Properties

Label 7105.2.a.ba
Level $7105$
Weight $2$
Character orbit 7105.a
Self dual yes
Analytic conductor $56.734$
Analytic rank $1$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7105,2,Mod(1,7105)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7105.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7105, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7105 = 5 \cdot 7^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7105.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [17,-6,7,16,-17] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.7337106361\)
Analytic rank: \(1\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - 6 x^{16} - 7 x^{15} + 101 x^{14} - 66 x^{13} - 640 x^{12} + 855 x^{11} + 1899 x^{10} + \cdots + 71 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1015)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{16}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - \beta_{6} q^{3} + (\beta_{2} + 1) q^{4} - q^{5} + (\beta_{6} - \beta_{3}) q^{6} + (\beta_{15} - \beta_{12} + \cdots - \beta_{2}) q^{8} + ( - \beta_{7} - \beta_{6}) q^{9} + \beta_1 q^{10}+ \cdots + (\beta_{16} + 2 \beta_{14} - 2 \beta_{11} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q - 6 q^{2} + 7 q^{3} + 16 q^{4} - 17 q^{5} - 15 q^{8} + 8 q^{9} + 6 q^{10} - 17 q^{11} + 2 q^{12} + q^{13} - 7 q^{15} + 10 q^{16} + 10 q^{17} - 11 q^{18} - q^{19} - 16 q^{20} + 5 q^{22} - 33 q^{23}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{17} - 6 x^{16} - 7 x^{15} + 101 x^{14} - 66 x^{13} - 640 x^{12} + 855 x^{11} + 1899 x^{10} + \cdots + 71 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 2680 \nu^{16} + 2635 \nu^{15} + 94919 \nu^{14} - 167508 \nu^{13} - 1067161 \nu^{12} + \cdots + 1411185 ) / 135123 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 7724 \nu^{16} + 65072 \nu^{15} - 2664 \nu^{14} - 1112137 \nu^{13} + 1490361 \nu^{12} + \cdots + 1108909 ) / 45041 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 36793 \nu^{16} - 128358 \nu^{15} - 617301 \nu^{14} + 2325823 \nu^{13} + 3874657 \nu^{12} + \cdots - 2197949 ) / 135123 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 59248 \nu^{16} + 298920 \nu^{15} + 711021 \nu^{14} - 5367946 \nu^{13} - 1290070 \nu^{12} + \cdots + 5617793 ) / 135123 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 100598 \nu^{16} + 496715 \nu^{15} + 1210684 \nu^{14} - 8820324 \nu^{13} - 2328698 \nu^{12} + \cdots + 8813550 ) / 135123 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 137491 \nu^{16} + 454755 \nu^{15} + 2348826 \nu^{14} - 8080870 \nu^{13} - 15464815 \nu^{12} + \cdots + 1915118 ) / 135123 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 139443 \nu^{16} + 596503 \nu^{15} + 1952627 \nu^{14} - 10558184 \nu^{13} - 8103249 \nu^{12} + \cdots + 7414798 ) / 135123 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 147122 \nu^{16} + 553550 \nu^{15} + 2321386 \nu^{14} - 9867549 \nu^{13} - 13164989 \nu^{12} + \cdots + 4984881 ) / 135123 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 152683 \nu^{16} + 756072 \nu^{15} + 1801065 \nu^{14} - 13318453 \nu^{13} - 2944654 \nu^{12} + \cdots + 10711262 ) / 135123 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 181719 \nu^{16} - 635044 \nu^{15} - 2984672 \nu^{14} + 11219294 \nu^{13} + 18396354 \nu^{12} + \cdots - 1446100 ) / 135123 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 190811 \nu^{16} + 831206 \nu^{15} + 2644720 \nu^{14} - 14762025 \nu^{13} - 10605701 \nu^{12} + \cdots + 10351488 ) / 135123 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 70803 \nu^{16} - 342129 \nu^{15} - 874814 \nu^{14} + 6068992 \nu^{13} + 2043310 \nu^{12} + \cdots - 4956902 ) / 45041 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 259145 \nu^{16} - 936543 \nu^{15} - 4203348 \nu^{14} + 16703207 \nu^{13} + 25196135 \nu^{12} + \cdots - 7338292 ) / 135123 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 402495 \nu^{16} + 1628566 \nu^{15} + 5963384 \nu^{14} - 28922096 \nu^{13} - 29177493 \nu^{12} + \cdots + 16301554 ) / 135123 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{15} + \beta_{12} - \beta_{7} + \beta_{4} + \beta_{2} + 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{15} + \beta_{13} + \beta_{12} - \beta_{11} - \beta_{9} - \beta_{6} - \beta_{5} + 2\beta_{4} + 8\beta_{2} + 14 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 3 \beta_{16} - 10 \beta_{15} - \beta_{14} + 2 \beta_{13} + 9 \beta_{12} + 2 \beta_{10} + \cdots + 19 \beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 2 \beta_{16} - 13 \beta_{15} - \beta_{14} + 11 \beta_{13} + 12 \beta_{12} - 10 \beta_{11} + 2 \beta_{10} + \cdots + 75 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 36 \beta_{16} - 82 \beta_{15} - 12 \beta_{14} + 25 \beta_{13} + 71 \beta_{12} - \beta_{11} + 24 \beta_{10} + \cdots + 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 33 \beta_{16} - 127 \beta_{15} - 12 \beta_{14} + 96 \beta_{13} + 113 \beta_{12} - 79 \beta_{11} + \cdots + 433 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 323 \beta_{16} - 635 \beta_{15} - 103 \beta_{14} + 234 \beta_{13} + 540 \beta_{12} - 23 \beta_{11} + \cdots + 46 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 378 \beta_{16} - 1119 \beta_{15} - 105 \beta_{14} + 781 \beta_{13} + 973 \beta_{12} - 583 \beta_{11} + \cdots + 2631 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 2631 \beta_{16} - 4822 \beta_{15} - 775 \beta_{14} + 1982 \beta_{13} + 4052 \beta_{12} - 313 \beta_{11} + \cdots + 639 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 3727 \beta_{16} - 9379 \beta_{15} - 816 \beta_{14} + 6173 \beta_{13} + 8011 \beta_{12} - 4216 \beta_{11} + \cdots + 16613 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 20619 \beta_{16} - 36397 \beta_{15} - 5448 \beta_{14} + 16062 \beta_{13} + 30281 \beta_{12} + \cdots + 7093 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 33946 \beta_{16} - 76448 \beta_{15} - 5956 \beta_{14} + 48135 \beta_{13} + 64313 \beta_{12} + \cdots + 108119 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 159112 \beta_{16} - 274601 \beta_{15} - 36751 \beta_{14} + 127348 \beta_{13} + 226367 \beta_{12} + \cdots + 69534 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 294836 \beta_{16} - 612625 \beta_{15} - 41654 \beta_{14} + 372860 \beta_{13} + 508557 \beta_{12} + \cdots + 721086 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.77892
2.64280
2.11360
2.07006
2.04611
1.54043
1.05626
0.859555
0.806778
0.167300
−0.613079
−0.697926
−1.00910
−1.48067
−1.78176
−2.05246
−2.44682
−2.77892 −0.635503 5.72242 −1.00000 1.76602 0 −10.3443 −2.59614 2.77892
1.2 −2.64280 3.33770 4.98441 −1.00000 −8.82088 0 −7.88721 8.14023 2.64280
1.3 −2.11360 −2.37828 2.46729 −1.00000 5.02673 0 −0.987663 2.65623 2.11360
1.4 −2.07006 −1.28200 2.28515 −1.00000 2.65382 0 −0.590283 −1.35648 2.07006
1.5 −2.04611 −0.740192 2.18655 −1.00000 1.51451 0 −0.381698 −2.45212 2.04611
1.6 −1.54043 1.30845 0.372935 −1.00000 −2.01558 0 2.50639 −1.28796 1.54043
1.7 −1.05626 2.11431 −0.884310 −1.00000 −2.23327 0 3.04659 1.47030 1.05626
1.8 −0.859555 −0.574420 −1.26117 −1.00000 0.493746 0 2.80315 −2.67004 0.859555
1.9 −0.806778 3.14968 −1.34911 −1.00000 −2.54109 0 2.70199 6.92047 0.806778
1.10 −0.167300 0.381104 −1.97201 −1.00000 −0.0637585 0 0.664516 −2.85476 0.167300
1.11 0.613079 −0.184450 −1.62413 −1.00000 −0.113083 0 −2.22188 −2.96598 −0.613079
1.12 0.697926 2.33494 −1.51290 −1.00000 1.62961 0 −2.45174 2.45194 −0.697926
1.13 1.00910 −1.95675 −0.981708 −1.00000 −1.97456 0 −3.00886 0.828862 −1.00910
1.14 1.48067 1.26684 0.192376 −1.00000 1.87577 0 −2.67649 −1.39511 −1.48067
1.15 1.78176 −2.41987 1.17466 −1.00000 −4.31162 0 −1.47056 2.85577 −1.78176
1.16 2.05246 2.30280 2.21260 −1.00000 4.72642 0 0.436351 2.30290 −2.05246
1.17 2.44682 0.975640 3.98695 −1.00000 2.38722 0 4.86171 −2.04813 −2.44682
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.17
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7105.2.a.ba 17
7.b odd 2 1 7105.2.a.z 17
7.d odd 6 2 1015.2.i.c 34
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1015.2.i.c 34 7.d odd 6 2
7105.2.a.z 17 7.b odd 2 1
7105.2.a.ba 17 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7105))\):

\( T_{2}^{17} + 6 T_{2}^{16} - 7 T_{2}^{15} - 101 T_{2}^{14} - 66 T_{2}^{13} + 640 T_{2}^{12} + 855 T_{2}^{11} + \cdots - 71 \) Copy content Toggle raw display
\( T_{3}^{17} - 7 T_{3}^{16} - 5 T_{3}^{15} + 126 T_{3}^{14} - 122 T_{3}^{13} - 842 T_{3}^{12} + 1339 T_{3}^{11} + \cdots - 53 \) Copy content Toggle raw display
\( T_{17}^{17} - 10 T_{17}^{16} - 100 T_{17}^{15} + 1239 T_{17}^{14} + 3216 T_{17}^{13} - 61485 T_{17}^{12} + \cdots - 1709299327 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{17} + 6 T^{16} + \cdots - 71 \) Copy content Toggle raw display
$3$ \( T^{17} - 7 T^{16} + \cdots - 53 \) Copy content Toggle raw display
$5$ \( (T + 1)^{17} \) Copy content Toggle raw display
$7$ \( T^{17} \) Copy content Toggle raw display
$11$ \( T^{17} + 17 T^{16} + \cdots - 767233 \) Copy content Toggle raw display
$13$ \( T^{17} - T^{16} + \cdots - 510995 \) Copy content Toggle raw display
$17$ \( T^{17} + \cdots - 1709299327 \) Copy content Toggle raw display
$19$ \( T^{17} + \cdots + 289832845 \) Copy content Toggle raw display
$23$ \( T^{17} + 33 T^{16} + \cdots + 32039705 \) Copy content Toggle raw display
$29$ \( (T - 1)^{17} \) Copy content Toggle raw display
$31$ \( T^{17} + \cdots + 143537475385 \) Copy content Toggle raw display
$37$ \( T^{17} + \cdots + 137735368245 \) Copy content Toggle raw display
$41$ \( T^{17} + \cdots - 305747778159 \) Copy content Toggle raw display
$43$ \( T^{17} + \cdots + 635753133 \) Copy content Toggle raw display
$47$ \( T^{17} - 18 T^{16} + \cdots + 82348151 \) Copy content Toggle raw display
$53$ \( T^{17} + \cdots + 2903542098461 \) Copy content Toggle raw display
$59$ \( T^{17} + \cdots + 634129387425 \) Copy content Toggle raw display
$61$ \( T^{17} + \cdots - 102946247333 \) Copy content Toggle raw display
$67$ \( T^{17} + \cdots + 853762351131 \) Copy content Toggle raw display
$71$ \( T^{17} + \cdots + 97088231499709 \) Copy content Toggle raw display
$73$ \( T^{17} + \cdots + 129077800774155 \) Copy content Toggle raw display
$79$ \( T^{17} + \cdots - 20\!\cdots\!27 \) Copy content Toggle raw display
$83$ \( T^{17} + \cdots - 4587660101581 \) Copy content Toggle raw display
$89$ \( T^{17} + \cdots + 173002933715 \) Copy content Toggle raw display
$97$ \( T^{17} + \cdots + 85948078849 \) Copy content Toggle raw display
show more
show less