Properties

Label 7105.2.a.p.1.1
Level $7105$
Weight $2$
Character 7105.1
Self dual yes
Analytic conductor $56.734$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7105,2,Mod(1,7105)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7105.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7105, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7105 = 5 \cdot 7^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7105.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,2,5,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.7337106361\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 7105.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.21432 q^{2} +2.90321 q^{3} -0.525428 q^{4} +1.00000 q^{5} -3.52543 q^{6} +3.06668 q^{8} +5.42864 q^{9} -1.21432 q^{10} +4.90321 q^{11} -1.52543 q^{12} +6.42864 q^{13} +2.90321 q^{15} -2.67307 q^{16} -2.14764 q^{17} -6.59210 q^{18} -2.28100 q^{19} -0.525428 q^{20} -5.95407 q^{22} +6.90321 q^{23} +8.90321 q^{24} +1.00000 q^{25} -7.80642 q^{26} +7.05086 q^{27} +1.00000 q^{29} -3.52543 q^{30} -1.71900 q^{31} -2.88739 q^{32} +14.2351 q^{33} +2.60793 q^{34} -2.85236 q^{36} +7.95407 q^{37} +2.76986 q^{38} +18.6637 q^{39} +3.06668 q^{40} +3.37778 q^{41} -1.09679 q^{43} -2.57628 q^{44} +5.42864 q^{45} -8.38271 q^{46} -12.7096 q^{47} -7.76049 q^{48} -1.21432 q^{50} -6.23506 q^{51} -3.37778 q^{52} +3.37778 q^{53} -8.56199 q^{54} +4.90321 q^{55} -6.62222 q^{57} -1.21432 q^{58} +3.18421 q^{59} -1.52543 q^{60} +2.42864 q^{61} +2.08742 q^{62} +8.85236 q^{64} +6.42864 q^{65} -17.2859 q^{66} -1.09679 q^{67} +1.12843 q^{68} +20.0415 q^{69} +3.57136 q^{71} +16.6479 q^{72} -14.1891 q^{73} -9.65878 q^{74} +2.90321 q^{75} +1.19850 q^{76} -22.6637 q^{78} +0.341219 q^{79} -2.67307 q^{80} +4.18421 q^{81} -4.10171 q^{82} +7.33185 q^{83} -2.14764 q^{85} +1.33185 q^{86} +2.90321 q^{87} +15.0366 q^{88} -2.94914 q^{89} -6.59210 q^{90} -3.62714 q^{92} -4.99063 q^{93} +15.4336 q^{94} -2.28100 q^{95} -8.38271 q^{96} +18.5763 q^{97} +26.6178 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 2 q^{3} + 5 q^{4} + 3 q^{5} - 4 q^{6} + 9 q^{8} + 3 q^{9} + 3 q^{10} + 8 q^{11} + 2 q^{12} + 6 q^{13} + 2 q^{15} + 5 q^{16} - 13 q^{18} + 5 q^{20} + 2 q^{22} + 14 q^{23} + 20 q^{24} + 3 q^{25}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.21432 −0.858654 −0.429327 0.903149i \(-0.641249\pi\)
−0.429327 + 0.903149i \(0.641249\pi\)
\(3\) 2.90321 1.67617 0.838085 0.545540i \(-0.183675\pi\)
0.838085 + 0.545540i \(0.183675\pi\)
\(4\) −0.525428 −0.262714
\(5\) 1.00000 0.447214
\(6\) −3.52543 −1.43925
\(7\) 0 0
\(8\) 3.06668 1.08423
\(9\) 5.42864 1.80955
\(10\) −1.21432 −0.384002
\(11\) 4.90321 1.47837 0.739187 0.673500i \(-0.235210\pi\)
0.739187 + 0.673500i \(0.235210\pi\)
\(12\) −1.52543 −0.440353
\(13\) 6.42864 1.78298 0.891492 0.453037i \(-0.149659\pi\)
0.891492 + 0.453037i \(0.149659\pi\)
\(14\) 0 0
\(15\) 2.90321 0.749606
\(16\) −2.67307 −0.668268
\(17\) −2.14764 −0.520880 −0.260440 0.965490i \(-0.583868\pi\)
−0.260440 + 0.965490i \(0.583868\pi\)
\(18\) −6.59210 −1.55377
\(19\) −2.28100 −0.523296 −0.261648 0.965163i \(-0.584266\pi\)
−0.261648 + 0.965163i \(0.584266\pi\)
\(20\) −0.525428 −0.117489
\(21\) 0 0
\(22\) −5.95407 −1.26941
\(23\) 6.90321 1.43942 0.719710 0.694275i \(-0.244275\pi\)
0.719710 + 0.694275i \(0.244275\pi\)
\(24\) 8.90321 1.81736
\(25\) 1.00000 0.200000
\(26\) −7.80642 −1.53097
\(27\) 7.05086 1.35694
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) −3.52543 −0.643652
\(31\) −1.71900 −0.308742 −0.154371 0.988013i \(-0.549335\pi\)
−0.154371 + 0.988013i \(0.549335\pi\)
\(32\) −2.88739 −0.510423
\(33\) 14.2351 2.47801
\(34\) 2.60793 0.447256
\(35\) 0 0
\(36\) −2.85236 −0.475393
\(37\) 7.95407 1.30764 0.653820 0.756650i \(-0.273165\pi\)
0.653820 + 0.756650i \(0.273165\pi\)
\(38\) 2.76986 0.449330
\(39\) 18.6637 2.98858
\(40\) 3.06668 0.484884
\(41\) 3.37778 0.527521 0.263761 0.964588i \(-0.415037\pi\)
0.263761 + 0.964588i \(0.415037\pi\)
\(42\) 0 0
\(43\) −1.09679 −0.167259 −0.0836293 0.996497i \(-0.526651\pi\)
−0.0836293 + 0.996497i \(0.526651\pi\)
\(44\) −2.57628 −0.388389
\(45\) 5.42864 0.809254
\(46\) −8.38271 −1.23596
\(47\) −12.7096 −1.85389 −0.926945 0.375196i \(-0.877575\pi\)
−0.926945 + 0.375196i \(0.877575\pi\)
\(48\) −7.76049 −1.12013
\(49\) 0 0
\(50\) −1.21432 −0.171731
\(51\) −6.23506 −0.873084
\(52\) −3.37778 −0.468414
\(53\) 3.37778 0.463974 0.231987 0.972719i \(-0.425477\pi\)
0.231987 + 0.972719i \(0.425477\pi\)
\(54\) −8.56199 −1.16514
\(55\) 4.90321 0.661149
\(56\) 0 0
\(57\) −6.62222 −0.877134
\(58\) −1.21432 −0.159448
\(59\) 3.18421 0.414549 0.207274 0.978283i \(-0.433541\pi\)
0.207274 + 0.978283i \(0.433541\pi\)
\(60\) −1.52543 −0.196932
\(61\) 2.42864 0.310955 0.155478 0.987839i \(-0.450308\pi\)
0.155478 + 0.987839i \(0.450308\pi\)
\(62\) 2.08742 0.265103
\(63\) 0 0
\(64\) 8.85236 1.10654
\(65\) 6.42864 0.797375
\(66\) −17.2859 −2.12775
\(67\) −1.09679 −0.133994 −0.0669970 0.997753i \(-0.521342\pi\)
−0.0669970 + 0.997753i \(0.521342\pi\)
\(68\) 1.12843 0.136842
\(69\) 20.0415 2.41271
\(70\) 0 0
\(71\) 3.57136 0.423843 0.211921 0.977287i \(-0.432028\pi\)
0.211921 + 0.977287i \(0.432028\pi\)
\(72\) 16.6479 1.96197
\(73\) −14.1891 −1.66071 −0.830356 0.557233i \(-0.811863\pi\)
−0.830356 + 0.557233i \(0.811863\pi\)
\(74\) −9.65878 −1.12281
\(75\) 2.90321 0.335234
\(76\) 1.19850 0.137477
\(77\) 0 0
\(78\) −22.6637 −2.56616
\(79\) 0.341219 0.0383902 0.0191951 0.999816i \(-0.493890\pi\)
0.0191951 + 0.999816i \(0.493890\pi\)
\(80\) −2.67307 −0.298858
\(81\) 4.18421 0.464912
\(82\) −4.10171 −0.452958
\(83\) 7.33185 0.804775 0.402388 0.915469i \(-0.368180\pi\)
0.402388 + 0.915469i \(0.368180\pi\)
\(84\) 0 0
\(85\) −2.14764 −0.232945
\(86\) 1.33185 0.143617
\(87\) 2.90321 0.311257
\(88\) 15.0366 1.60290
\(89\) −2.94914 −0.312609 −0.156304 0.987709i \(-0.549958\pi\)
−0.156304 + 0.987709i \(0.549958\pi\)
\(90\) −6.59210 −0.694869
\(91\) 0 0
\(92\) −3.62714 −0.378155
\(93\) −4.99063 −0.517504
\(94\) 15.4336 1.59185
\(95\) −2.28100 −0.234025
\(96\) −8.38271 −0.855556
\(97\) 18.5763 1.88614 0.943068 0.332600i \(-0.107926\pi\)
0.943068 + 0.332600i \(0.107926\pi\)
\(98\) 0 0
\(99\) 26.6178 2.67519
\(100\) −0.525428 −0.0525428
\(101\) −15.4193 −1.53427 −0.767137 0.641483i \(-0.778320\pi\)
−0.767137 + 0.641483i \(0.778320\pi\)
\(102\) 7.57136 0.749676
\(103\) −7.76049 −0.764664 −0.382332 0.924025i \(-0.624879\pi\)
−0.382332 + 0.924025i \(0.624879\pi\)
\(104\) 19.7146 1.93317
\(105\) 0 0
\(106\) −4.10171 −0.398393
\(107\) −3.03657 −0.293556 −0.146778 0.989169i \(-0.546890\pi\)
−0.146778 + 0.989169i \(0.546890\pi\)
\(108\) −3.70471 −0.356486
\(109\) −7.93978 −0.760493 −0.380246 0.924885i \(-0.624161\pi\)
−0.380246 + 0.924885i \(0.624161\pi\)
\(110\) −5.95407 −0.567698
\(111\) 23.0923 2.19183
\(112\) 0 0
\(113\) 7.82071 0.735711 0.367855 0.929883i \(-0.380092\pi\)
0.367855 + 0.929883i \(0.380092\pi\)
\(114\) 8.04149 0.753154
\(115\) 6.90321 0.643728
\(116\) −0.525428 −0.0487847
\(117\) 34.8988 3.22639
\(118\) −3.86665 −0.355954
\(119\) 0 0
\(120\) 8.90321 0.812748
\(121\) 13.0415 1.18559
\(122\) −2.94914 −0.267003
\(123\) 9.80642 0.884215
\(124\) 0.903212 0.0811108
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −12.4429 −1.10413 −0.552066 0.833801i \(-0.686160\pi\)
−0.552066 + 0.833801i \(0.686160\pi\)
\(128\) −4.97481 −0.439715
\(129\) −3.18421 −0.280354
\(130\) −7.80642 −0.684669
\(131\) −4.08742 −0.357120 −0.178560 0.983929i \(-0.557144\pi\)
−0.178560 + 0.983929i \(0.557144\pi\)
\(132\) −7.47949 −0.651006
\(133\) 0 0
\(134\) 1.33185 0.115054
\(135\) 7.05086 0.606841
\(136\) −6.58613 −0.564756
\(137\) −19.9541 −1.70479 −0.852395 0.522898i \(-0.824851\pi\)
−0.852395 + 0.522898i \(0.824851\pi\)
\(138\) −24.3368 −2.07168
\(139\) −7.90813 −0.670759 −0.335380 0.942083i \(-0.608865\pi\)
−0.335380 + 0.942083i \(0.608865\pi\)
\(140\) 0 0
\(141\) −36.8988 −3.10744
\(142\) −4.33677 −0.363934
\(143\) 31.5210 2.63592
\(144\) −14.5111 −1.20926
\(145\) 1.00000 0.0830455
\(146\) 17.2301 1.42598
\(147\) 0 0
\(148\) −4.17929 −0.343535
\(149\) −16.1017 −1.31910 −0.659552 0.751659i \(-0.729254\pi\)
−0.659552 + 0.751659i \(0.729254\pi\)
\(150\) −3.52543 −0.287850
\(151\) 5.67307 0.461668 0.230834 0.972993i \(-0.425855\pi\)
0.230834 + 0.972993i \(0.425855\pi\)
\(152\) −6.99508 −0.567376
\(153\) −11.6588 −0.942557
\(154\) 0 0
\(155\) −1.71900 −0.138074
\(156\) −9.80642 −0.785142
\(157\) −1.89384 −0.151145 −0.0755726 0.997140i \(-0.524078\pi\)
−0.0755726 + 0.997140i \(0.524078\pi\)
\(158\) −0.414349 −0.0329639
\(159\) 9.80642 0.777700
\(160\) −2.88739 −0.228268
\(161\) 0 0
\(162\) −5.08097 −0.399198
\(163\) −5.95407 −0.466359 −0.233179 0.972434i \(-0.574913\pi\)
−0.233179 + 0.972434i \(0.574913\pi\)
\(164\) −1.77478 −0.138587
\(165\) 14.2351 1.10820
\(166\) −8.90321 −0.691023
\(167\) −4.23951 −0.328063 −0.164032 0.986455i \(-0.552450\pi\)
−0.164032 + 0.986455i \(0.552450\pi\)
\(168\) 0 0
\(169\) 28.3274 2.17903
\(170\) 2.60793 0.200019
\(171\) −12.3827 −0.946929
\(172\) 0.576283 0.0439411
\(173\) −24.4099 −1.85585 −0.927925 0.372766i \(-0.878409\pi\)
−0.927925 + 0.372766i \(0.878409\pi\)
\(174\) −3.52543 −0.267262
\(175\) 0 0
\(176\) −13.1066 −0.987950
\(177\) 9.24443 0.694854
\(178\) 3.58120 0.268423
\(179\) −3.61285 −0.270037 −0.135018 0.990843i \(-0.543109\pi\)
−0.135018 + 0.990843i \(0.543109\pi\)
\(180\) −2.85236 −0.212602
\(181\) −18.0415 −1.34101 −0.670507 0.741904i \(-0.733923\pi\)
−0.670507 + 0.741904i \(0.733923\pi\)
\(182\) 0 0
\(183\) 7.05086 0.521214
\(184\) 21.1699 1.56067
\(185\) 7.95407 0.584795
\(186\) 6.06022 0.444357
\(187\) −10.5303 −0.770055
\(188\) 6.67799 0.487043
\(189\) 0 0
\(190\) 2.76986 0.200947
\(191\) 9.85236 0.712892 0.356446 0.934316i \(-0.383988\pi\)
0.356446 + 0.934316i \(0.383988\pi\)
\(192\) 25.7003 1.85476
\(193\) 2.23951 0.161203 0.0806017 0.996746i \(-0.474316\pi\)
0.0806017 + 0.996746i \(0.474316\pi\)
\(194\) −22.5575 −1.61954
\(195\) 18.6637 1.33654
\(196\) 0 0
\(197\) −10.5620 −0.752511 −0.376255 0.926516i \(-0.622788\pi\)
−0.376255 + 0.926516i \(0.622788\pi\)
\(198\) −32.3225 −2.29706
\(199\) −3.18421 −0.225723 −0.112861 0.993611i \(-0.536002\pi\)
−0.112861 + 0.993611i \(0.536002\pi\)
\(200\) 3.06668 0.216847
\(201\) −3.18421 −0.224597
\(202\) 18.7239 1.31741
\(203\) 0 0
\(204\) 3.27607 0.229371
\(205\) 3.37778 0.235915
\(206\) 9.42372 0.656581
\(207\) 37.4750 2.60470
\(208\) −17.1842 −1.19151
\(209\) −11.1842 −0.773628
\(210\) 0 0
\(211\) −5.76049 −0.396569 −0.198284 0.980145i \(-0.563537\pi\)
−0.198284 + 0.980145i \(0.563537\pi\)
\(212\) −1.77478 −0.121892
\(213\) 10.3684 0.710432
\(214\) 3.68736 0.252063
\(215\) −1.09679 −0.0748003
\(216\) 21.6227 1.47124
\(217\) 0 0
\(218\) 9.64143 0.653000
\(219\) −41.1941 −2.78364
\(220\) −2.57628 −0.173693
\(221\) −13.8064 −0.928721
\(222\) −28.0415 −1.88202
\(223\) −8.14764 −0.545607 −0.272803 0.962070i \(-0.587951\pi\)
−0.272803 + 0.962070i \(0.587951\pi\)
\(224\) 0 0
\(225\) 5.42864 0.361909
\(226\) −9.49685 −0.631721
\(227\) −10.5161 −0.697975 −0.348988 0.937127i \(-0.613475\pi\)
−0.348988 + 0.937127i \(0.613475\pi\)
\(228\) 3.47949 0.230435
\(229\) −8.48886 −0.560960 −0.280480 0.959860i \(-0.590494\pi\)
−0.280480 + 0.959860i \(0.590494\pi\)
\(230\) −8.38271 −0.552739
\(231\) 0 0
\(232\) 3.06668 0.201337
\(233\) −20.5718 −1.34771 −0.673853 0.738866i \(-0.735362\pi\)
−0.673853 + 0.738866i \(0.735362\pi\)
\(234\) −42.3783 −2.77035
\(235\) −12.7096 −0.829085
\(236\) −1.67307 −0.108908
\(237\) 0.990632 0.0643485
\(238\) 0 0
\(239\) 0.815792 0.0527692 0.0263846 0.999652i \(-0.491601\pi\)
0.0263846 + 0.999652i \(0.491601\pi\)
\(240\) −7.76049 −0.500938
\(241\) 7.24443 0.466655 0.233327 0.972398i \(-0.425039\pi\)
0.233327 + 0.972398i \(0.425039\pi\)
\(242\) −15.8365 −1.01801
\(243\) −9.00492 −0.577666
\(244\) −1.27607 −0.0816923
\(245\) 0 0
\(246\) −11.9081 −0.759235
\(247\) −14.6637 −0.933029
\(248\) −5.27163 −0.334749
\(249\) 21.2859 1.34894
\(250\) −1.21432 −0.0768003
\(251\) 20.4242 1.28916 0.644582 0.764535i \(-0.277031\pi\)
0.644582 + 0.764535i \(0.277031\pi\)
\(252\) 0 0
\(253\) 33.8479 2.12800
\(254\) 15.1097 0.948067
\(255\) −6.23506 −0.390455
\(256\) −11.6637 −0.728981
\(257\) −3.08250 −0.192281 −0.0961405 0.995368i \(-0.530650\pi\)
−0.0961405 + 0.995368i \(0.530650\pi\)
\(258\) 3.86665 0.240727
\(259\) 0 0
\(260\) −3.37778 −0.209481
\(261\) 5.42864 0.336024
\(262\) 4.96343 0.306642
\(263\) 20.0558 1.23669 0.618346 0.785906i \(-0.287803\pi\)
0.618346 + 0.785906i \(0.287803\pi\)
\(264\) 43.6543 2.68674
\(265\) 3.37778 0.207496
\(266\) 0 0
\(267\) −8.56199 −0.523985
\(268\) 0.576283 0.0352021
\(269\) 23.4608 1.43043 0.715214 0.698906i \(-0.246329\pi\)
0.715214 + 0.698906i \(0.246329\pi\)
\(270\) −8.56199 −0.521066
\(271\) 21.9353 1.33248 0.666238 0.745739i \(-0.267903\pi\)
0.666238 + 0.745739i \(0.267903\pi\)
\(272\) 5.74080 0.348087
\(273\) 0 0
\(274\) 24.2306 1.46383
\(275\) 4.90321 0.295675
\(276\) −10.5303 −0.633853
\(277\) 18.3368 1.10175 0.550875 0.834588i \(-0.314294\pi\)
0.550875 + 0.834588i \(0.314294\pi\)
\(278\) 9.60300 0.575950
\(279\) −9.33185 −0.558683
\(280\) 0 0
\(281\) 6.89877 0.411546 0.205773 0.978600i \(-0.434029\pi\)
0.205773 + 0.978600i \(0.434029\pi\)
\(282\) 44.8069 2.66821
\(283\) 29.0049 1.72416 0.862082 0.506769i \(-0.169160\pi\)
0.862082 + 0.506769i \(0.169160\pi\)
\(284\) −1.87649 −0.111349
\(285\) −6.62222 −0.392266
\(286\) −38.2766 −2.26334
\(287\) 0 0
\(288\) −15.6746 −0.923635
\(289\) −12.3876 −0.728684
\(290\) −1.21432 −0.0713073
\(291\) 53.9309 3.16148
\(292\) 7.45536 0.436292
\(293\) −7.79213 −0.455221 −0.227611 0.973752i \(-0.573091\pi\)
−0.227611 + 0.973752i \(0.573091\pi\)
\(294\) 0 0
\(295\) 3.18421 0.185392
\(296\) 24.3926 1.41779
\(297\) 34.5718 2.00606
\(298\) 19.5526 1.13265
\(299\) 44.3783 2.56646
\(300\) −1.52543 −0.0880706
\(301\) 0 0
\(302\) −6.88892 −0.396413
\(303\) −44.7654 −2.57171
\(304\) 6.09726 0.349702
\(305\) 2.42864 0.139063
\(306\) 14.1575 0.809330
\(307\) −5.92549 −0.338185 −0.169093 0.985600i \(-0.554084\pi\)
−0.169093 + 0.985600i \(0.554084\pi\)
\(308\) 0 0
\(309\) −22.5303 −1.28171
\(310\) 2.08742 0.118557
\(311\) −8.94470 −0.507207 −0.253604 0.967308i \(-0.581616\pi\)
−0.253604 + 0.967308i \(0.581616\pi\)
\(312\) 57.2355 3.24032
\(313\) 30.5116 1.72462 0.862309 0.506382i \(-0.169017\pi\)
0.862309 + 0.506382i \(0.169017\pi\)
\(314\) 2.29973 0.129781
\(315\) 0 0
\(316\) −0.179286 −0.0100856
\(317\) −22.2306 −1.24860 −0.624298 0.781186i \(-0.714615\pi\)
−0.624298 + 0.781186i \(0.714615\pi\)
\(318\) −11.9081 −0.667775
\(319\) 4.90321 0.274527
\(320\) 8.85236 0.494862
\(321\) −8.81579 −0.492050
\(322\) 0 0
\(323\) 4.89877 0.272575
\(324\) −2.19850 −0.122139
\(325\) 6.42864 0.356597
\(326\) 7.23014 0.400440
\(327\) −23.0509 −1.27472
\(328\) 10.3586 0.571956
\(329\) 0 0
\(330\) −17.2859 −0.951558
\(331\) −6.54770 −0.359894 −0.179947 0.983676i \(-0.557593\pi\)
−0.179947 + 0.983676i \(0.557593\pi\)
\(332\) −3.85236 −0.211426
\(333\) 43.1798 2.36624
\(334\) 5.14812 0.281693
\(335\) −1.09679 −0.0599239
\(336\) 0 0
\(337\) 2.66815 0.145343 0.0726717 0.997356i \(-0.476847\pi\)
0.0726717 + 0.997356i \(0.476847\pi\)
\(338\) −34.3985 −1.87103
\(339\) 22.7052 1.23318
\(340\) 1.12843 0.0611978
\(341\) −8.42864 −0.456436
\(342\) 15.0366 0.813084
\(343\) 0 0
\(344\) −3.36349 −0.181347
\(345\) 20.0415 1.07900
\(346\) 29.6414 1.59353
\(347\) 14.6780 0.787956 0.393978 0.919120i \(-0.371099\pi\)
0.393978 + 0.919120i \(0.371099\pi\)
\(348\) −1.52543 −0.0817715
\(349\) 11.1240 0.595453 0.297727 0.954651i \(-0.403772\pi\)
0.297727 + 0.954651i \(0.403772\pi\)
\(350\) 0 0
\(351\) 45.3274 2.41940
\(352\) −14.1575 −0.754597
\(353\) 13.4795 0.717441 0.358721 0.933445i \(-0.383213\pi\)
0.358721 + 0.933445i \(0.383213\pi\)
\(354\) −11.2257 −0.596639
\(355\) 3.57136 0.189548
\(356\) 1.54956 0.0821266
\(357\) 0 0
\(358\) 4.38715 0.231868
\(359\) 26.1891 1.38221 0.691105 0.722755i \(-0.257124\pi\)
0.691105 + 0.722755i \(0.257124\pi\)
\(360\) 16.6479 0.877420
\(361\) −13.7971 −0.726161
\(362\) 21.9081 1.15147
\(363\) 37.8622 1.98725
\(364\) 0 0
\(365\) −14.1891 −0.742693
\(366\) −8.56199 −0.447543
\(367\) 22.9862 1.19987 0.599935 0.800049i \(-0.295193\pi\)
0.599935 + 0.800049i \(0.295193\pi\)
\(368\) −18.4528 −0.961917
\(369\) 18.3368 0.954574
\(370\) −9.65878 −0.502136
\(371\) 0 0
\(372\) 2.62222 0.135956
\(373\) −24.2766 −1.25699 −0.628496 0.777813i \(-0.716329\pi\)
−0.628496 + 0.777813i \(0.716329\pi\)
\(374\) 12.7872 0.661211
\(375\) 2.90321 0.149921
\(376\) −38.9763 −2.01005
\(377\) 6.42864 0.331092
\(378\) 0 0
\(379\) 29.7605 1.52869 0.764347 0.644805i \(-0.223062\pi\)
0.764347 + 0.644805i \(0.223062\pi\)
\(380\) 1.19850 0.0614817
\(381\) −36.1245 −1.85071
\(382\) −11.9639 −0.612127
\(383\) −23.8020 −1.21622 −0.608112 0.793851i \(-0.708073\pi\)
−0.608112 + 0.793851i \(0.708073\pi\)
\(384\) −14.4429 −0.737038
\(385\) 0 0
\(386\) −2.71948 −0.138418
\(387\) −5.95407 −0.302662
\(388\) −9.76049 −0.495514
\(389\) −6.52051 −0.330603 −0.165301 0.986243i \(-0.552860\pi\)
−0.165301 + 0.986243i \(0.552860\pi\)
\(390\) −22.6637 −1.14762
\(391\) −14.8256 −0.749765
\(392\) 0 0
\(393\) −11.8666 −0.598593
\(394\) 12.8256 0.646146
\(395\) 0.341219 0.0171686
\(396\) −13.9857 −0.702808
\(397\) 14.7654 0.741055 0.370527 0.928822i \(-0.379177\pi\)
0.370527 + 0.928822i \(0.379177\pi\)
\(398\) 3.86665 0.193817
\(399\) 0 0
\(400\) −2.67307 −0.133654
\(401\) 6.81579 0.340364 0.170182 0.985413i \(-0.445564\pi\)
0.170182 + 0.985413i \(0.445564\pi\)
\(402\) 3.86665 0.192851
\(403\) −11.0509 −0.550482
\(404\) 8.10171 0.403075
\(405\) 4.18421 0.207915
\(406\) 0 0
\(407\) 39.0005 1.93318
\(408\) −19.1209 −0.946627
\(409\) 11.0825 0.547994 0.273997 0.961731i \(-0.411654\pi\)
0.273997 + 0.961731i \(0.411654\pi\)
\(410\) −4.10171 −0.202569
\(411\) −57.9309 −2.85752
\(412\) 4.07758 0.200888
\(413\) 0 0
\(414\) −45.5067 −2.23653
\(415\) 7.33185 0.359906
\(416\) −18.5620 −0.910077
\(417\) −22.9590 −1.12431
\(418\) 13.5812 0.664278
\(419\) −30.9719 −1.51308 −0.756538 0.653950i \(-0.773111\pi\)
−0.756538 + 0.653950i \(0.773111\pi\)
\(420\) 0 0
\(421\) 22.8988 1.11602 0.558009 0.829835i \(-0.311566\pi\)
0.558009 + 0.829835i \(0.311566\pi\)
\(422\) 6.99508 0.340515
\(423\) −68.9960 −3.35470
\(424\) 10.3586 0.503057
\(425\) −2.14764 −0.104176
\(426\) −12.5906 −0.610015
\(427\) 0 0
\(428\) 1.59549 0.0771212
\(429\) 91.5121 4.41825
\(430\) 1.33185 0.0642276
\(431\) −28.0830 −1.35271 −0.676355 0.736576i \(-0.736441\pi\)
−0.676355 + 0.736576i \(0.736441\pi\)
\(432\) −18.8474 −0.906798
\(433\) −23.0049 −1.10555 −0.552773 0.833332i \(-0.686430\pi\)
−0.552773 + 0.833332i \(0.686430\pi\)
\(434\) 0 0
\(435\) 2.90321 0.139198
\(436\) 4.17178 0.199792
\(437\) −15.7462 −0.753243
\(438\) 50.0228 2.39018
\(439\) −11.7462 −0.560616 −0.280308 0.959910i \(-0.590437\pi\)
−0.280308 + 0.959910i \(0.590437\pi\)
\(440\) 15.0366 0.716840
\(441\) 0 0
\(442\) 16.7654 0.797449
\(443\) 17.6874 0.840352 0.420176 0.907443i \(-0.361968\pi\)
0.420176 + 0.907443i \(0.361968\pi\)
\(444\) −12.1334 −0.575823
\(445\) −2.94914 −0.139803
\(446\) 9.89384 0.468487
\(447\) −46.7467 −2.21104
\(448\) 0 0
\(449\) 1.57136 0.0741571 0.0370785 0.999312i \(-0.488195\pi\)
0.0370785 + 0.999312i \(0.488195\pi\)
\(450\) −6.59210 −0.310755
\(451\) 16.5620 0.779874
\(452\) −4.10922 −0.193281
\(453\) 16.4701 0.773834
\(454\) 12.7699 0.599319
\(455\) 0 0
\(456\) −20.3082 −0.951018
\(457\) 1.47949 0.0692078 0.0346039 0.999401i \(-0.488983\pi\)
0.0346039 + 0.999401i \(0.488983\pi\)
\(458\) 10.3082 0.481670
\(459\) −15.1427 −0.706802
\(460\) −3.62714 −0.169116
\(461\) 41.2543 1.92140 0.960702 0.277583i \(-0.0895334\pi\)
0.960702 + 0.277583i \(0.0895334\pi\)
\(462\) 0 0
\(463\) −34.4242 −1.59983 −0.799914 0.600115i \(-0.795122\pi\)
−0.799914 + 0.600115i \(0.795122\pi\)
\(464\) −2.67307 −0.124094
\(465\) −4.99063 −0.231435
\(466\) 24.9808 1.15721
\(467\) −15.1699 −0.701980 −0.350990 0.936379i \(-0.614155\pi\)
−0.350990 + 0.936379i \(0.614155\pi\)
\(468\) −18.3368 −0.847618
\(469\) 0 0
\(470\) 15.4336 0.711897
\(471\) −5.49823 −0.253345
\(472\) 9.76494 0.449468
\(473\) −5.37778 −0.247271
\(474\) −1.20294 −0.0552531
\(475\) −2.28100 −0.104659
\(476\) 0 0
\(477\) 18.3368 0.839583
\(478\) −0.990632 −0.0453105
\(479\) 18.9763 0.867051 0.433526 0.901141i \(-0.357269\pi\)
0.433526 + 0.901141i \(0.357269\pi\)
\(480\) −8.38271 −0.382616
\(481\) 51.1338 2.33150
\(482\) −8.79706 −0.400695
\(483\) 0 0
\(484\) −6.85236 −0.311471
\(485\) 18.5763 0.843506
\(486\) 10.9349 0.496015
\(487\) −32.3926 −1.46785 −0.733923 0.679232i \(-0.762313\pi\)
−0.733923 + 0.679232i \(0.762313\pi\)
\(488\) 7.44785 0.337148
\(489\) −17.2859 −0.781696
\(490\) 0 0
\(491\) 2.69673 0.121702 0.0608508 0.998147i \(-0.480619\pi\)
0.0608508 + 0.998147i \(0.480619\pi\)
\(492\) −5.15257 −0.232296
\(493\) −2.14764 −0.0967250
\(494\) 17.8064 0.801149
\(495\) 26.6178 1.19638
\(496\) 4.59502 0.206322
\(497\) 0 0
\(498\) −25.8479 −1.15827
\(499\) 14.5718 0.652325 0.326163 0.945314i \(-0.394244\pi\)
0.326163 + 0.945314i \(0.394244\pi\)
\(500\) −0.525428 −0.0234978
\(501\) −12.3082 −0.549890
\(502\) −24.8015 −1.10695
\(503\) 22.2494 0.992050 0.496025 0.868308i \(-0.334792\pi\)
0.496025 + 0.868308i \(0.334792\pi\)
\(504\) 0 0
\(505\) −15.4193 −0.686149
\(506\) −41.1022 −1.82722
\(507\) 82.2405 3.65243
\(508\) 6.53786 0.290071
\(509\) 9.18421 0.407083 0.203541 0.979066i \(-0.434755\pi\)
0.203541 + 0.979066i \(0.434755\pi\)
\(510\) 7.57136 0.335265
\(511\) 0 0
\(512\) 24.1131 1.06566
\(513\) −16.0830 −0.710081
\(514\) 3.74314 0.165103
\(515\) −7.76049 −0.341968
\(516\) 1.67307 0.0736528
\(517\) −62.3180 −2.74074
\(518\) 0 0
\(519\) −70.8671 −3.11072
\(520\) 19.7146 0.864541
\(521\) −7.01921 −0.307517 −0.153759 0.988108i \(-0.549138\pi\)
−0.153759 + 0.988108i \(0.549138\pi\)
\(522\) −6.59210 −0.288529
\(523\) 7.29036 0.318785 0.159393 0.987215i \(-0.449046\pi\)
0.159393 + 0.987215i \(0.449046\pi\)
\(524\) 2.14764 0.0938202
\(525\) 0 0
\(526\) −24.3541 −1.06189
\(527\) 3.69181 0.160818
\(528\) −38.0513 −1.65597
\(529\) 24.6543 1.07193
\(530\) −4.10171 −0.178167
\(531\) 17.2859 0.750145
\(532\) 0 0
\(533\) 21.7146 0.940562
\(534\) 10.3970 0.449922
\(535\) −3.03657 −0.131282
\(536\) −3.36349 −0.145281
\(537\) −10.4889 −0.452628
\(538\) −28.4889 −1.22824
\(539\) 0 0
\(540\) −3.70471 −0.159425
\(541\) 30.9491 1.33061 0.665304 0.746573i \(-0.268302\pi\)
0.665304 + 0.746573i \(0.268302\pi\)
\(542\) −26.6365 −1.14414
\(543\) −52.3783 −2.24777
\(544\) 6.20108 0.265869
\(545\) −7.93978 −0.340103
\(546\) 0 0
\(547\) −19.4237 −0.830498 −0.415249 0.909708i \(-0.636306\pi\)
−0.415249 + 0.909708i \(0.636306\pi\)
\(548\) 10.4844 0.447872
\(549\) 13.1842 0.562688
\(550\) −5.95407 −0.253882
\(551\) −2.28100 −0.0971737
\(552\) 61.4608 2.61594
\(553\) 0 0
\(554\) −22.2667 −0.946022
\(555\) 23.0923 0.980215
\(556\) 4.15515 0.176218
\(557\) 30.3497 1.28596 0.642979 0.765884i \(-0.277698\pi\)
0.642979 + 0.765884i \(0.277698\pi\)
\(558\) 11.3319 0.479716
\(559\) −7.05086 −0.298219
\(560\) 0 0
\(561\) −30.5718 −1.29074
\(562\) −8.37731 −0.353375
\(563\) 33.1798 1.39836 0.699180 0.714946i \(-0.253549\pi\)
0.699180 + 0.714946i \(0.253549\pi\)
\(564\) 19.3876 0.816366
\(565\) 7.82071 0.329020
\(566\) −35.2212 −1.48046
\(567\) 0 0
\(568\) 10.9522 0.459544
\(569\) −4.06022 −0.170213 −0.0851067 0.996372i \(-0.527123\pi\)
−0.0851067 + 0.996372i \(0.527123\pi\)
\(570\) 8.04149 0.336821
\(571\) −31.5496 −1.32031 −0.660154 0.751130i \(-0.729509\pi\)
−0.660154 + 0.751130i \(0.729509\pi\)
\(572\) −16.5620 −0.692492
\(573\) 28.6035 1.19493
\(574\) 0 0
\(575\) 6.90321 0.287884
\(576\) 48.0563 2.00234
\(577\) −33.7891 −1.40666 −0.703329 0.710865i \(-0.748304\pi\)
−0.703329 + 0.710865i \(0.748304\pi\)
\(578\) 15.0425 0.625687
\(579\) 6.50177 0.270204
\(580\) −0.525428 −0.0218172
\(581\) 0 0
\(582\) −65.4893 −2.71462
\(583\) 16.5620 0.685928
\(584\) −43.5135 −1.80060
\(585\) 34.8988 1.44289
\(586\) 9.46214 0.390877
\(587\) 25.5669 1.05526 0.527630 0.849474i \(-0.323081\pi\)
0.527630 + 0.849474i \(0.323081\pi\)
\(588\) 0 0
\(589\) 3.92104 0.161564
\(590\) −3.86665 −0.159187
\(591\) −30.6637 −1.26134
\(592\) −21.2618 −0.873854
\(593\) −7.96836 −0.327221 −0.163611 0.986525i \(-0.552314\pi\)
−0.163611 + 0.986525i \(0.552314\pi\)
\(594\) −41.9813 −1.72251
\(595\) 0 0
\(596\) 8.46028 0.346547
\(597\) −9.24443 −0.378349
\(598\) −53.8894 −2.20370
\(599\) 37.2815 1.52328 0.761640 0.648001i \(-0.224395\pi\)
0.761640 + 0.648001i \(0.224395\pi\)
\(600\) 8.90321 0.363472
\(601\) 29.9496 1.22167 0.610835 0.791758i \(-0.290834\pi\)
0.610835 + 0.791758i \(0.290834\pi\)
\(602\) 0 0
\(603\) −5.95407 −0.242468
\(604\) −2.98079 −0.121287
\(605\) 13.0415 0.530212
\(606\) 54.3595 2.20820
\(607\) 31.8435 1.29249 0.646243 0.763132i \(-0.276339\pi\)
0.646243 + 0.763132i \(0.276339\pi\)
\(608\) 6.58613 0.267103
\(609\) 0 0
\(610\) −2.94914 −0.119407
\(611\) −81.7057 −3.30546
\(612\) 6.12584 0.247623
\(613\) −2.65386 −0.107188 −0.0535942 0.998563i \(-0.517068\pi\)
−0.0535942 + 0.998563i \(0.517068\pi\)
\(614\) 7.19544 0.290384
\(615\) 9.80642 0.395433
\(616\) 0 0
\(617\) −18.3096 −0.737116 −0.368558 0.929605i \(-0.620148\pi\)
−0.368558 + 0.929605i \(0.620148\pi\)
\(618\) 27.3590 1.10054
\(619\) −12.8113 −0.514931 −0.257466 0.966287i \(-0.582887\pi\)
−0.257466 + 0.966287i \(0.582887\pi\)
\(620\) 0.903212 0.0362739
\(621\) 48.6735 1.95320
\(622\) 10.8617 0.435515
\(623\) 0 0
\(624\) −49.8894 −1.99717
\(625\) 1.00000 0.0400000
\(626\) −37.0509 −1.48085
\(627\) −32.4701 −1.29673
\(628\) 0.995078 0.0397079
\(629\) −17.0825 −0.681124
\(630\) 0 0
\(631\) 30.2766 1.20529 0.602645 0.798009i \(-0.294113\pi\)
0.602645 + 0.798009i \(0.294113\pi\)
\(632\) 1.04641 0.0416239
\(633\) −16.7239 −0.664716
\(634\) 26.9951 1.07211
\(635\) −12.4429 −0.493783
\(636\) −5.15257 −0.204313
\(637\) 0 0
\(638\) −5.95407 −0.235724
\(639\) 19.3876 0.766963
\(640\) −4.97481 −0.196647
\(641\) −4.50177 −0.177809 −0.0889046 0.996040i \(-0.528337\pi\)
−0.0889046 + 0.996040i \(0.528337\pi\)
\(642\) 10.7052 0.422500
\(643\) 40.0272 1.57852 0.789259 0.614060i \(-0.210465\pi\)
0.789259 + 0.614060i \(0.210465\pi\)
\(644\) 0 0
\(645\) −3.18421 −0.125378
\(646\) −5.94867 −0.234047
\(647\) −27.3604 −1.07565 −0.537825 0.843057i \(-0.680754\pi\)
−0.537825 + 0.843057i \(0.680754\pi\)
\(648\) 12.8316 0.504073
\(649\) 15.6128 0.612858
\(650\) −7.80642 −0.306193
\(651\) 0 0
\(652\) 3.12843 0.122519
\(653\) 22.8430 0.893915 0.446958 0.894555i \(-0.352507\pi\)
0.446958 + 0.894555i \(0.352507\pi\)
\(654\) 27.9911 1.09454
\(655\) −4.08742 −0.159709
\(656\) −9.02906 −0.352525
\(657\) −77.0277 −3.00514
\(658\) 0 0
\(659\) 15.0178 0.585012 0.292506 0.956264i \(-0.405511\pi\)
0.292506 + 0.956264i \(0.405511\pi\)
\(660\) −7.47949 −0.291139
\(661\) 4.65080 0.180895 0.0904475 0.995901i \(-0.471170\pi\)
0.0904475 + 0.995901i \(0.471170\pi\)
\(662\) 7.95100 0.309025
\(663\) −40.0830 −1.55669
\(664\) 22.4844 0.872565
\(665\) 0 0
\(666\) −52.4340 −2.03178
\(667\) 6.90321 0.267293
\(668\) 2.22755 0.0861867
\(669\) −23.6543 −0.914529
\(670\) 1.33185 0.0514539
\(671\) 11.9081 0.459708
\(672\) 0 0
\(673\) −44.8671 −1.72950 −0.864750 0.502202i \(-0.832523\pi\)
−0.864750 + 0.502202i \(0.832523\pi\)
\(674\) −3.23999 −0.124800
\(675\) 7.05086 0.271388
\(676\) −14.8840 −0.572462
\(677\) −27.2212 −1.04620 −0.523099 0.852272i \(-0.675224\pi\)
−0.523099 + 0.852272i \(0.675224\pi\)
\(678\) −27.5714 −1.05887
\(679\) 0 0
\(680\) −6.58613 −0.252566
\(681\) −30.5303 −1.16993
\(682\) 10.2351 0.391921
\(683\) 12.0558 0.461301 0.230651 0.973037i \(-0.425915\pi\)
0.230651 + 0.973037i \(0.425915\pi\)
\(684\) 6.50622 0.248771
\(685\) −19.9541 −0.762406
\(686\) 0 0
\(687\) −24.6450 −0.940264
\(688\) 2.93179 0.111774
\(689\) 21.7146 0.827259
\(690\) −24.3368 −0.926485
\(691\) −37.5812 −1.42966 −0.714828 0.699300i \(-0.753495\pi\)
−0.714828 + 0.699300i \(0.753495\pi\)
\(692\) 12.8256 0.487558
\(693\) 0 0
\(694\) −17.8238 −0.676581
\(695\) −7.90813 −0.299973
\(696\) 8.90321 0.337475
\(697\) −7.25428 −0.274775
\(698\) −13.5081 −0.511288
\(699\) −59.7244 −2.25898
\(700\) 0 0
\(701\) 2.04149 0.0771059 0.0385530 0.999257i \(-0.487725\pi\)
0.0385530 + 0.999257i \(0.487725\pi\)
\(702\) −55.0420 −2.07743
\(703\) −18.1432 −0.684284
\(704\) 43.4050 1.63589
\(705\) −36.8988 −1.38969
\(706\) −16.3684 −0.616033
\(707\) 0 0
\(708\) −4.85728 −0.182548
\(709\) −32.1432 −1.20716 −0.603582 0.797301i \(-0.706260\pi\)
−0.603582 + 0.797301i \(0.706260\pi\)
\(710\) −4.33677 −0.162756
\(711\) 1.85236 0.0694688
\(712\) −9.04407 −0.338941
\(713\) −11.8666 −0.444409
\(714\) 0 0
\(715\) 31.5210 1.17882
\(716\) 1.89829 0.0709424
\(717\) 2.36842 0.0884501
\(718\) −31.8020 −1.18684
\(719\) −1.01921 −0.0380102 −0.0190051 0.999819i \(-0.506050\pi\)
−0.0190051 + 0.999819i \(0.506050\pi\)
\(720\) −14.5111 −0.540798
\(721\) 0 0
\(722\) 16.7540 0.623521
\(723\) 21.0321 0.782193
\(724\) 9.47949 0.352303
\(725\) 1.00000 0.0371391
\(726\) −45.9768 −1.70636
\(727\) 24.1476 0.895587 0.447793 0.894137i \(-0.352210\pi\)
0.447793 + 0.894137i \(0.352210\pi\)
\(728\) 0 0
\(729\) −38.6958 −1.43318
\(730\) 17.2301 0.637716
\(731\) 2.35551 0.0871217
\(732\) −3.70471 −0.136930
\(733\) −18.8845 −0.697514 −0.348757 0.937213i \(-0.613396\pi\)
−0.348757 + 0.937213i \(0.613396\pi\)
\(734\) −27.9126 −1.03027
\(735\) 0 0
\(736\) −19.9323 −0.734713
\(737\) −5.37778 −0.198093
\(738\) −22.2667 −0.819649
\(739\) −3.31312 −0.121875 −0.0609375 0.998142i \(-0.519409\pi\)
−0.0609375 + 0.998142i \(0.519409\pi\)
\(740\) −4.17929 −0.153634
\(741\) −42.5718 −1.56392
\(742\) 0 0
\(743\) 2.99508 0.109879 0.0549394 0.998490i \(-0.482503\pi\)
0.0549394 + 0.998490i \(0.482503\pi\)
\(744\) −15.3047 −0.561096
\(745\) −16.1017 −0.589921
\(746\) 29.4795 1.07932
\(747\) 39.8020 1.45628
\(748\) 5.53294 0.202304
\(749\) 0 0
\(750\) −3.52543 −0.128730
\(751\) 11.9956 0.437724 0.218862 0.975756i \(-0.429766\pi\)
0.218862 + 0.975756i \(0.429766\pi\)
\(752\) 33.9738 1.23890
\(753\) 59.2958 2.16086
\(754\) −7.80642 −0.284293
\(755\) 5.67307 0.206464
\(756\) 0 0
\(757\) 18.5763 0.675166 0.337583 0.941296i \(-0.390391\pi\)
0.337583 + 0.941296i \(0.390391\pi\)
\(758\) −36.1388 −1.31262
\(759\) 98.2677 3.56689
\(760\) −6.99508 −0.253738
\(761\) −2.59057 −0.0939082 −0.0469541 0.998897i \(-0.514951\pi\)
−0.0469541 + 0.998897i \(0.514951\pi\)
\(762\) 43.8666 1.58912
\(763\) 0 0
\(764\) −5.17670 −0.187286
\(765\) −11.6588 −0.421524
\(766\) 28.9032 1.04432
\(767\) 20.4701 0.739133
\(768\) −33.8622 −1.22190
\(769\) −32.7467 −1.18088 −0.590438 0.807083i \(-0.701045\pi\)
−0.590438 + 0.807083i \(0.701045\pi\)
\(770\) 0 0
\(771\) −8.94914 −0.322296
\(772\) −1.17670 −0.0423504
\(773\) −28.2208 −1.01503 −0.507515 0.861643i \(-0.669436\pi\)
−0.507515 + 0.861643i \(0.669436\pi\)
\(774\) 7.23014 0.259882
\(775\) −1.71900 −0.0617484
\(776\) 56.9675 2.04501
\(777\) 0 0
\(778\) 7.91798 0.283873
\(779\) −7.70471 −0.276050
\(780\) −9.80642 −0.351126
\(781\) 17.5111 0.626598
\(782\) 18.0031 0.643788
\(783\) 7.05086 0.251977
\(784\) 0 0
\(785\) −1.89384 −0.0675942
\(786\) 14.4099 0.513984
\(787\) −11.9857 −0.427244 −0.213622 0.976916i \(-0.568526\pi\)
−0.213622 + 0.976916i \(0.568526\pi\)
\(788\) 5.54956 0.197695
\(789\) 58.2262 2.07291
\(790\) −0.414349 −0.0147419
\(791\) 0 0
\(792\) 81.6281 2.90053
\(793\) 15.6128 0.554428
\(794\) −17.9299 −0.636309
\(795\) 9.80642 0.347798
\(796\) 1.67307 0.0593004
\(797\) 33.0366 1.17022 0.585108 0.810956i \(-0.301052\pi\)
0.585108 + 0.810956i \(0.301052\pi\)
\(798\) 0 0
\(799\) 27.2958 0.965655
\(800\) −2.88739 −0.102085
\(801\) −16.0098 −0.565680
\(802\) −8.27655 −0.292255
\(803\) −69.5723 −2.45515
\(804\) 1.67307 0.0590047
\(805\) 0 0
\(806\) 13.4193 0.472674
\(807\) 68.1116 2.39764
\(808\) −47.2859 −1.66351
\(809\) −32.1303 −1.12964 −0.564820 0.825214i \(-0.691055\pi\)
−0.564820 + 0.825214i \(0.691055\pi\)
\(810\) −5.08097 −0.178527
\(811\) −15.3176 −0.537872 −0.268936 0.963158i \(-0.586672\pi\)
−0.268936 + 0.963158i \(0.586672\pi\)
\(812\) 0 0
\(813\) 63.6829 2.23346
\(814\) −47.3590 −1.65993
\(815\) −5.95407 −0.208562
\(816\) 16.6668 0.583453
\(817\) 2.50177 0.0875258
\(818\) −13.4577 −0.470537
\(819\) 0 0
\(820\) −1.77478 −0.0619780
\(821\) −17.1427 −0.598285 −0.299143 0.954208i \(-0.596701\pi\)
−0.299143 + 0.954208i \(0.596701\pi\)
\(822\) 70.3466 2.45362
\(823\) −35.6400 −1.24233 −0.621167 0.783678i \(-0.713341\pi\)
−0.621167 + 0.783678i \(0.713341\pi\)
\(824\) −23.7989 −0.829075
\(825\) 14.2351 0.495601
\(826\) 0 0
\(827\) 4.70964 0.163770 0.0818850 0.996642i \(-0.473906\pi\)
0.0818850 + 0.996642i \(0.473906\pi\)
\(828\) −19.6904 −0.684290
\(829\) −2.25380 −0.0782777 −0.0391388 0.999234i \(-0.512461\pi\)
−0.0391388 + 0.999234i \(0.512461\pi\)
\(830\) −8.90321 −0.309035
\(831\) 53.2355 1.84672
\(832\) 56.9086 1.97295
\(833\) 0 0
\(834\) 27.8796 0.965390
\(835\) −4.23951 −0.146714
\(836\) 5.87649 0.203243
\(837\) −12.1204 −0.418944
\(838\) 37.6098 1.29921
\(839\) 8.42419 0.290835 0.145418 0.989370i \(-0.453547\pi\)
0.145418 + 0.989370i \(0.453547\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −27.8064 −0.958273
\(843\) 20.0286 0.689821
\(844\) 3.02672 0.104184
\(845\) 28.3274 0.974492
\(846\) 83.7832 2.88053
\(847\) 0 0
\(848\) −9.02906 −0.310059
\(849\) 84.2074 2.88999
\(850\) 2.60793 0.0894511
\(851\) 54.9086 1.88224
\(852\) −5.44785 −0.186640
\(853\) −51.8247 −1.77444 −0.887222 0.461342i \(-0.847368\pi\)
−0.887222 + 0.461342i \(0.847368\pi\)
\(854\) 0 0
\(855\) −12.3827 −0.423480
\(856\) −9.31216 −0.318283
\(857\) 30.0415 1.02620 0.513099 0.858330i \(-0.328497\pi\)
0.513099 + 0.858330i \(0.328497\pi\)
\(858\) −111.125 −3.79374
\(859\) −19.6874 −0.671724 −0.335862 0.941911i \(-0.609028\pi\)
−0.335862 + 0.941911i \(0.609028\pi\)
\(860\) 0.576283 0.0196511
\(861\) 0 0
\(862\) 34.1017 1.16151
\(863\) 19.5986 0.667143 0.333571 0.942725i \(-0.391746\pi\)
0.333571 + 0.942725i \(0.391746\pi\)
\(864\) −20.3586 −0.692613
\(865\) −24.4099 −0.829962
\(866\) 27.9353 0.949281
\(867\) −35.9639 −1.22140
\(868\) 0 0
\(869\) 1.67307 0.0567550
\(870\) −3.52543 −0.119523
\(871\) −7.05086 −0.238909
\(872\) −24.3487 −0.824552
\(873\) 100.844 3.41305
\(874\) 19.1209 0.646775
\(875\) 0 0
\(876\) 21.6445 0.731300
\(877\) −16.2351 −0.548219 −0.274110 0.961698i \(-0.588383\pi\)
−0.274110 + 0.961698i \(0.588383\pi\)
\(878\) 14.2636 0.481375
\(879\) −22.6222 −0.763028
\(880\) −13.1066 −0.441824
\(881\) 20.7052 0.697576 0.348788 0.937202i \(-0.386593\pi\)
0.348788 + 0.937202i \(0.386593\pi\)
\(882\) 0 0
\(883\) 8.75112 0.294499 0.147249 0.989099i \(-0.452958\pi\)
0.147249 + 0.989099i \(0.452958\pi\)
\(884\) 7.25428 0.243988
\(885\) 9.24443 0.310748
\(886\) −21.4781 −0.721571
\(887\) −0.414349 −0.0139125 −0.00695625 0.999976i \(-0.502214\pi\)
−0.00695625 + 0.999976i \(0.502214\pi\)
\(888\) 70.8167 2.37645
\(889\) 0 0
\(890\) 3.58120 0.120042
\(891\) 20.5161 0.687314
\(892\) 4.28100 0.143338
\(893\) 28.9906 0.970135
\(894\) 56.7654 1.89852
\(895\) −3.61285 −0.120764
\(896\) 0 0
\(897\) 128.839 4.30183
\(898\) −1.90813 −0.0636753
\(899\) −1.71900 −0.0573320
\(900\) −2.85236 −0.0950786
\(901\) −7.25428 −0.241675
\(902\) −20.1116 −0.669642
\(903\) 0 0
\(904\) 23.9836 0.797683
\(905\) −18.0415 −0.599719
\(906\) −20.0000 −0.664455
\(907\) −46.9862 −1.56015 −0.780075 0.625686i \(-0.784819\pi\)
−0.780075 + 0.625686i \(0.784819\pi\)
\(908\) 5.52543 0.183368
\(909\) −83.7057 −2.77634
\(910\) 0 0
\(911\) −12.1704 −0.403223 −0.201612 0.979466i \(-0.564618\pi\)
−0.201612 + 0.979466i \(0.564618\pi\)
\(912\) 17.7017 0.586160
\(913\) 35.9496 1.18976
\(914\) −1.79658 −0.0594256
\(915\) 7.05086 0.233094
\(916\) 4.46028 0.147372
\(917\) 0 0
\(918\) 18.3881 0.606898
\(919\) −23.2672 −0.767514 −0.383757 0.923434i \(-0.625370\pi\)
−0.383757 + 0.923434i \(0.625370\pi\)
\(920\) 21.1699 0.697952
\(921\) −17.2029 −0.566856
\(922\) −50.0959 −1.64982
\(923\) 22.9590 0.755704
\(924\) 0 0
\(925\) 7.95407 0.261528
\(926\) 41.8020 1.37370
\(927\) −42.1289 −1.38369
\(928\) −2.88739 −0.0947832
\(929\) −44.7556 −1.46838 −0.734191 0.678943i \(-0.762438\pi\)
−0.734191 + 0.678943i \(0.762438\pi\)
\(930\) 6.06022 0.198723
\(931\) 0 0
\(932\) 10.8090 0.354061
\(933\) −25.9684 −0.850166
\(934\) 18.4211 0.602758
\(935\) −10.5303 −0.344379
\(936\) 107.023 3.49816
\(937\) 22.7239 0.742358 0.371179 0.928561i \(-0.378954\pi\)
0.371179 + 0.928561i \(0.378954\pi\)
\(938\) 0 0
\(939\) 88.5817 2.89075
\(940\) 6.67799 0.217812
\(941\) −4.10171 −0.133712 −0.0668560 0.997763i \(-0.521297\pi\)
−0.0668560 + 0.997763i \(0.521297\pi\)
\(942\) 6.67661 0.217536
\(943\) 23.3176 0.759324
\(944\) −8.51161 −0.277029
\(945\) 0 0
\(946\) 6.53035 0.212320
\(947\) 16.6178 0.540005 0.270002 0.962860i \(-0.412975\pi\)
0.270002 + 0.962860i \(0.412975\pi\)
\(948\) −0.520505 −0.0169052
\(949\) −91.2168 −2.96102
\(950\) 2.76986 0.0898661
\(951\) −64.5402 −2.09286
\(952\) 0 0
\(953\) 2.85728 0.0925563 0.0462782 0.998929i \(-0.485264\pi\)
0.0462782 + 0.998929i \(0.485264\pi\)
\(954\) −22.2667 −0.720911
\(955\) 9.85236 0.318815
\(956\) −0.428639 −0.0138632
\(957\) 14.2351 0.460154
\(958\) −23.0433 −0.744497
\(959\) 0 0
\(960\) 25.7003 0.829473
\(961\) −28.0450 −0.904678
\(962\) −62.0928 −2.00195
\(963\) −16.4844 −0.531203
\(964\) −3.80642 −0.122597
\(965\) 2.23951 0.0720923
\(966\) 0 0
\(967\) 16.8015 0.540300 0.270150 0.962818i \(-0.412927\pi\)
0.270150 + 0.962818i \(0.412927\pi\)
\(968\) 39.9940 1.28546
\(969\) 14.2222 0.456881
\(970\) −22.5575 −0.724279
\(971\) −38.3640 −1.23116 −0.615579 0.788075i \(-0.711078\pi\)
−0.615579 + 0.788075i \(0.711078\pi\)
\(972\) 4.73143 0.151761
\(973\) 0 0
\(974\) 39.3349 1.26037
\(975\) 18.6637 0.597717
\(976\) −6.49193 −0.207801
\(977\) 31.6356 1.01211 0.506056 0.862500i \(-0.331103\pi\)
0.506056 + 0.862500i \(0.331103\pi\)
\(978\) 20.9906 0.671206
\(979\) −14.4603 −0.462153
\(980\) 0 0
\(981\) −43.1022 −1.37615
\(982\) −3.27469 −0.104500
\(983\) 35.3733 1.12823 0.564117 0.825695i \(-0.309217\pi\)
0.564117 + 0.825695i \(0.309217\pi\)
\(984\) 30.0731 0.958696
\(985\) −10.5620 −0.336533
\(986\) 2.60793 0.0830533
\(987\) 0 0
\(988\) 7.70471 0.245120
\(989\) −7.57136 −0.240755
\(990\) −32.3225 −1.02728
\(991\) 24.6953 0.784474 0.392237 0.919864i \(-0.371701\pi\)
0.392237 + 0.919864i \(0.371701\pi\)
\(992\) 4.96343 0.157589
\(993\) −19.0094 −0.603244
\(994\) 0 0
\(995\) −3.18421 −0.100946
\(996\) −11.1842 −0.354385
\(997\) 11.4050 0.361199 0.180600 0.983557i \(-0.442196\pi\)
0.180600 + 0.983557i \(0.442196\pi\)
\(998\) −17.6949 −0.560121
\(999\) 56.0830 1.77439
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7105.2.a.p.1.1 3
7.6 odd 2 145.2.a.d.1.1 3
21.20 even 2 1305.2.a.o.1.3 3
28.27 even 2 2320.2.a.s.1.3 3
35.13 even 4 725.2.b.d.349.4 6
35.27 even 4 725.2.b.d.349.3 6
35.34 odd 2 725.2.a.d.1.3 3
56.13 odd 2 9280.2.a.bu.1.3 3
56.27 even 2 9280.2.a.bm.1.1 3
105.104 even 2 6525.2.a.bh.1.1 3
203.202 odd 2 4205.2.a.e.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.a.d.1.1 3 7.6 odd 2
725.2.a.d.1.3 3 35.34 odd 2
725.2.b.d.349.3 6 35.27 even 4
725.2.b.d.349.4 6 35.13 even 4
1305.2.a.o.1.3 3 21.20 even 2
2320.2.a.s.1.3 3 28.27 even 2
4205.2.a.e.1.3 3 203.202 odd 2
6525.2.a.bh.1.1 3 105.104 even 2
7105.2.a.p.1.1 3 1.1 even 1 trivial
9280.2.a.bm.1.1 3 56.27 even 2
9280.2.a.bu.1.3 3 56.13 odd 2