Properties

Label 7105.2.a.o.1.2
Level $7105$
Weight $2$
Character 7105.1
Self dual yes
Analytic conductor $56.734$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7105,2,Mod(1,7105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7105.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7105 = 5 \cdot 7^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.7337106361\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 7105.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.311108 q^{2} -2.90321 q^{3} -1.90321 q^{4} -1.00000 q^{5} -0.903212 q^{6} -1.21432 q^{8} +5.42864 q^{9} +O(q^{10})\) \(q+0.311108 q^{2} -2.90321 q^{3} -1.90321 q^{4} -1.00000 q^{5} -0.903212 q^{6} -1.21432 q^{8} +5.42864 q^{9} -0.311108 q^{10} -1.52543 q^{11} +5.52543 q^{12} +0.622216 q^{13} +2.90321 q^{15} +3.42864 q^{16} +7.95407 q^{17} +1.68889 q^{18} +1.09679 q^{19} +1.90321 q^{20} -0.474572 q^{22} +7.52543 q^{23} +3.52543 q^{24} +1.00000 q^{25} +0.193576 q^{26} -7.05086 q^{27} -1.00000 q^{29} +0.903212 q^{30} +6.90321 q^{31} +3.49532 q^{32} +4.42864 q^{33} +2.47457 q^{34} -10.3319 q^{36} +3.95407 q^{37} +0.341219 q^{38} -1.80642 q^{39} +1.21432 q^{40} -3.67307 q^{41} -10.5161 q^{43} +2.90321 q^{44} -5.42864 q^{45} +2.34122 q^{46} -6.90321 q^{47} -9.95407 q^{48} +0.311108 q^{50} -23.0923 q^{51} -1.18421 q^{52} +6.42864 q^{53} -2.19358 q^{54} +1.52543 q^{55} -3.18421 q^{57} -0.311108 q^{58} +1.67307 q^{59} -5.52543 q^{60} +1.86665 q^{61} +2.14764 q^{62} -5.76986 q^{64} -0.622216 q^{65} +1.37778 q^{66} +11.5254 q^{67} -15.1383 q^{68} -21.8479 q^{69} +13.6731 q^{71} -6.59210 q^{72} -10.1891 q^{73} +1.23014 q^{74} -2.90321 q^{75} -2.08742 q^{76} -0.561993 q^{78} +9.13828 q^{79} -3.42864 q^{80} +4.18421 q^{81} -1.14272 q^{82} -10.7096 q^{83} -7.95407 q^{85} -3.27163 q^{86} +2.90321 q^{87} +1.85236 q^{88} +7.80642 q^{89} -1.68889 q^{90} -14.3225 q^{92} -20.0415 q^{93} -2.14764 q^{94} -1.09679 q^{95} -10.1476 q^{96} +4.08742 q^{97} -8.28100 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} - 2 q^{3} + q^{4} - 3 q^{5} + 4 q^{6} + 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + q^{2} - 2 q^{3} + q^{4} - 3 q^{5} + 4 q^{6} + 3 q^{8} + 3 q^{9} - q^{10} + 2 q^{11} + 10 q^{12} + 2 q^{13} + 2 q^{15} - 3 q^{16} + 4 q^{17} + 5 q^{18} + 10 q^{19} - q^{20} - 8 q^{22} + 16 q^{23} + 4 q^{24} + 3 q^{25} + 14 q^{26} - 8 q^{27} - 3 q^{29} - 4 q^{30} + 14 q^{31} - 3 q^{32} + 14 q^{34} - 11 q^{36} - 8 q^{37} + 8 q^{38} + 8 q^{39} - 3 q^{40} + 2 q^{41} + 2 q^{43} + 2 q^{44} - 3 q^{45} + 14 q^{46} - 14 q^{47} - 10 q^{48} + q^{50} - 16 q^{51} + 10 q^{52} + 6 q^{53} - 20 q^{54} - 2 q^{55} + 4 q^{57} - q^{58} - 8 q^{59} - 10 q^{60} + 6 q^{61} - 11 q^{64} - 2 q^{65} + 4 q^{66} + 28 q^{67} - 12 q^{68} - 12 q^{69} + 28 q^{71} - 13 q^{72} + 16 q^{73} + 10 q^{74} - 2 q^{75} + 14 q^{76} + 12 q^{78} - 6 q^{79} + 3 q^{80} - q^{81} - 30 q^{82} - 12 q^{83} - 4 q^{85} + 24 q^{86} + 2 q^{87} + 12 q^{88} + 10 q^{89} - 5 q^{90} + 4 q^{92} - 20 q^{93} - 10 q^{95} - 24 q^{96} - 8 q^{97} - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.311108 0.219986 0.109993 0.993932i \(-0.464917\pi\)
0.109993 + 0.993932i \(0.464917\pi\)
\(3\) −2.90321 −1.67617 −0.838085 0.545540i \(-0.816325\pi\)
−0.838085 + 0.545540i \(0.816325\pi\)
\(4\) −1.90321 −0.951606
\(5\) −1.00000 −0.447214
\(6\) −0.903212 −0.368735
\(7\) 0 0
\(8\) −1.21432 −0.429327
\(9\) 5.42864 1.80955
\(10\) −0.311108 −0.0983809
\(11\) −1.52543 −0.459934 −0.229967 0.973198i \(-0.573862\pi\)
−0.229967 + 0.973198i \(0.573862\pi\)
\(12\) 5.52543 1.59505
\(13\) 0.622216 0.172572 0.0862858 0.996270i \(-0.472500\pi\)
0.0862858 + 0.996270i \(0.472500\pi\)
\(14\) 0 0
\(15\) 2.90321 0.749606
\(16\) 3.42864 0.857160
\(17\) 7.95407 1.92914 0.964572 0.263819i \(-0.0849820\pi\)
0.964572 + 0.263819i \(0.0849820\pi\)
\(18\) 1.68889 0.398076
\(19\) 1.09679 0.251620 0.125810 0.992054i \(-0.459847\pi\)
0.125810 + 0.992054i \(0.459847\pi\)
\(20\) 1.90321 0.425571
\(21\) 0 0
\(22\) −0.474572 −0.101179
\(23\) 7.52543 1.56916 0.784580 0.620028i \(-0.212879\pi\)
0.784580 + 0.620028i \(0.212879\pi\)
\(24\) 3.52543 0.719625
\(25\) 1.00000 0.200000
\(26\) 0.193576 0.0379634
\(27\) −7.05086 −1.35694
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0.903212 0.164903
\(31\) 6.90321 1.23985 0.619927 0.784660i \(-0.287162\pi\)
0.619927 + 0.784660i \(0.287162\pi\)
\(32\) 3.49532 0.617890
\(33\) 4.42864 0.770927
\(34\) 2.47457 0.424386
\(35\) 0 0
\(36\) −10.3319 −1.72198
\(37\) 3.95407 0.650045 0.325022 0.945706i \(-0.394628\pi\)
0.325022 + 0.945706i \(0.394628\pi\)
\(38\) 0.341219 0.0553531
\(39\) −1.80642 −0.289259
\(40\) 1.21432 0.192001
\(41\) −3.67307 −0.573637 −0.286819 0.957985i \(-0.592598\pi\)
−0.286819 + 0.957985i \(0.592598\pi\)
\(42\) 0 0
\(43\) −10.5161 −1.60368 −0.801842 0.597536i \(-0.796146\pi\)
−0.801842 + 0.597536i \(0.796146\pi\)
\(44\) 2.90321 0.437676
\(45\) −5.42864 −0.809254
\(46\) 2.34122 0.345194
\(47\) −6.90321 −1.00694 −0.503468 0.864014i \(-0.667943\pi\)
−0.503468 + 0.864014i \(0.667943\pi\)
\(48\) −9.95407 −1.43675
\(49\) 0 0
\(50\) 0.311108 0.0439973
\(51\) −23.0923 −3.23357
\(52\) −1.18421 −0.164220
\(53\) 6.42864 0.883042 0.441521 0.897251i \(-0.354439\pi\)
0.441521 + 0.897251i \(0.354439\pi\)
\(54\) −2.19358 −0.298508
\(55\) 1.52543 0.205689
\(56\) 0 0
\(57\) −3.18421 −0.421759
\(58\) −0.311108 −0.0408505
\(59\) 1.67307 0.217815 0.108908 0.994052i \(-0.465265\pi\)
0.108908 + 0.994052i \(0.465265\pi\)
\(60\) −5.52543 −0.713330
\(61\) 1.86665 0.239000 0.119500 0.992834i \(-0.461871\pi\)
0.119500 + 0.992834i \(0.461871\pi\)
\(62\) 2.14764 0.272751
\(63\) 0 0
\(64\) −5.76986 −0.721232
\(65\) −0.622216 −0.0771764
\(66\) 1.37778 0.169594
\(67\) 11.5254 1.40806 0.704028 0.710173i \(-0.251383\pi\)
0.704028 + 0.710173i \(0.251383\pi\)
\(68\) −15.1383 −1.83579
\(69\) −21.8479 −2.63018
\(70\) 0 0
\(71\) 13.6731 1.62269 0.811347 0.584564i \(-0.198734\pi\)
0.811347 + 0.584564i \(0.198734\pi\)
\(72\) −6.59210 −0.776887
\(73\) −10.1891 −1.19255 −0.596274 0.802781i \(-0.703353\pi\)
−0.596274 + 0.802781i \(0.703353\pi\)
\(74\) 1.23014 0.143001
\(75\) −2.90321 −0.335234
\(76\) −2.08742 −0.239444
\(77\) 0 0
\(78\) −0.561993 −0.0636331
\(79\) 9.13828 1.02814 0.514068 0.857749i \(-0.328138\pi\)
0.514068 + 0.857749i \(0.328138\pi\)
\(80\) −3.42864 −0.383334
\(81\) 4.18421 0.464912
\(82\) −1.14272 −0.126192
\(83\) −10.7096 −1.17554 −0.587768 0.809030i \(-0.699993\pi\)
−0.587768 + 0.809030i \(0.699993\pi\)
\(84\) 0 0
\(85\) −7.95407 −0.862740
\(86\) −3.27163 −0.352789
\(87\) 2.90321 0.311257
\(88\) 1.85236 0.197462
\(89\) 7.80642 0.827479 0.413740 0.910395i \(-0.364222\pi\)
0.413740 + 0.910395i \(0.364222\pi\)
\(90\) −1.68889 −0.178025
\(91\) 0 0
\(92\) −14.3225 −1.49322
\(93\) −20.0415 −2.07821
\(94\) −2.14764 −0.221512
\(95\) −1.09679 −0.112528
\(96\) −10.1476 −1.03569
\(97\) 4.08742 0.415015 0.207507 0.978233i \(-0.433465\pi\)
0.207507 + 0.978233i \(0.433465\pi\)
\(98\) 0 0
\(99\) −8.28100 −0.832271
\(100\) −1.90321 −0.190321
\(101\) −13.9081 −1.38391 −0.691956 0.721940i \(-0.743251\pi\)
−0.691956 + 0.721940i \(0.743251\pi\)
\(102\) −7.18421 −0.711343
\(103\) 12.9447 1.27548 0.637740 0.770252i \(-0.279870\pi\)
0.637740 + 0.770252i \(0.279870\pi\)
\(104\) −0.755569 −0.0740896
\(105\) 0 0
\(106\) 2.00000 0.194257
\(107\) 11.0049 1.06389 0.531943 0.846780i \(-0.321462\pi\)
0.531943 + 0.846780i \(0.321462\pi\)
\(108\) 13.4193 1.29127
\(109\) −18.0415 −1.72806 −0.864031 0.503439i \(-0.832068\pi\)
−0.864031 + 0.503439i \(0.832068\pi\)
\(110\) 0.474572 0.0452487
\(111\) −11.4795 −1.08959
\(112\) 0 0
\(113\) −10.2810 −0.967155 −0.483577 0.875302i \(-0.660663\pi\)
−0.483577 + 0.875302i \(0.660663\pi\)
\(114\) −0.990632 −0.0927812
\(115\) −7.52543 −0.701750
\(116\) 1.90321 0.176709
\(117\) 3.37778 0.312276
\(118\) 0.520505 0.0479164
\(119\) 0 0
\(120\) −3.52543 −0.321826
\(121\) −8.67307 −0.788461
\(122\) 0.580728 0.0525767
\(123\) 10.6637 0.961514
\(124\) −13.1383 −1.17985
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 6.22077 0.552004 0.276002 0.961157i \(-0.410990\pi\)
0.276002 + 0.961157i \(0.410990\pi\)
\(128\) −8.78568 −0.776552
\(129\) 30.5303 2.68805
\(130\) −0.193576 −0.0169778
\(131\) 11.7605 1.02752 0.513759 0.857934i \(-0.328252\pi\)
0.513759 + 0.857934i \(0.328252\pi\)
\(132\) −8.42864 −0.733619
\(133\) 0 0
\(134\) 3.58565 0.309753
\(135\) 7.05086 0.606841
\(136\) −9.65878 −0.828234
\(137\) −3.56691 −0.304742 −0.152371 0.988323i \(-0.548691\pi\)
−0.152371 + 0.988323i \(0.548691\pi\)
\(138\) −6.79706 −0.578604
\(139\) 8.56199 0.726219 0.363109 0.931747i \(-0.381715\pi\)
0.363109 + 0.931747i \(0.381715\pi\)
\(140\) 0 0
\(141\) 20.0415 1.68780
\(142\) 4.25380 0.356971
\(143\) −0.949145 −0.0793715
\(144\) 18.6128 1.55107
\(145\) 1.00000 0.0830455
\(146\) −3.16992 −0.262344
\(147\) 0 0
\(148\) −7.52543 −0.618586
\(149\) −5.61285 −0.459822 −0.229911 0.973212i \(-0.573844\pi\)
−0.229911 + 0.973212i \(0.573844\pi\)
\(150\) −0.903212 −0.0737469
\(151\) 10.7971 0.878652 0.439326 0.898328i \(-0.355217\pi\)
0.439326 + 0.898328i \(0.355217\pi\)
\(152\) −1.33185 −0.108027
\(153\) 43.1798 3.49088
\(154\) 0 0
\(155\) −6.90321 −0.554479
\(156\) 3.43801 0.275261
\(157\) −2.28100 −0.182043 −0.0910217 0.995849i \(-0.529013\pi\)
−0.0910217 + 0.995849i \(0.529013\pi\)
\(158\) 2.84299 0.226176
\(159\) −18.6637 −1.48013
\(160\) −3.49532 −0.276329
\(161\) 0 0
\(162\) 1.30174 0.102274
\(163\) 16.3225 1.27848 0.639238 0.769009i \(-0.279250\pi\)
0.639238 + 0.769009i \(0.279250\pi\)
\(164\) 6.99063 0.545877
\(165\) −4.42864 −0.344769
\(166\) −3.33185 −0.258602
\(167\) 4.76986 0.369103 0.184551 0.982823i \(-0.440917\pi\)
0.184551 + 0.982823i \(0.440917\pi\)
\(168\) 0 0
\(169\) −12.6128 −0.970219
\(170\) −2.47457 −0.189791
\(171\) 5.95407 0.455319
\(172\) 20.0143 1.52608
\(173\) −4.23506 −0.321986 −0.160993 0.986956i \(-0.551470\pi\)
−0.160993 + 0.986956i \(0.551470\pi\)
\(174\) 0.903212 0.0684723
\(175\) 0 0
\(176\) −5.23014 −0.394237
\(177\) −4.85728 −0.365095
\(178\) 2.42864 0.182034
\(179\) 9.71456 0.726100 0.363050 0.931770i \(-0.381735\pi\)
0.363050 + 0.931770i \(0.381735\pi\)
\(180\) 10.3319 0.770091
\(181\) −0.326929 −0.0243005 −0.0121502 0.999926i \(-0.503868\pi\)
−0.0121502 + 0.999926i \(0.503868\pi\)
\(182\) 0 0
\(183\) −5.41927 −0.400604
\(184\) −9.13828 −0.673683
\(185\) −3.95407 −0.290709
\(186\) −6.23506 −0.457177
\(187\) −12.1334 −0.887279
\(188\) 13.1383 0.958207
\(189\) 0 0
\(190\) −0.341219 −0.0247547
\(191\) −14.9447 −1.08136 −0.540680 0.841228i \(-0.681833\pi\)
−0.540680 + 0.841228i \(0.681833\pi\)
\(192\) 16.7511 1.20891
\(193\) −14.1476 −1.01837 −0.509185 0.860657i \(-0.670053\pi\)
−0.509185 + 0.860657i \(0.670053\pi\)
\(194\) 1.27163 0.0912976
\(195\) 1.80642 0.129361
\(196\) 0 0
\(197\) −5.70471 −0.406444 −0.203222 0.979133i \(-0.565141\pi\)
−0.203222 + 0.979133i \(0.565141\pi\)
\(198\) −2.57628 −0.183088
\(199\) 22.1432 1.56969 0.784845 0.619692i \(-0.212743\pi\)
0.784845 + 0.619692i \(0.212743\pi\)
\(200\) −1.21432 −0.0858654
\(201\) −33.4608 −2.36014
\(202\) −4.32693 −0.304442
\(203\) 0 0
\(204\) 43.9496 3.07709
\(205\) 3.67307 0.256538
\(206\) 4.02720 0.280588
\(207\) 40.8528 2.83947
\(208\) 2.13335 0.147921
\(209\) −1.67307 −0.115729
\(210\) 0 0
\(211\) −20.8430 −1.43489 −0.717445 0.696615i \(-0.754689\pi\)
−0.717445 + 0.696615i \(0.754689\pi\)
\(212\) −12.2351 −0.840308
\(213\) −39.6958 −2.71991
\(214\) 3.42372 0.234040
\(215\) 10.5161 0.717189
\(216\) 8.56199 0.582570
\(217\) 0 0
\(218\) −5.61285 −0.380150
\(219\) 29.5812 1.99891
\(220\) −2.90321 −0.195735
\(221\) 4.94914 0.332916
\(222\) −3.57136 −0.239694
\(223\) −9.03657 −0.605133 −0.302567 0.953128i \(-0.597843\pi\)
−0.302567 + 0.953128i \(0.597843\pi\)
\(224\) 0 0
\(225\) 5.42864 0.361909
\(226\) −3.19850 −0.212761
\(227\) −19.4050 −1.28795 −0.643977 0.765045i \(-0.722717\pi\)
−0.643977 + 0.765045i \(0.722717\pi\)
\(228\) 6.06022 0.401348
\(229\) 25.6128 1.69254 0.846272 0.532751i \(-0.178842\pi\)
0.846272 + 0.532751i \(0.178842\pi\)
\(230\) −2.34122 −0.154375
\(231\) 0 0
\(232\) 1.21432 0.0797240
\(233\) −3.12399 −0.204659 −0.102330 0.994751i \(-0.532630\pi\)
−0.102330 + 0.994751i \(0.532630\pi\)
\(234\) 1.05086 0.0686965
\(235\) 6.90321 0.450316
\(236\) −3.18421 −0.207274
\(237\) −26.5303 −1.72333
\(238\) 0 0
\(239\) 13.9398 0.901689 0.450845 0.892602i \(-0.351123\pi\)
0.450845 + 0.892602i \(0.351123\pi\)
\(240\) 9.95407 0.642532
\(241\) 18.4701 1.18977 0.594883 0.803813i \(-0.297198\pi\)
0.594883 + 0.803813i \(0.297198\pi\)
\(242\) −2.69826 −0.173451
\(243\) 9.00492 0.577666
\(244\) −3.55262 −0.227433
\(245\) 0 0
\(246\) 3.31756 0.211520
\(247\) 0.682439 0.0434225
\(248\) −8.38271 −0.532302
\(249\) 31.0923 1.97040
\(250\) −0.311108 −0.0196762
\(251\) 13.7921 0.870552 0.435276 0.900297i \(-0.356651\pi\)
0.435276 + 0.900297i \(0.356651\pi\)
\(252\) 0 0
\(253\) −11.4795 −0.721710
\(254\) 1.93533 0.121433
\(255\) 23.0923 1.44610
\(256\) 8.80642 0.550401
\(257\) 1.47949 0.0922883 0.0461442 0.998935i \(-0.485307\pi\)
0.0461442 + 0.998935i \(0.485307\pi\)
\(258\) 9.49823 0.591334
\(259\) 0 0
\(260\) 1.18421 0.0734415
\(261\) −5.42864 −0.336024
\(262\) 3.65878 0.226040
\(263\) −0.442930 −0.0273122 −0.0136561 0.999907i \(-0.504347\pi\)
−0.0136561 + 0.999907i \(0.504347\pi\)
\(264\) −5.37778 −0.330980
\(265\) −6.42864 −0.394908
\(266\) 0 0
\(267\) −22.6637 −1.38700
\(268\) −21.9353 −1.33991
\(269\) −3.93978 −0.240212 −0.120106 0.992761i \(-0.538324\pi\)
−0.120106 + 0.992761i \(0.538324\pi\)
\(270\) 2.19358 0.133497
\(271\) −6.20787 −0.377101 −0.188551 0.982063i \(-0.560379\pi\)
−0.188551 + 0.982063i \(0.560379\pi\)
\(272\) 27.2716 1.65359
\(273\) 0 0
\(274\) −1.10970 −0.0670391
\(275\) −1.52543 −0.0919867
\(276\) 41.5812 2.50289
\(277\) 5.57136 0.334751 0.167375 0.985893i \(-0.446471\pi\)
0.167375 + 0.985893i \(0.446471\pi\)
\(278\) 2.66370 0.159758
\(279\) 37.4750 2.24357
\(280\) 0 0
\(281\) 6.69535 0.399411 0.199705 0.979856i \(-0.436001\pi\)
0.199705 + 0.979856i \(0.436001\pi\)
\(282\) 6.23506 0.371293
\(283\) −25.8020 −1.53377 −0.766884 0.641785i \(-0.778194\pi\)
−0.766884 + 0.641785i \(0.778194\pi\)
\(284\) −26.0228 −1.54417
\(285\) 3.18421 0.188616
\(286\) −0.295286 −0.0174607
\(287\) 0 0
\(288\) 18.9748 1.11810
\(289\) 46.2672 2.72160
\(290\) 0.311108 0.0182689
\(291\) −11.8666 −0.695635
\(292\) 19.3921 1.13484
\(293\) 18.8430 1.10082 0.550410 0.834895i \(-0.314472\pi\)
0.550410 + 0.834895i \(0.314472\pi\)
\(294\) 0 0
\(295\) −1.67307 −0.0974099
\(296\) −4.80150 −0.279082
\(297\) 10.7556 0.624101
\(298\) −1.74620 −0.101155
\(299\) 4.68244 0.270792
\(300\) 5.52543 0.319011
\(301\) 0 0
\(302\) 3.35905 0.193292
\(303\) 40.3783 2.31967
\(304\) 3.76049 0.215679
\(305\) −1.86665 −0.106884
\(306\) 13.4336 0.767946
\(307\) 1.65878 0.0946716 0.0473358 0.998879i \(-0.484927\pi\)
0.0473358 + 0.998879i \(0.484927\pi\)
\(308\) 0 0
\(309\) −37.5812 −2.13792
\(310\) −2.14764 −0.121978
\(311\) −21.3002 −1.20782 −0.603912 0.797051i \(-0.706392\pi\)
−0.603912 + 0.797051i \(0.706392\pi\)
\(312\) 2.19358 0.124187
\(313\) −8.62222 −0.487356 −0.243678 0.969856i \(-0.578354\pi\)
−0.243678 + 0.969856i \(0.578354\pi\)
\(314\) −0.709636 −0.0400471
\(315\) 0 0
\(316\) −17.3921 −0.978381
\(317\) −27.5955 −1.54992 −0.774959 0.632012i \(-0.782229\pi\)
−0.774959 + 0.632012i \(0.782229\pi\)
\(318\) −5.80642 −0.325608
\(319\) 1.52543 0.0854075
\(320\) 5.76986 0.322545
\(321\) −31.9496 −1.78325
\(322\) 0 0
\(323\) 8.72393 0.485412
\(324\) −7.96343 −0.442413
\(325\) 0.622216 0.0345143
\(326\) 5.07805 0.281247
\(327\) 52.3783 2.89652
\(328\) 4.46028 0.246278
\(329\) 0 0
\(330\) −1.37778 −0.0758445
\(331\) 16.9131 0.929626 0.464813 0.885409i \(-0.346122\pi\)
0.464813 + 0.885409i \(0.346122\pi\)
\(332\) 20.3827 1.11865
\(333\) 21.4652 1.17629
\(334\) 1.48394 0.0811976
\(335\) −11.5254 −0.629701
\(336\) 0 0
\(337\) 11.9956 0.653439 0.326720 0.945121i \(-0.394057\pi\)
0.326720 + 0.945121i \(0.394057\pi\)
\(338\) −3.92396 −0.213435
\(339\) 29.8479 1.62112
\(340\) 15.1383 0.820988
\(341\) −10.5303 −0.570250
\(342\) 1.85236 0.100164
\(343\) 0 0
\(344\) 12.7699 0.688505
\(345\) 21.8479 1.17625
\(346\) −1.31756 −0.0708325
\(347\) 6.14764 0.330023 0.165011 0.986292i \(-0.447234\pi\)
0.165011 + 0.986292i \(0.447234\pi\)
\(348\) −5.52543 −0.296194
\(349\) 7.12399 0.381338 0.190669 0.981654i \(-0.438934\pi\)
0.190669 + 0.981654i \(0.438934\pi\)
\(350\) 0 0
\(351\) −4.38715 −0.234169
\(352\) −5.33185 −0.284189
\(353\) 16.9175 0.900428 0.450214 0.892921i \(-0.351348\pi\)
0.450214 + 0.892921i \(0.351348\pi\)
\(354\) −1.51114 −0.0803160
\(355\) −13.6731 −0.725691
\(356\) −14.8573 −0.787434
\(357\) 0 0
\(358\) 3.02227 0.159732
\(359\) 36.7096 1.93746 0.968730 0.248116i \(-0.0798115\pi\)
0.968730 + 0.248116i \(0.0798115\pi\)
\(360\) 6.59210 0.347434
\(361\) −17.7971 −0.936687
\(362\) −0.101710 −0.00534577
\(363\) 25.1798 1.32159
\(364\) 0 0
\(365\) 10.1891 0.533323
\(366\) −1.68598 −0.0881275
\(367\) −8.41435 −0.439225 −0.219613 0.975587i \(-0.570479\pi\)
−0.219613 + 0.975587i \(0.570479\pi\)
\(368\) 25.8020 1.34502
\(369\) −19.9398 −1.03802
\(370\) −1.23014 −0.0639520
\(371\) 0 0
\(372\) 38.1432 1.97763
\(373\) −8.66370 −0.448590 −0.224295 0.974521i \(-0.572008\pi\)
−0.224295 + 0.974521i \(0.572008\pi\)
\(374\) −3.77478 −0.195189
\(375\) 2.90321 0.149921
\(376\) 8.38271 0.432305
\(377\) −0.622216 −0.0320457
\(378\) 0 0
\(379\) −2.76986 −0.142278 −0.0711390 0.997466i \(-0.522663\pi\)
−0.0711390 + 0.997466i \(0.522663\pi\)
\(380\) 2.08742 0.107082
\(381\) −18.0602 −0.925253
\(382\) −4.64941 −0.237885
\(383\) −1.67752 −0.0857171 −0.0428585 0.999081i \(-0.513646\pi\)
−0.0428585 + 0.999081i \(0.513646\pi\)
\(384\) 25.5067 1.30163
\(385\) 0 0
\(386\) −4.40144 −0.224028
\(387\) −57.0879 −2.90194
\(388\) −7.77923 −0.394930
\(389\) −5.77478 −0.292793 −0.146397 0.989226i \(-0.546768\pi\)
−0.146397 + 0.989226i \(0.546768\pi\)
\(390\) 0.561993 0.0284576
\(391\) 59.8578 3.02714
\(392\) 0 0
\(393\) −34.1432 −1.72230
\(394\) −1.77478 −0.0894122
\(395\) −9.13828 −0.459797
\(396\) 15.7605 0.791994
\(397\) −29.9081 −1.50105 −0.750523 0.660844i \(-0.770198\pi\)
−0.750523 + 0.660844i \(0.770198\pi\)
\(398\) 6.88892 0.345310
\(399\) 0 0
\(400\) 3.42864 0.171432
\(401\) 8.53035 0.425985 0.212993 0.977054i \(-0.431679\pi\)
0.212993 + 0.977054i \(0.431679\pi\)
\(402\) −10.4099 −0.519199
\(403\) 4.29529 0.213963
\(404\) 26.4701 1.31694
\(405\) −4.18421 −0.207915
\(406\) 0 0
\(407\) −6.03164 −0.298977
\(408\) 28.0415 1.38826
\(409\) −5.09234 −0.251800 −0.125900 0.992043i \(-0.540182\pi\)
−0.125900 + 0.992043i \(0.540182\pi\)
\(410\) 1.14272 0.0564350
\(411\) 10.3555 0.510800
\(412\) −24.6365 −1.21375
\(413\) 0 0
\(414\) 12.7096 0.624645
\(415\) 10.7096 0.525715
\(416\) 2.17484 0.106630
\(417\) −24.8573 −1.21727
\(418\) −0.520505 −0.0254588
\(419\) 24.3368 1.18893 0.594465 0.804122i \(-0.297364\pi\)
0.594465 + 0.804122i \(0.297364\pi\)
\(420\) 0 0
\(421\) 24.5018 1.19414 0.597072 0.802188i \(-0.296331\pi\)
0.597072 + 0.802188i \(0.296331\pi\)
\(422\) −6.48442 −0.315656
\(423\) −37.4750 −1.82210
\(424\) −7.80642 −0.379113
\(425\) 7.95407 0.385829
\(426\) −12.3497 −0.598344
\(427\) 0 0
\(428\) −20.9447 −1.01240
\(429\) 2.75557 0.133040
\(430\) 3.27163 0.157772
\(431\) 4.26671 0.205520 0.102760 0.994706i \(-0.467233\pi\)
0.102760 + 0.994706i \(0.467233\pi\)
\(432\) −24.1748 −1.16311
\(433\) −27.0049 −1.29777 −0.648887 0.760885i \(-0.724765\pi\)
−0.648887 + 0.760885i \(0.724765\pi\)
\(434\) 0 0
\(435\) −2.90321 −0.139198
\(436\) 34.3368 1.64443
\(437\) 8.25380 0.394833
\(438\) 9.20294 0.439734
\(439\) 2.03164 0.0969650 0.0484825 0.998824i \(-0.484561\pi\)
0.0484825 + 0.998824i \(0.484561\pi\)
\(440\) −1.85236 −0.0883076
\(441\) 0 0
\(442\) 1.53972 0.0732369
\(443\) −3.46520 −0.164637 −0.0823184 0.996606i \(-0.526232\pi\)
−0.0823184 + 0.996606i \(0.526232\pi\)
\(444\) 21.8479 1.03686
\(445\) −7.80642 −0.370060
\(446\) −2.81135 −0.133121
\(447\) 16.2953 0.770741
\(448\) 0 0
\(449\) 37.3590 1.76308 0.881541 0.472107i \(-0.156506\pi\)
0.881541 + 0.472107i \(0.156506\pi\)
\(450\) 1.68889 0.0796151
\(451\) 5.60300 0.263835
\(452\) 19.5669 0.920350
\(453\) −31.3461 −1.47277
\(454\) −6.03704 −0.283332
\(455\) 0 0
\(456\) 3.86665 0.181072
\(457\) 13.4509 0.629207 0.314604 0.949223i \(-0.398128\pi\)
0.314604 + 0.949223i \(0.398128\pi\)
\(458\) 7.96836 0.372337
\(459\) −56.0830 −2.61773
\(460\) 14.3225 0.667789
\(461\) 16.2766 0.758075 0.379037 0.925381i \(-0.376255\pi\)
0.379037 + 0.925381i \(0.376255\pi\)
\(462\) 0 0
\(463\) −30.3926 −1.41246 −0.706231 0.707982i \(-0.749606\pi\)
−0.706231 + 0.707982i \(0.749606\pi\)
\(464\) −3.42864 −0.159171
\(465\) 20.0415 0.929402
\(466\) −0.971896 −0.0450222
\(467\) 1.18865 0.0550043 0.0275022 0.999622i \(-0.491245\pi\)
0.0275022 + 0.999622i \(0.491245\pi\)
\(468\) −6.42864 −0.297164
\(469\) 0 0
\(470\) 2.14764 0.0990634
\(471\) 6.62222 0.305136
\(472\) −2.03164 −0.0935139
\(473\) 16.0415 0.737588
\(474\) −8.25380 −0.379110
\(475\) 1.09679 0.0503241
\(476\) 0 0
\(477\) 34.8988 1.59790
\(478\) 4.33677 0.198359
\(479\) −41.0464 −1.87546 −0.937729 0.347367i \(-0.887076\pi\)
−0.937729 + 0.347367i \(0.887076\pi\)
\(480\) 10.1476 0.463174
\(481\) 2.46028 0.112179
\(482\) 5.74620 0.261732
\(483\) 0 0
\(484\) 16.5067 0.750304
\(485\) −4.08742 −0.185600
\(486\) 2.80150 0.127079
\(487\) −10.1476 −0.459834 −0.229917 0.973210i \(-0.573845\pi\)
−0.229917 + 0.973210i \(0.573845\pi\)
\(488\) −2.26671 −0.102609
\(489\) −47.3876 −2.14294
\(490\) 0 0
\(491\) −29.2083 −1.31815 −0.659077 0.752075i \(-0.729053\pi\)
−0.659077 + 0.752075i \(0.729053\pi\)
\(492\) −20.2953 −0.914982
\(493\) −7.95407 −0.358233
\(494\) 0.212312 0.00955237
\(495\) 8.28100 0.372203
\(496\) 23.6686 1.06275
\(497\) 0 0
\(498\) 9.67307 0.433461
\(499\) 21.9813 0.984017 0.492008 0.870591i \(-0.336263\pi\)
0.492008 + 0.870591i \(0.336263\pi\)
\(500\) 1.90321 0.0851142
\(501\) −13.8479 −0.618679
\(502\) 4.29084 0.191510
\(503\) −5.77923 −0.257683 −0.128841 0.991665i \(-0.541126\pi\)
−0.128841 + 0.991665i \(0.541126\pi\)
\(504\) 0 0
\(505\) 13.9081 0.618904
\(506\) −3.57136 −0.158766
\(507\) 36.6178 1.62625
\(508\) −11.8394 −0.525291
\(509\) −13.6543 −0.605218 −0.302609 0.953115i \(-0.597858\pi\)
−0.302609 + 0.953115i \(0.597858\pi\)
\(510\) 7.18421 0.318122
\(511\) 0 0
\(512\) 20.3111 0.897633
\(513\) −7.73329 −0.341433
\(514\) 0.460282 0.0203022
\(515\) −12.9447 −0.570412
\(516\) −58.1057 −2.55796
\(517\) 10.5303 0.463124
\(518\) 0 0
\(519\) 12.2953 0.539703
\(520\) 0.755569 0.0331339
\(521\) 19.6731 0.861893 0.430946 0.902378i \(-0.358180\pi\)
0.430946 + 0.902378i \(0.358180\pi\)
\(522\) −1.68889 −0.0739208
\(523\) 15.1383 0.661951 0.330975 0.943639i \(-0.392622\pi\)
0.330975 + 0.943639i \(0.392622\pi\)
\(524\) −22.3827 −0.977793
\(525\) 0 0
\(526\) −0.137799 −0.00600832
\(527\) 54.9086 2.39186
\(528\) 15.1842 0.660808
\(529\) 33.6321 1.46226
\(530\) −2.00000 −0.0868744
\(531\) 9.08250 0.394147
\(532\) 0 0
\(533\) −2.28544 −0.0989935
\(534\) −7.05086 −0.305120
\(535\) −11.0049 −0.475784
\(536\) −13.9956 −0.604516
\(537\) −28.2034 −1.21707
\(538\) −1.22570 −0.0528435
\(539\) 0 0
\(540\) −13.4193 −0.577474
\(541\) 2.68244 0.115327 0.0576635 0.998336i \(-0.481635\pi\)
0.0576635 + 0.998336i \(0.481635\pi\)
\(542\) −1.93132 −0.0829571
\(543\) 0.949145 0.0407317
\(544\) 27.8020 1.19200
\(545\) 18.0415 0.772812
\(546\) 0 0
\(547\) −15.3635 −0.656896 −0.328448 0.944522i \(-0.606525\pi\)
−0.328448 + 0.944522i \(0.606525\pi\)
\(548\) 6.78859 0.289994
\(549\) 10.1334 0.432481
\(550\) −0.474572 −0.0202358
\(551\) −1.09679 −0.0467247
\(552\) 26.5303 1.12921
\(553\) 0 0
\(554\) 1.73329 0.0736406
\(555\) 11.4795 0.487277
\(556\) −16.2953 −0.691074
\(557\) −9.87955 −0.418610 −0.209305 0.977850i \(-0.567120\pi\)
−0.209305 + 0.977850i \(0.567120\pi\)
\(558\) 11.6588 0.493556
\(559\) −6.54326 −0.276750
\(560\) 0 0
\(561\) 35.2257 1.48723
\(562\) 2.08297 0.0878650
\(563\) 27.4938 1.15872 0.579362 0.815070i \(-0.303302\pi\)
0.579362 + 0.815070i \(0.303302\pi\)
\(564\) −38.1432 −1.60612
\(565\) 10.2810 0.432525
\(566\) −8.02720 −0.337408
\(567\) 0 0
\(568\) −16.6035 −0.696667
\(569\) 17.3590 0.727729 0.363865 0.931452i \(-0.381457\pi\)
0.363865 + 0.931452i \(0.381457\pi\)
\(570\) 0.990632 0.0414930
\(571\) −25.4479 −1.06496 −0.532480 0.846443i \(-0.678740\pi\)
−0.532480 + 0.846443i \(0.678740\pi\)
\(572\) 1.80642 0.0755304
\(573\) 43.3876 1.81254
\(574\) 0 0
\(575\) 7.52543 0.313832
\(576\) −31.3225 −1.30510
\(577\) 10.6178 0.442024 0.221012 0.975271i \(-0.429064\pi\)
0.221012 + 0.975271i \(0.429064\pi\)
\(578\) 14.3941 0.598715
\(579\) 41.0736 1.70696
\(580\) −1.90321 −0.0790266
\(581\) 0 0
\(582\) −3.69181 −0.153030
\(583\) −9.80642 −0.406141
\(584\) 12.3729 0.511993
\(585\) −3.37778 −0.139654
\(586\) 5.86220 0.242165
\(587\) 8.94470 0.369187 0.184594 0.982815i \(-0.440903\pi\)
0.184594 + 0.982815i \(0.440903\pi\)
\(588\) 0 0
\(589\) 7.57136 0.311972
\(590\) −0.520505 −0.0214289
\(591\) 16.5620 0.681269
\(592\) 13.5571 0.557192
\(593\) −14.1619 −0.581561 −0.290780 0.956790i \(-0.593915\pi\)
−0.290780 + 0.956790i \(0.593915\pi\)
\(594\) 3.34614 0.137294
\(595\) 0 0
\(596\) 10.6824 0.437570
\(597\) −64.2864 −2.63107
\(598\) 1.45674 0.0595707
\(599\) −22.5575 −0.921676 −0.460838 0.887484i \(-0.652451\pi\)
−0.460838 + 0.887484i \(0.652451\pi\)
\(600\) 3.52543 0.143925
\(601\) 40.6133 1.65665 0.828326 0.560246i \(-0.189294\pi\)
0.828326 + 0.560246i \(0.189294\pi\)
\(602\) 0 0
\(603\) 62.5674 2.54794
\(604\) −20.5491 −0.836130
\(605\) 8.67307 0.352610
\(606\) 12.5620 0.510296
\(607\) −13.5955 −0.551824 −0.275912 0.961183i \(-0.588980\pi\)
−0.275912 + 0.961183i \(0.588980\pi\)
\(608\) 3.83362 0.155474
\(609\) 0 0
\(610\) −0.580728 −0.0235130
\(611\) −4.29529 −0.173769
\(612\) −82.1802 −3.32194
\(613\) −42.0830 −1.69972 −0.849858 0.527012i \(-0.823312\pi\)
−0.849858 + 0.527012i \(0.823312\pi\)
\(614\) 0.516060 0.0208265
\(615\) −10.6637 −0.430002
\(616\) 0 0
\(617\) 33.5067 1.34893 0.674464 0.738307i \(-0.264375\pi\)
0.674464 + 0.738307i \(0.264375\pi\)
\(618\) −11.6918 −0.470313
\(619\) 14.6780 0.589958 0.294979 0.955504i \(-0.404687\pi\)
0.294979 + 0.955504i \(0.404687\pi\)
\(620\) 13.1383 0.527646
\(621\) −53.0607 −2.12925
\(622\) −6.62666 −0.265705
\(623\) 0 0
\(624\) −6.19358 −0.247941
\(625\) 1.00000 0.0400000
\(626\) −2.68244 −0.107212
\(627\) 4.85728 0.193981
\(628\) 4.34122 0.173234
\(629\) 31.4509 1.25403
\(630\) 0 0
\(631\) 11.3176 0.450545 0.225273 0.974296i \(-0.427673\pi\)
0.225273 + 0.974296i \(0.427673\pi\)
\(632\) −11.0968 −0.441407
\(633\) 60.5116 2.40512
\(634\) −8.58517 −0.340961
\(635\) −6.22077 −0.246864
\(636\) 35.5210 1.40850
\(637\) 0 0
\(638\) 0.474572 0.0187885
\(639\) 74.2262 2.93634
\(640\) 8.78568 0.347285
\(641\) 34.8988 1.37842 0.689209 0.724562i \(-0.257958\pi\)
0.689209 + 0.724562i \(0.257958\pi\)
\(642\) −9.93978 −0.392292
\(643\) 41.9768 1.65540 0.827702 0.561168i \(-0.189648\pi\)
0.827702 + 0.561168i \(0.189648\pi\)
\(644\) 0 0
\(645\) −30.5303 −1.20213
\(646\) 2.71408 0.106784
\(647\) −5.46520 −0.214859 −0.107430 0.994213i \(-0.534262\pi\)
−0.107430 + 0.994213i \(0.534262\pi\)
\(648\) −5.08097 −0.199599
\(649\) −2.55215 −0.100181
\(650\) 0.193576 0.00759268
\(651\) 0 0
\(652\) −31.0651 −1.21660
\(653\) −8.76986 −0.343191 −0.171596 0.985167i \(-0.554892\pi\)
−0.171596 + 0.985167i \(0.554892\pi\)
\(654\) 16.2953 0.637196
\(655\) −11.7605 −0.459520
\(656\) −12.5936 −0.491699
\(657\) −55.3131 −2.15797
\(658\) 0 0
\(659\) 3.29036 0.128174 0.0640872 0.997944i \(-0.479586\pi\)
0.0640872 + 0.997944i \(0.479586\pi\)
\(660\) 8.42864 0.328084
\(661\) −19.7560 −0.768421 −0.384211 0.923246i \(-0.625526\pi\)
−0.384211 + 0.923246i \(0.625526\pi\)
\(662\) 5.26178 0.204505
\(663\) −14.3684 −0.558023
\(664\) 13.0049 0.504689
\(665\) 0 0
\(666\) 6.67799 0.258767
\(667\) −7.52543 −0.291386
\(668\) −9.07805 −0.351240
\(669\) 26.2351 1.01431
\(670\) −3.58565 −0.138526
\(671\) −2.84743 −0.109924
\(672\) 0 0
\(673\) 44.3970 1.71138 0.855689 0.517490i \(-0.173134\pi\)
0.855689 + 0.517490i \(0.173134\pi\)
\(674\) 3.73191 0.143748
\(675\) −7.05086 −0.271388
\(676\) 24.0049 0.923266
\(677\) −6.09726 −0.234337 −0.117168 0.993112i \(-0.537382\pi\)
−0.117168 + 0.993112i \(0.537382\pi\)
\(678\) 9.28592 0.356624
\(679\) 0 0
\(680\) 9.65878 0.370397
\(681\) 56.3368 2.15883
\(682\) −3.27607 −0.125447
\(683\) 37.9224 1.45106 0.725531 0.688190i \(-0.241594\pi\)
0.725531 + 0.688190i \(0.241594\pi\)
\(684\) −11.3319 −0.433284
\(685\) 3.56691 0.136285
\(686\) 0 0
\(687\) −74.3595 −2.83699
\(688\) −36.0558 −1.37461
\(689\) 4.00000 0.152388
\(690\) 6.79706 0.258759
\(691\) −13.3145 −0.506507 −0.253254 0.967400i \(-0.581501\pi\)
−0.253254 + 0.967400i \(0.581501\pi\)
\(692\) 8.06022 0.306404
\(693\) 0 0
\(694\) 1.91258 0.0726005
\(695\) −8.56199 −0.324775
\(696\) −3.52543 −0.133631
\(697\) −29.2159 −1.10663
\(698\) 2.21633 0.0838892
\(699\) 9.06959 0.343043
\(700\) 0 0
\(701\) −23.4893 −0.887180 −0.443590 0.896230i \(-0.646295\pi\)
−0.443590 + 0.896230i \(0.646295\pi\)
\(702\) −1.36488 −0.0515140
\(703\) 4.33677 0.163565
\(704\) 8.80150 0.331719
\(705\) −20.0415 −0.754806
\(706\) 5.26317 0.198082
\(707\) 0 0
\(708\) 9.24443 0.347427
\(709\) 11.6731 0.438391 0.219196 0.975681i \(-0.429657\pi\)
0.219196 + 0.975681i \(0.429657\pi\)
\(710\) −4.25380 −0.159642
\(711\) 49.6084 1.86046
\(712\) −9.47949 −0.355259
\(713\) 51.9496 1.94553
\(714\) 0 0
\(715\) 0.949145 0.0354960
\(716\) −18.4889 −0.690961
\(717\) −40.4701 −1.51138
\(718\) 11.4207 0.426215
\(719\) −29.5526 −1.10213 −0.551063 0.834463i \(-0.685778\pi\)
−0.551063 + 0.834463i \(0.685778\pi\)
\(720\) −18.6128 −0.693660
\(721\) 0 0
\(722\) −5.53680 −0.206058
\(723\) −53.6227 −1.99425
\(724\) 0.622216 0.0231245
\(725\) −1.00000 −0.0371391
\(726\) 7.83362 0.290733
\(727\) −3.88094 −0.143936 −0.0719680 0.997407i \(-0.522928\pi\)
−0.0719680 + 0.997407i \(0.522928\pi\)
\(728\) 0 0
\(729\) −38.6958 −1.43318
\(730\) 3.16992 0.117324
\(731\) −83.6454 −3.09374
\(732\) 10.3140 0.381217
\(733\) −14.8845 −0.549771 −0.274885 0.961477i \(-0.588640\pi\)
−0.274885 + 0.961477i \(0.588640\pi\)
\(734\) −2.61777 −0.0966236
\(735\) 0 0
\(736\) 26.3037 0.969569
\(737\) −17.5812 −0.647612
\(738\) −6.20342 −0.228351
\(739\) 2.24935 0.0827438 0.0413719 0.999144i \(-0.486827\pi\)
0.0413719 + 0.999144i \(0.486827\pi\)
\(740\) 7.52543 0.276640
\(741\) −1.98126 −0.0727836
\(742\) 0 0
\(743\) −3.46520 −0.127126 −0.0635630 0.997978i \(-0.520246\pi\)
−0.0635630 + 0.997978i \(0.520246\pi\)
\(744\) 24.3368 0.892229
\(745\) 5.61285 0.205639
\(746\) −2.69535 −0.0986836
\(747\) −58.1388 −2.12719
\(748\) 23.0923 0.844340
\(749\) 0 0
\(750\) 0.903212 0.0329806
\(751\) 3.16992 0.115672 0.0578360 0.998326i \(-0.481580\pi\)
0.0578360 + 0.998326i \(0.481580\pi\)
\(752\) −23.6686 −0.863106
\(753\) −40.0415 −1.45919
\(754\) −0.193576 −0.00704963
\(755\) −10.7971 −0.392945
\(756\) 0 0
\(757\) −52.0785 −1.89283 −0.946413 0.322958i \(-0.895323\pi\)
−0.946413 + 0.322958i \(0.895323\pi\)
\(758\) −0.861725 −0.0312993
\(759\) 33.3274 1.20971
\(760\) 1.33185 0.0483113
\(761\) 14.9777 0.542942 0.271471 0.962447i \(-0.412490\pi\)
0.271471 + 0.962447i \(0.412490\pi\)
\(762\) −5.61868 −0.203543
\(763\) 0 0
\(764\) 28.4429 1.02903
\(765\) −43.1798 −1.56117
\(766\) −0.521889 −0.0188566
\(767\) 1.04101 0.0375887
\(768\) −25.5669 −0.922567
\(769\) 1.90813 0.0688091 0.0344045 0.999408i \(-0.489047\pi\)
0.0344045 + 0.999408i \(0.489047\pi\)
\(770\) 0 0
\(771\) −4.29529 −0.154691
\(772\) 26.9260 0.969087
\(773\) −21.7891 −0.783698 −0.391849 0.920029i \(-0.628165\pi\)
−0.391849 + 0.920029i \(0.628165\pi\)
\(774\) −17.7605 −0.638388
\(775\) 6.90321 0.247971
\(776\) −4.96343 −0.178177
\(777\) 0 0
\(778\) −1.79658 −0.0644105
\(779\) −4.02858 −0.144339
\(780\) −3.43801 −0.123100
\(781\) −20.8573 −0.746332
\(782\) 18.6222 0.665929
\(783\) 7.05086 0.251977
\(784\) 0 0
\(785\) 2.28100 0.0814122
\(786\) −10.6222 −0.378882
\(787\) 18.1388 0.646577 0.323288 0.946301i \(-0.395212\pi\)
0.323288 + 0.946301i \(0.395212\pi\)
\(788\) 10.8573 0.386775
\(789\) 1.28592 0.0457799
\(790\) −2.84299 −0.101149
\(791\) 0 0
\(792\) 10.0558 0.357316
\(793\) 1.16146 0.0412445
\(794\) −9.30465 −0.330210
\(795\) 18.6637 0.661933
\(796\) −42.1432 −1.49373
\(797\) −2.96343 −0.104970 −0.0524851 0.998622i \(-0.516714\pi\)
−0.0524851 + 0.998622i \(0.516714\pi\)
\(798\) 0 0
\(799\) −54.9086 −1.94253
\(800\) 3.49532 0.123578
\(801\) 42.3783 1.49736
\(802\) 2.65386 0.0937110
\(803\) 15.5428 0.548493
\(804\) 63.6829 2.24592
\(805\) 0 0
\(806\) 1.33630 0.0470691
\(807\) 11.4380 0.402637
\(808\) 16.8889 0.594150
\(809\) −26.2953 −0.924493 −0.462247 0.886751i \(-0.652956\pi\)
−0.462247 + 0.886751i \(0.652956\pi\)
\(810\) −1.30174 −0.0457385
\(811\) −24.3783 −0.856037 −0.428018 0.903770i \(-0.640788\pi\)
−0.428018 + 0.903770i \(0.640788\pi\)
\(812\) 0 0
\(813\) 18.0228 0.632085
\(814\) −1.87649 −0.0657710
\(815\) −16.3225 −0.571752
\(816\) −79.1753 −2.77169
\(817\) −11.5339 −0.403520
\(818\) −1.58427 −0.0553926
\(819\) 0 0
\(820\) −6.99063 −0.244123
\(821\) 1.52987 0.0533929 0.0266965 0.999644i \(-0.491501\pi\)
0.0266965 + 0.999644i \(0.491501\pi\)
\(822\) 3.22168 0.112369
\(823\) 46.7195 1.62854 0.814269 0.580487i \(-0.197138\pi\)
0.814269 + 0.580487i \(0.197138\pi\)
\(824\) −15.7190 −0.547597
\(825\) 4.42864 0.154185
\(826\) 0 0
\(827\) −29.6499 −1.03103 −0.515514 0.856881i \(-0.672399\pi\)
−0.515514 + 0.856881i \(0.672399\pi\)
\(828\) −77.7516 −2.70205
\(829\) 8.79706 0.305534 0.152767 0.988262i \(-0.451182\pi\)
0.152767 + 0.988262i \(0.451182\pi\)
\(830\) 3.33185 0.115650
\(831\) −16.1748 −0.561099
\(832\) −3.59010 −0.124464
\(833\) 0 0
\(834\) −7.73329 −0.267782
\(835\) −4.76986 −0.165068
\(836\) 3.18421 0.110128
\(837\) −48.6735 −1.68240
\(838\) 7.57136 0.261548
\(839\) −11.3319 −0.391219 −0.195609 0.980682i \(-0.562668\pi\)
−0.195609 + 0.980682i \(0.562668\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 7.62269 0.262695
\(843\) −19.4380 −0.669481
\(844\) 39.6686 1.36545
\(845\) 12.6128 0.433895
\(846\) −11.6588 −0.400837
\(847\) 0 0
\(848\) 22.0415 0.756908
\(849\) 74.9086 2.57086
\(850\) 2.47457 0.0848771
\(851\) 29.7560 1.02002
\(852\) 75.5496 2.58829
\(853\) −54.8845 −1.87921 −0.939604 0.342263i \(-0.888807\pi\)
−0.939604 + 0.342263i \(0.888807\pi\)
\(854\) 0 0
\(855\) −5.95407 −0.203625
\(856\) −13.3635 −0.456755
\(857\) −36.4385 −1.24471 −0.622357 0.782733i \(-0.713825\pi\)
−0.622357 + 0.782733i \(0.713825\pi\)
\(858\) 0.857279 0.0292670
\(859\) −1.72885 −0.0589875 −0.0294938 0.999565i \(-0.509390\pi\)
−0.0294938 + 0.999565i \(0.509390\pi\)
\(860\) −20.0143 −0.682482
\(861\) 0 0
\(862\) 1.32741 0.0452116
\(863\) −9.40192 −0.320045 −0.160023 0.987113i \(-0.551157\pi\)
−0.160023 + 0.987113i \(0.551157\pi\)
\(864\) −24.6450 −0.838439
\(865\) 4.23506 0.143996
\(866\) −8.40144 −0.285493
\(867\) −134.323 −4.56186
\(868\) 0 0
\(869\) −13.9398 −0.472875
\(870\) −0.903212 −0.0306218
\(871\) 7.17130 0.242990
\(872\) 21.9081 0.741903
\(873\) 22.1891 0.750988
\(874\) 2.56782 0.0868579
\(875\) 0 0
\(876\) −56.2993 −1.90218
\(877\) 8.91750 0.301123 0.150561 0.988601i \(-0.451892\pi\)
0.150561 + 0.988601i \(0.451892\pi\)
\(878\) 0.632060 0.0213310
\(879\) −54.7052 −1.84516
\(880\) 5.23014 0.176308
\(881\) 42.1245 1.41921 0.709605 0.704600i \(-0.248874\pi\)
0.709605 + 0.704600i \(0.248874\pi\)
\(882\) 0 0
\(883\) −38.4340 −1.29341 −0.646704 0.762741i \(-0.723853\pi\)
−0.646704 + 0.762741i \(0.723853\pi\)
\(884\) −9.41927 −0.316804
\(885\) 4.85728 0.163276
\(886\) −1.07805 −0.0362179
\(887\) 38.6365 1.29729 0.648643 0.761092i \(-0.275337\pi\)
0.648643 + 0.761092i \(0.275337\pi\)
\(888\) 13.9398 0.467788
\(889\) 0 0
\(890\) −2.42864 −0.0814082
\(891\) −6.38271 −0.213829
\(892\) 17.1985 0.575848
\(893\) −7.57136 −0.253366
\(894\) 5.06959 0.169552
\(895\) −9.71456 −0.324722
\(896\) 0 0
\(897\) −13.5941 −0.453894
\(898\) 11.6227 0.387854
\(899\) −6.90321 −0.230235
\(900\) −10.3319 −0.344395
\(901\) 51.1338 1.70351
\(902\) 1.74314 0.0580402
\(903\) 0 0
\(904\) 12.4844 0.415226
\(905\) 0.326929 0.0108675
\(906\) −9.75203 −0.323989
\(907\) 0.534795 0.0177576 0.00887880 0.999961i \(-0.497174\pi\)
0.00887880 + 0.999961i \(0.497174\pi\)
\(908\) 36.9318 1.22562
\(909\) −75.5022 −2.50425
\(910\) 0 0
\(911\) −23.6686 −0.784177 −0.392088 0.919928i \(-0.628247\pi\)
−0.392088 + 0.919928i \(0.628247\pi\)
\(912\) −10.9175 −0.361515
\(913\) 16.3368 0.540668
\(914\) 4.18468 0.138417
\(915\) 5.41927 0.179156
\(916\) −48.7467 −1.61064
\(917\) 0 0
\(918\) −17.4479 −0.575865
\(919\) 35.7748 1.18010 0.590051 0.807366i \(-0.299108\pi\)
0.590051 + 0.807366i \(0.299108\pi\)
\(920\) 9.13828 0.301280
\(921\) −4.81579 −0.158686
\(922\) 5.06376 0.166766
\(923\) 8.50760 0.280031
\(924\) 0 0
\(925\) 3.95407 0.130009
\(926\) −9.45536 −0.310722
\(927\) 70.2721 2.30804
\(928\) −3.49532 −0.114739
\(929\) 52.7753 1.73150 0.865750 0.500477i \(-0.166842\pi\)
0.865750 + 0.500477i \(0.166842\pi\)
\(930\) 6.23506 0.204456
\(931\) 0 0
\(932\) 5.94561 0.194755
\(933\) 61.8390 2.02452
\(934\) 0.369800 0.0121002
\(935\) 12.1334 0.396803
\(936\) −4.10171 −0.134069
\(937\) −42.1245 −1.37615 −0.688073 0.725641i \(-0.741543\pi\)
−0.688073 + 0.725641i \(0.741543\pi\)
\(938\) 0 0
\(939\) 25.0321 0.816892
\(940\) −13.1383 −0.428523
\(941\) 3.89829 0.127081 0.0635403 0.997979i \(-0.479761\pi\)
0.0635403 + 0.997979i \(0.479761\pi\)
\(942\) 2.06022 0.0671257
\(943\) −27.6414 −0.900129
\(944\) 5.73636 0.186703
\(945\) 0 0
\(946\) 4.99063 0.162259
\(947\) 9.56691 0.310883 0.155441 0.987845i \(-0.450320\pi\)
0.155441 + 0.987845i \(0.450320\pi\)
\(948\) 50.4929 1.63993
\(949\) −6.33984 −0.205800
\(950\) 0.341219 0.0110706
\(951\) 80.1156 2.59793
\(952\) 0 0
\(953\) 27.2070 0.881320 0.440660 0.897674i \(-0.354744\pi\)
0.440660 + 0.897674i \(0.354744\pi\)
\(954\) 10.8573 0.351517
\(955\) 14.9447 0.483599
\(956\) −26.5303 −0.858053
\(957\) −4.42864 −0.143158
\(958\) −12.7699 −0.412575
\(959\) 0 0
\(960\) −16.7511 −0.540640
\(961\) 16.6543 0.537237
\(962\) 0.765413 0.0246779
\(963\) 59.7418 1.92515
\(964\) −35.1526 −1.13219
\(965\) 14.1476 0.455429
\(966\) 0 0
\(967\) −16.8015 −0.540300 −0.270150 0.962818i \(-0.587073\pi\)
−0.270150 + 0.962818i \(0.587073\pi\)
\(968\) 10.5319 0.338507
\(969\) −25.3274 −0.813633
\(970\) −1.27163 −0.0408295
\(971\) 17.4465 0.559884 0.279942 0.960017i \(-0.409685\pi\)
0.279942 + 0.960017i \(0.409685\pi\)
\(972\) −17.1383 −0.549710
\(973\) 0 0
\(974\) −3.15701 −0.101157
\(975\) −1.80642 −0.0578519
\(976\) 6.40006 0.204861
\(977\) 32.0513 1.02541 0.512706 0.858564i \(-0.328643\pi\)
0.512706 + 0.858564i \(0.328643\pi\)
\(978\) −14.7427 −0.471418
\(979\) −11.9081 −0.380586
\(980\) 0 0
\(981\) −97.9407 −3.12701
\(982\) −9.08694 −0.289976
\(983\) 16.5259 0.527094 0.263547 0.964646i \(-0.415108\pi\)
0.263547 + 0.964646i \(0.415108\pi\)
\(984\) −12.9491 −0.412804
\(985\) 5.70471 0.181767
\(986\) −2.47457 −0.0788064
\(987\) 0 0
\(988\) −1.29883 −0.0413211
\(989\) −79.1378 −2.51644
\(990\) 2.57628 0.0818796
\(991\) −9.34920 −0.296987 −0.148494 0.988913i \(-0.547442\pi\)
−0.148494 + 0.988913i \(0.547442\pi\)
\(992\) 24.1289 0.766094
\(993\) −49.1022 −1.55821
\(994\) 0 0
\(995\) −22.1432 −0.701987
\(996\) −59.1753 −1.87504
\(997\) 15.9956 0.506584 0.253292 0.967390i \(-0.418487\pi\)
0.253292 + 0.967390i \(0.418487\pi\)
\(998\) 6.83854 0.216470
\(999\) −27.8796 −0.882070
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7105.2.a.o.1.2 3
7.6 odd 2 145.2.a.c.1.2 3
21.20 even 2 1305.2.a.p.1.2 3
28.27 even 2 2320.2.a.n.1.1 3
35.13 even 4 725.2.b.e.349.3 6
35.27 even 4 725.2.b.e.349.4 6
35.34 odd 2 725.2.a.e.1.2 3
56.13 odd 2 9280.2.a.bj.1.1 3
56.27 even 2 9280.2.a.br.1.3 3
105.104 even 2 6525.2.a.be.1.2 3
203.202 odd 2 4205.2.a.f.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.a.c.1.2 3 7.6 odd 2
725.2.a.e.1.2 3 35.34 odd 2
725.2.b.e.349.3 6 35.13 even 4
725.2.b.e.349.4 6 35.27 even 4
1305.2.a.p.1.2 3 21.20 even 2
2320.2.a.n.1.1 3 28.27 even 2
4205.2.a.f.1.2 3 203.202 odd 2
6525.2.a.be.1.2 3 105.104 even 2
7105.2.a.o.1.2 3 1.1 even 1 trivial
9280.2.a.bj.1.1 3 56.13 odd 2
9280.2.a.br.1.3 3 56.27 even 2