle raw display
$13$ \( T^{7} - 3 T^{6} + \cdots + 736 \) Copy content Toggle raw display
$17$ \( T^{7} - 16 T^{6} + \cdots - 64 \) Copy content Toggle raw display
$19$ \( T^{7} + 7 T^{6} + \cdots - 10016 \) Copy content Toggle raw display
$23$ \( T^{7} + 22 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$29$ \( (T + 1)^{7} \) Copy content Toggle raw display
$31$ \( T^{7} + 7 T^{6} + \cdots + 7168 \) Copy content Toggle raw display
$37$ \( T^{7} + 5 T^{6} + \cdots + 15616 \) Copy content Toggle raw display
$41$ \( T^{7} - 17 T^{6} + \cdots + 252052 \) Copy content Toggle raw display
$43$ \( T^{7} + 3 T^{6} + \cdots - 277616 \) Copy content Toggle raw display
$47$ \( T^{7} + 8 T^{6} + \cdots + 117228 \) Copy content Toggle raw display
$53$ \( T^{7} + 23 T^{6} + \cdots - 11124 \) Copy content Toggle raw display
$59$ \( T^{7} + 4 T^{6} + \cdots - 274048 \) Copy content Toggle raw display
$61$ \( T^{7} + 14 T^{6} + \cdots - 135936 \) Copy content Toggle raw display
$67$ \( T^{7} + 29 T^{6} + \cdots - 126992 \) Copy content Toggle raw display
$71$ \( T^{7} + 13 T^{6} + \cdots + 2488128 \) Copy content Toggle raw display
$73$ \( T^{7} - 16 T^{6} + \cdots + 1656 \) Copy content Toggle raw display
$79$ \( T^{7} - 14 T^{6} + \cdots + 23328 \) Copy content Toggle raw display
$83$ \( T^{7} - 2 T^{6} + \cdots - 250816 \) Copy content Toggle raw display
$89$ \( T^{7} - 27 T^{6} + \cdots + 306036 \) Copy content Toggle raw display
$97$ \( T^{7} + 4 T^{6} + \cdots + 282184 \) Copy content Toggle raw display
show more
show less