gp: [N,k,chi] = [7105,2,Mod(1,7105)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7105.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7105, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [21,6,7,24,21]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(5\)
\( -1 \)
\(7\)
\( -1 \)
\(29\)
\( -1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7105))\):
\( T_{2}^{21} - 6 T_{2}^{20} - 15 T_{2}^{19} + 147 T_{2}^{18} + 9 T_{2}^{17} - 1474 T_{2}^{16} + 1126 T_{2}^{15} + \cdots - 243 \)
T2^21 - 6*T2^20 - 15*T2^19 + 147*T2^18 + 9*T2^17 - 1474*T2^16 + 1126*T2^15 + 7820*T2^14 - 9390*T2^13 - 23677*T2^12 + 35697*T2^11 + 41056*T2^10 - 73778*T2^9 - 38624*T2^8 + 84148*T2^7 + 17377*T2^6 - 49826*T2^5 - 3516*T2^4 + 13242*T2^3 + 1260*T2^2 - 1350*T2 - 243
\( T_{3}^{21} - 7 T_{3}^{20} - 21 T_{3}^{19} + 238 T_{3}^{18} + 12 T_{3}^{17} - 3238 T_{3}^{16} + \cdots - 20736 \)
T3^21 - 7*T3^20 - 21*T3^19 + 238*T3^18 + 12*T3^17 - 3238*T3^16 + 3053*T3^15 + 22705*T3^14 - 33013*T3^13 - 89545*T3^12 + 158883*T3^11 + 210806*T3^10 - 414768*T3^9 - 320090*T3^8 + 625979*T3^7 + 339455*T3^6 - 543552*T3^5 - 254393*T3^4 + 246952*T3^3 + 115680*T3^2 - 42624*T3 - 20736
\( T_{17}^{21} - 10 T_{17}^{20} - 116 T_{17}^{19} + 1257 T_{17}^{18} + 5263 T_{17}^{17} - 62511 T_{17}^{16} + \cdots + 1206549 \)
T17^21 - 10*T17^20 - 116*T17^19 + 1257*T17^18 + 5263*T17^17 - 62511*T17^16 - 120569*T17^15 + 1591871*T17^14 + 1482824*T17^13 - 22506400*T17^12 - 9537315*T17^11 + 178167173*T17^10 + 27611680*T17^9 - 749808221*T17^8 - 9029385*T17^7 + 1441489105*T17^6 - 64898095*T17^5 - 834325425*T17^4 - 209014083*T17^3 + 38345580*T17^2 + 16046379*T17 + 1206549