Properties

Label 7105.2.a.o
Level $7105$
Weight $2$
Character orbit 7105.a
Self dual yes
Analytic conductor $56.734$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7105,2,Mod(1,7105)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7105.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7105, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7105 = 5 \cdot 7^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7105.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,1,-2,1,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.7337106361\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + \beta_1 - 1) q^{3} + (\beta_{2} + \beta_1) q^{4} - q^{5} + (\beta_{2} + \beta_1 + 1) q^{6} + (\beta_{2} + 1) q^{8} + ( - 2 \beta_{2} + 1) q^{9} - \beta_1 q^{10} + (\beta_{2} - \beta_1 + 1) q^{11}+ \cdots + (\beta_{2} + 3 \beta_1 - 7) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} - 2 q^{3} + q^{4} - 3 q^{5} + 4 q^{6} + 3 q^{8} + 3 q^{9} - q^{10} + 2 q^{11} + 10 q^{12} + 2 q^{13} + 2 q^{15} - 3 q^{16} + 4 q^{17} + 5 q^{18} + 10 q^{19} - q^{20} - 8 q^{22} + 16 q^{23}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.48119
0.311108
2.17009
−1.48119 −0.806063 0.193937 −1.00000 1.19394 0 2.67513 −2.35026 1.48119
1.2 0.311108 −2.90321 −1.90321 −1.00000 −0.903212 0 −1.21432 5.42864 −0.311108
1.3 2.17009 1.70928 2.70928 −1.00000 3.70928 0 1.53919 −0.0783777 −2.17009
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7105.2.a.o 3
7.b odd 2 1 145.2.a.c 3
21.c even 2 1 1305.2.a.p 3
28.d even 2 1 2320.2.a.n 3
35.c odd 2 1 725.2.a.e 3
35.f even 4 2 725.2.b.e 6
56.e even 2 1 9280.2.a.br 3
56.h odd 2 1 9280.2.a.bj 3
105.g even 2 1 6525.2.a.be 3
203.c odd 2 1 4205.2.a.f 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
145.2.a.c 3 7.b odd 2 1
725.2.a.e 3 35.c odd 2 1
725.2.b.e 6 35.f even 4 2
1305.2.a.p 3 21.c even 2 1
2320.2.a.n 3 28.d even 2 1
4205.2.a.f 3 203.c odd 2 1
6525.2.a.be 3 105.g even 2 1
7105.2.a.o 3 1.a even 1 1 trivial
9280.2.a.bj 3 56.h odd 2 1
9280.2.a.br 3 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7105))\):

\( T_{2}^{3} - T_{2}^{2} - 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{3} + 2T_{3}^{2} - 4T_{3} - 4 \) Copy content Toggle raw display
\( T_{17}^{3} - 4T_{17}^{2} - 40T_{17} + 68 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - T^{2} - 3T + 1 \) Copy content Toggle raw display
$3$ \( T^{3} + 2 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$5$ \( (T + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 2 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$13$ \( T^{3} - 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$17$ \( T^{3} - 4 T^{2} + \cdots + 68 \) Copy content Toggle raw display
$19$ \( T^{3} - 10 T^{2} + \cdots - 20 \) Copy content Toggle raw display
$23$ \( T^{3} - 16 T^{2} + \cdots - 92 \) Copy content Toggle raw display
$29$ \( (T + 1)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} - 14 T^{2} + \cdots - 76 \) Copy content Toggle raw display
$37$ \( T^{3} + 8 T^{2} + \cdots - 92 \) Copy content Toggle raw display
$41$ \( T^{3} - 2 T^{2} + \cdots - 232 \) Copy content Toggle raw display
$43$ \( T^{3} - 2 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$47$ \( T^{3} + 14 T^{2} + \cdots + 76 \) Copy content Toggle raw display
$53$ \( T^{3} - 6 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$59$ \( T^{3} + 8 T^{2} + \cdots + 80 \) Copy content Toggle raw display
$61$ \( T^{3} - 6 T^{2} + \cdots + 216 \) Copy content Toggle raw display
$67$ \( T^{3} - 28 T^{2} + \cdots - 716 \) Copy content Toggle raw display
$71$ \( T^{3} - 28 T^{2} + \cdots + 272 \) Copy content Toggle raw display
$73$ \( T^{3} - 16 T^{2} + \cdots + 1700 \) Copy content Toggle raw display
$79$ \( T^{3} + 6 T^{2} + \cdots - 460 \) Copy content Toggle raw display
$83$ \( T^{3} + 12T^{2} - 148 \) Copy content Toggle raw display
$89$ \( T^{3} - 10 T^{2} + \cdots + 40 \) Copy content Toggle raw display
$97$ \( T^{3} + 8 T^{2} + \cdots + 76 \) Copy content Toggle raw display
show more
show less