Properties

 Label 7105.2.a.o Level $7105$ Weight $2$ Character orbit 7105.a Self dual yes Analytic conductor $56.734$ Analytic rank $0$ Dimension $3$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [7105,2,Mod(1,7105)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(7105, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("7105.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$7105 = 5 \cdot 7^{2} \cdot 29$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7105.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$56.7337106361$$ Analytic rank: $$0$$ Dimension: $$3$$ Coefficient field: 3.3.148.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{3} - x^{2} - 3x + 1$$ x^3 - x^2 - 3*x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 145) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_1 q^{2} + (\beta_{2} + \beta_1 - 1) q^{3} + (\beta_{2} + \beta_1) q^{4} - q^{5} + (\beta_{2} + \beta_1 + 1) q^{6} + (\beta_{2} + 1) q^{8} + ( - 2 \beta_{2} + 1) q^{9}+O(q^{10})$$ q + b1 * q^2 + (b2 + b1 - 1) * q^3 + (b2 + b1) * q^4 - q^5 + (b2 + b1 + 1) * q^6 + (b2 + 1) * q^8 + (-2*b2 + 1) * q^9 $$q + \beta_1 q^{2} + (\beta_{2} + \beta_1 - 1) q^{3} + (\beta_{2} + \beta_1) q^{4} - q^{5} + (\beta_{2} + \beta_1 + 1) q^{6} + (\beta_{2} + 1) q^{8} + ( - 2 \beta_{2} + 1) q^{9} - \beta_1 q^{10} + (\beta_{2} - \beta_1 + 1) q^{11} + ( - \beta_{2} + \beta_1 + 3) q^{12} + 2 \beta_1 q^{13} + ( - \beta_{2} - \beta_1 + 1) q^{15} + ( - 2 \beta_{2} - 1) q^{16} + ( - 3 \beta_{2} + \beta_1 + 1) q^{17} + ( - \beta_1 + 2) q^{18} + (\beta_{2} + \beta_1 + 3) q^{19} + ( - \beta_{2} - \beta_1) q^{20} + ( - \beta_{2} + \beta_1 - 3) q^{22} + ( - \beta_{2} + \beta_1 + 5) q^{23} + ( - \beta_{2} + \beta_1 + 1) q^{24} + q^{25} + (2 \beta_{2} + 2 \beta_1 + 4) q^{26} + (2 \beta_{2} - 2 \beta_1 - 2) q^{27} - q^{29} + ( - \beta_{2} - \beta_1 - 1) q^{30} + ( - \beta_{2} - \beta_1 + 5) q^{31} + ( - 2 \beta_{2} - 3 \beta_1) q^{32} - 2 \beta_{2} q^{33} + (\beta_{2} - \beta_1 + 5) q^{34} + (3 \beta_{2} + \beta_1 - 4) q^{36} + ( - 3 \beta_{2} + \beta_1 - 3) q^{37} + (\beta_{2} + 5 \beta_1 + 1) q^{38} + (2 \beta_{2} + 2 \beta_1 + 2) q^{39} + ( - \beta_{2} - 1) q^{40} + (2 \beta_{2} - 4 \beta_1 + 2) q^{41} + (5 \beta_{2} + 5 \beta_1 - 1) q^{43} + ( - \beta_{2} - \beta_1 + 1) q^{44} + (2 \beta_{2} - 1) q^{45} + (\beta_{2} + 5 \beta_1 + 3) q^{46} + (\beta_{2} + \beta_1 - 5) q^{47} + (3 \beta_{2} - \beta_1 - 3) q^{48} + \beta_1 q^{50} + (8 \beta_{2} + 2 \beta_1 - 6) q^{51} + (2 \beta_{2} + 4 \beta_1 + 2) q^{52} + ( - 2 \beta_{2} + 2) q^{53} + ( - 2 \beta_{2} - 2 \beta_1 - 6) q^{54} + ( - \beta_{2} + \beta_1 - 1) q^{55} + (2 \beta_{2} + 4 \beta_1) q^{57} - \beta_1 q^{58} + ( - 2 \beta_{2} + 4 \beta_1 - 4) q^{59} + (\beta_{2} - \beta_1 - 3) q^{60} + 6 \beta_1 q^{61} + ( - \beta_{2} + 3 \beta_1 - 1) q^{62} + (\beta_{2} - 5 \beta_1 - 2) q^{64} - 2 \beta_1 q^{65} + ( - 2 \beta_1 + 2) q^{66} + ( - \beta_{2} + \beta_1 + 9) q^{67} + (5 \beta_{2} + 3 \beta_1 - 5) q^{68} + (8 \beta_{2} + 6 \beta_1 - 6) q^{69} + ( - 2 \beta_{2} + 4 \beta_1 + 8) q^{71} + (\beta_{2} + 2 \beta_1 - 5) q^{72} + (7 \beta_{2} + \beta_1 + 5) q^{73} + (\beta_{2} - 5 \beta_1 + 5) q^{74} + (\beta_{2} + \beta_1 - 1) q^{75} + (3 \beta_{2} + 5 \beta_1 + 3) q^{76} + (2 \beta_{2} + 6 \beta_1 + 2) q^{78} + ( - 5 \beta_{2} - 3 \beta_1 - 1) q^{79} + (2 \beta_{2} + 1) q^{80} + ( - 2 \beta_{2} - 4 \beta_1 + 1) q^{81} + ( - 4 \beta_{2} - 10) q^{82} + (3 \beta_{2} + 3 \beta_1 - 5) q^{83} + (3 \beta_{2} - \beta_1 - 1) q^{85} + (5 \beta_{2} + 9 \beta_1 + 5) q^{86} + ( - \beta_{2} - \beta_1 + 1) q^{87} + (\beta_{2} - 3 \beta_1 + 5) q^{88} + ( - 2 \beta_{2} - 2 \beta_1 + 4) q^{89} + (\beta_1 - 2) q^{90} + (7 \beta_{2} + 7 \beta_1 - 1) q^{92} + (6 \beta_{2} + 4 \beta_1 - 8) q^{93} + (\beta_{2} - 3 \beta_1 + 1) q^{94} + ( - \beta_{2} - \beta_1 - 3) q^{95} + (\beta_{2} - 3 \beta_1 - 7) q^{96} + ( - 3 \beta_{2} - 5 \beta_1 - 1) q^{97} + (\beta_{2} + 3 \beta_1 - 7) q^{99}+O(q^{100})$$ q + b1 * q^2 + (b2 + b1 - 1) * q^3 + (b2 + b1) * q^4 - q^5 + (b2 + b1 + 1) * q^6 + (b2 + 1) * q^8 + (-2*b2 + 1) * q^9 - b1 * q^10 + (b2 - b1 + 1) * q^11 + (-b2 + b1 + 3) * q^12 + 2*b1 * q^13 + (-b2 - b1 + 1) * q^15 + (-2*b2 - 1) * q^16 + (-3*b2 + b1 + 1) * q^17 + (-b1 + 2) * q^18 + (b2 + b1 + 3) * q^19 + (-b2 - b1) * q^20 + (-b2 + b1 - 3) * q^22 + (-b2 + b1 + 5) * q^23 + (-b2 + b1 + 1) * q^24 + q^25 + (2*b2 + 2*b1 + 4) * q^26 + (2*b2 - 2*b1 - 2) * q^27 - q^29 + (-b2 - b1 - 1) * q^30 + (-b2 - b1 + 5) * q^31 + (-2*b2 - 3*b1) * q^32 - 2*b2 * q^33 + (b2 - b1 + 5) * q^34 + (3*b2 + b1 - 4) * q^36 + (-3*b2 + b1 - 3) * q^37 + (b2 + 5*b1 + 1) * q^38 + (2*b2 + 2*b1 + 2) * q^39 + (-b2 - 1) * q^40 + (2*b2 - 4*b1 + 2) * q^41 + (5*b2 + 5*b1 - 1) * q^43 + (-b2 - b1 + 1) * q^44 + (2*b2 - 1) * q^45 + (b2 + 5*b1 + 3) * q^46 + (b2 + b1 - 5) * q^47 + (3*b2 - b1 - 3) * q^48 + b1 * q^50 + (8*b2 + 2*b1 - 6) * q^51 + (2*b2 + 4*b1 + 2) * q^52 + (-2*b2 + 2) * q^53 + (-2*b2 - 2*b1 - 6) * q^54 + (-b2 + b1 - 1) * q^55 + (2*b2 + 4*b1) * q^57 - b1 * q^58 + (-2*b2 + 4*b1 - 4) * q^59 + (b2 - b1 - 3) * q^60 + 6*b1 * q^61 + (-b2 + 3*b1 - 1) * q^62 + (b2 - 5*b1 - 2) * q^64 - 2*b1 * q^65 + (-2*b1 + 2) * q^66 + (-b2 + b1 + 9) * q^67 + (5*b2 + 3*b1 - 5) * q^68 + (8*b2 + 6*b1 - 6) * q^69 + (-2*b2 + 4*b1 + 8) * q^71 + (b2 + 2*b1 - 5) * q^72 + (7*b2 + b1 + 5) * q^73 + (b2 - 5*b1 + 5) * q^74 + (b2 + b1 - 1) * q^75 + (3*b2 + 5*b1 + 3) * q^76 + (2*b2 + 6*b1 + 2) * q^78 + (-5*b2 - 3*b1 - 1) * q^79 + (2*b2 + 1) * q^80 + (-2*b2 - 4*b1 + 1) * q^81 + (-4*b2 - 10) * q^82 + (3*b2 + 3*b1 - 5) * q^83 + (3*b2 - b1 - 1) * q^85 + (5*b2 + 9*b1 + 5) * q^86 + (-b2 - b1 + 1) * q^87 + (b2 - 3*b1 + 5) * q^88 + (-2*b2 - 2*b1 + 4) * q^89 + (b1 - 2) * q^90 + (7*b2 + 7*b1 - 1) * q^92 + (6*b2 + 4*b1 - 8) * q^93 + (b2 - 3*b1 + 1) * q^94 + (-b2 - b1 - 3) * q^95 + (b2 - 3*b1 - 7) * q^96 + (-3*b2 - 5*b1 - 1) * q^97 + (b2 + 3*b1 - 7) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q + q^{2} - 2 q^{3} + q^{4} - 3 q^{5} + 4 q^{6} + 3 q^{8} + 3 q^{9}+O(q^{10})$$ 3 * q + q^2 - 2 * q^3 + q^4 - 3 * q^5 + 4 * q^6 + 3 * q^8 + 3 * q^9 $$3 q + q^{2} - 2 q^{3} + q^{4} - 3 q^{5} + 4 q^{6} + 3 q^{8} + 3 q^{9} - q^{10} + 2 q^{11} + 10 q^{12} + 2 q^{13} + 2 q^{15} - 3 q^{16} + 4 q^{17} + 5 q^{18} + 10 q^{19} - q^{20} - 8 q^{22} + 16 q^{23} + 4 q^{24} + 3 q^{25} + 14 q^{26} - 8 q^{27} - 3 q^{29} - 4 q^{30} + 14 q^{31} - 3 q^{32} + 14 q^{34} - 11 q^{36} - 8 q^{37} + 8 q^{38} + 8 q^{39} - 3 q^{40} + 2 q^{41} + 2 q^{43} + 2 q^{44} - 3 q^{45} + 14 q^{46} - 14 q^{47} - 10 q^{48} + q^{50} - 16 q^{51} + 10 q^{52} + 6 q^{53} - 20 q^{54} - 2 q^{55} + 4 q^{57} - q^{58} - 8 q^{59} - 10 q^{60} + 6 q^{61} - 11 q^{64} - 2 q^{65} + 4 q^{66} + 28 q^{67} - 12 q^{68} - 12 q^{69} + 28 q^{71} - 13 q^{72} + 16 q^{73} + 10 q^{74} - 2 q^{75} + 14 q^{76} + 12 q^{78} - 6 q^{79} + 3 q^{80} - q^{81} - 30 q^{82} - 12 q^{83} - 4 q^{85} + 24 q^{86} + 2 q^{87} + 12 q^{88} + 10 q^{89} - 5 q^{90} + 4 q^{92} - 20 q^{93} - 10 q^{95} - 24 q^{96} - 8 q^{97} - 18 q^{99}+O(q^{100})$$ 3 * q + q^2 - 2 * q^3 + q^4 - 3 * q^5 + 4 * q^6 + 3 * q^8 + 3 * q^9 - q^10 + 2 * q^11 + 10 * q^12 + 2 * q^13 + 2 * q^15 - 3 * q^16 + 4 * q^17 + 5 * q^18 + 10 * q^19 - q^20 - 8 * q^22 + 16 * q^23 + 4 * q^24 + 3 * q^25 + 14 * q^26 - 8 * q^27 - 3 * q^29 - 4 * q^30 + 14 * q^31 - 3 * q^32 + 14 * q^34 - 11 * q^36 - 8 * q^37 + 8 * q^38 + 8 * q^39 - 3 * q^40 + 2 * q^41 + 2 * q^43 + 2 * q^44 - 3 * q^45 + 14 * q^46 - 14 * q^47 - 10 * q^48 + q^50 - 16 * q^51 + 10 * q^52 + 6 * q^53 - 20 * q^54 - 2 * q^55 + 4 * q^57 - q^58 - 8 * q^59 - 10 * q^60 + 6 * q^61 - 11 * q^64 - 2 * q^65 + 4 * q^66 + 28 * q^67 - 12 * q^68 - 12 * q^69 + 28 * q^71 - 13 * q^72 + 16 * q^73 + 10 * q^74 - 2 * q^75 + 14 * q^76 + 12 * q^78 - 6 * q^79 + 3 * q^80 - q^81 - 30 * q^82 - 12 * q^83 - 4 * q^85 + 24 * q^86 + 2 * q^87 + 12 * q^88 + 10 * q^89 - 5 * q^90 + 4 * q^92 - 20 * q^93 - 10 * q^95 - 24 * q^96 - 8 * q^97 - 18 * q^99

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 3x + 1$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$\nu^{2} - \nu - 2$$ v^2 - v - 2
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{2} + \beta _1 + 2$$ b2 + b1 + 2

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.48119 0.311108 2.17009
−1.48119 −0.806063 0.193937 −1.00000 1.19394 0 2.67513 −2.35026 1.48119
1.2 0.311108 −2.90321 −1.90321 −1.00000 −0.903212 0 −1.21432 5.42864 −0.311108
1.3 2.17009 1.70928 2.70928 −1.00000 3.70928 0 1.53919 −0.0783777 −2.17009
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$5$$ $$+1$$
$$7$$ $$-1$$
$$29$$ $$+1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7105.2.a.o 3
7.b odd 2 1 145.2.a.c 3
21.c even 2 1 1305.2.a.p 3
28.d even 2 1 2320.2.a.n 3
35.c odd 2 1 725.2.a.e 3
35.f even 4 2 725.2.b.e 6
56.e even 2 1 9280.2.a.br 3
56.h odd 2 1 9280.2.a.bj 3
105.g even 2 1 6525.2.a.be 3
203.c odd 2 1 4205.2.a.f 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
145.2.a.c 3 7.b odd 2 1
725.2.a.e 3 35.c odd 2 1
725.2.b.e 6 35.f even 4 2
1305.2.a.p 3 21.c even 2 1
2320.2.a.n 3 28.d even 2 1
4205.2.a.f 3 203.c odd 2 1
6525.2.a.be 3 105.g even 2 1
7105.2.a.o 3 1.a even 1 1 trivial
9280.2.a.bj 3 56.h odd 2 1
9280.2.a.br 3 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7105))$$:

 $$T_{2}^{3} - T_{2}^{2} - 3T_{2} + 1$$ T2^3 - T2^2 - 3*T2 + 1 $$T_{3}^{3} + 2T_{3}^{2} - 4T_{3} - 4$$ T3^3 + 2*T3^2 - 4*T3 - 4 $$T_{17}^{3} - 4T_{17}^{2} - 40T_{17} + 68$$ T17^3 - 4*T17^2 - 40*T17 + 68

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3} - T^{2} - 3T + 1$$
$3$ $$T^{3} + 2 T^{2} + \cdots - 4$$
$5$ $$(T + 1)^{3}$$
$7$ $$T^{3}$$
$11$ $$T^{3} - 2 T^{2} + \cdots - 4$$
$13$ $$T^{3} - 2 T^{2} + \cdots + 8$$
$17$ $$T^{3} - 4 T^{2} + \cdots + 68$$
$19$ $$T^{3} - 10 T^{2} + \cdots - 20$$
$23$ $$T^{3} - 16 T^{2} + \cdots - 92$$
$29$ $$(T + 1)^{3}$$
$31$ $$T^{3} - 14 T^{2} + \cdots - 76$$
$37$ $$T^{3} + 8 T^{2} + \cdots - 92$$
$41$ $$T^{3} - 2 T^{2} + \cdots - 232$$
$43$ $$T^{3} - 2 T^{2} + \cdots - 4$$
$47$ $$T^{3} + 14 T^{2} + \cdots + 76$$
$53$ $$T^{3} - 6 T^{2} + \cdots + 8$$
$59$ $$T^{3} + 8 T^{2} + \cdots + 80$$
$61$ $$T^{3} - 6 T^{2} + \cdots + 216$$
$67$ $$T^{3} - 28 T^{2} + \cdots - 716$$
$71$ $$T^{3} - 28 T^{2} + \cdots + 272$$
$73$ $$T^{3} - 16 T^{2} + \cdots + 1700$$
$79$ $$T^{3} + 6 T^{2} + \cdots - 460$$
$83$ $$T^{3} + 12T^{2} - 148$$
$89$ $$T^{3} - 10 T^{2} + \cdots + 40$$
$97$ $$T^{3} + 8 T^{2} + \cdots + 76$$