Properties

Label 7104.2.a.bx.1.3
Level $7104$
Weight $2$
Character 7104.1
Self dual yes
Analytic conductor $56.726$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7104,2,Mod(1,7104)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7104.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7104, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7104 = 2^{6} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7104.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,0,0,0,1,0,3,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.7257255959\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.568.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 888)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.363328\) of defining polynomial
Character \(\chi\) \(=\) 7104.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +3.50466 q^{5} +3.14134 q^{7} +1.00000 q^{9} +5.14134 q^{11} -3.14134 q^{13} +3.50466 q^{15} +3.08998 q^{17} -1.86799 q^{19} +3.14134 q^{21} -3.63667 q^{23} +7.28267 q^{25} +1.00000 q^{27} -3.50466 q^{29} -0.726656 q^{31} +5.14134 q^{33} +11.0093 q^{35} +1.00000 q^{37} -3.14134 q^{39} +2.00000 q^{41} +5.55602 q^{43} +3.50466 q^{45} -11.7360 q^{47} +2.86799 q^{49} +3.08998 q^{51} -1.68802 q^{53} +18.0187 q^{55} -1.86799 q^{57} +14.2313 q^{59} +6.00000 q^{61} +3.14134 q^{63} -11.0093 q^{65} -3.55602 q^{67} -3.63667 q^{69} +14.0187 q^{71} -10.6974 q^{73} +7.28267 q^{75} +16.1507 q^{77} -7.73599 q^{79} +1.00000 q^{81} -8.87732 q^{83} +10.8294 q^{85} -3.50466 q^{87} +11.6553 q^{89} -9.86799 q^{91} -0.726656 q^{93} -6.54669 q^{95} -10.4626 q^{97} +5.14134 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + q^{7} + 3 q^{9} + 7 q^{11} - q^{13} + 3 q^{17} + 7 q^{19} + q^{21} - 13 q^{23} + 5 q^{25} + 3 q^{27} + 2 q^{31} + 7 q^{33} + 12 q^{35} + 3 q^{37} - q^{39} + 6 q^{41} + 4 q^{43} - 10 q^{47}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 3.50466 1.56733 0.783667 0.621181i \(-0.213347\pi\)
0.783667 + 0.621181i \(0.213347\pi\)
\(6\) 0 0
\(7\) 3.14134 1.18731 0.593657 0.804718i \(-0.297684\pi\)
0.593657 + 0.804718i \(0.297684\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.14134 1.55017 0.775086 0.631856i \(-0.217707\pi\)
0.775086 + 0.631856i \(0.217707\pi\)
\(12\) 0 0
\(13\) −3.14134 −0.871250 −0.435625 0.900128i \(-0.643473\pi\)
−0.435625 + 0.900128i \(0.643473\pi\)
\(14\) 0 0
\(15\) 3.50466 0.904900
\(16\) 0 0
\(17\) 3.08998 0.749431 0.374716 0.927140i \(-0.377740\pi\)
0.374716 + 0.927140i \(0.377740\pi\)
\(18\) 0 0
\(19\) −1.86799 −0.428547 −0.214273 0.976774i \(-0.568738\pi\)
−0.214273 + 0.976774i \(0.568738\pi\)
\(20\) 0 0
\(21\) 3.14134 0.685496
\(22\) 0 0
\(23\) −3.63667 −0.758298 −0.379149 0.925336i \(-0.623783\pi\)
−0.379149 + 0.925336i \(0.623783\pi\)
\(24\) 0 0
\(25\) 7.28267 1.45653
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −3.50466 −0.650800 −0.325400 0.945576i \(-0.605499\pi\)
−0.325400 + 0.945576i \(0.605499\pi\)
\(30\) 0 0
\(31\) −0.726656 −0.130511 −0.0652557 0.997869i \(-0.520786\pi\)
−0.0652557 + 0.997869i \(0.520786\pi\)
\(32\) 0 0
\(33\) 5.14134 0.894992
\(34\) 0 0
\(35\) 11.0093 1.86092
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) −3.14134 −0.503016
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 5.55602 0.847284 0.423642 0.905830i \(-0.360751\pi\)
0.423642 + 0.905830i \(0.360751\pi\)
\(44\) 0 0
\(45\) 3.50466 0.522445
\(46\) 0 0
\(47\) −11.7360 −1.71187 −0.855935 0.517084i \(-0.827017\pi\)
−0.855935 + 0.517084i \(0.827017\pi\)
\(48\) 0 0
\(49\) 2.86799 0.409713
\(50\) 0 0
\(51\) 3.08998 0.432684
\(52\) 0 0
\(53\) −1.68802 −0.231868 −0.115934 0.993257i \(-0.536986\pi\)
−0.115934 + 0.993257i \(0.536986\pi\)
\(54\) 0 0
\(55\) 18.0187 2.42964
\(56\) 0 0
\(57\) −1.86799 −0.247422
\(58\) 0 0
\(59\) 14.2313 1.85276 0.926380 0.376590i \(-0.122903\pi\)
0.926380 + 0.376590i \(0.122903\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) 3.14134 0.395771
\(64\) 0 0
\(65\) −11.0093 −1.36554
\(66\) 0 0
\(67\) −3.55602 −0.434436 −0.217218 0.976123i \(-0.569698\pi\)
−0.217218 + 0.976123i \(0.569698\pi\)
\(68\) 0 0
\(69\) −3.63667 −0.437804
\(70\) 0 0
\(71\) 14.0187 1.66371 0.831854 0.554994i \(-0.187279\pi\)
0.831854 + 0.554994i \(0.187279\pi\)
\(72\) 0 0
\(73\) −10.6974 −1.25203 −0.626015 0.779811i \(-0.715315\pi\)
−0.626015 + 0.779811i \(0.715315\pi\)
\(74\) 0 0
\(75\) 7.28267 0.840931
\(76\) 0 0
\(77\) 16.1507 1.84054
\(78\) 0 0
\(79\) −7.73599 −0.870366 −0.435183 0.900342i \(-0.643316\pi\)
−0.435183 + 0.900342i \(0.643316\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −8.87732 −0.974413 −0.487206 0.873287i \(-0.661984\pi\)
−0.487206 + 0.873287i \(0.661984\pi\)
\(84\) 0 0
\(85\) 10.8294 1.17461
\(86\) 0 0
\(87\) −3.50466 −0.375739
\(88\) 0 0
\(89\) 11.6553 1.23546 0.617731 0.786389i \(-0.288052\pi\)
0.617731 + 0.786389i \(0.288052\pi\)
\(90\) 0 0
\(91\) −9.86799 −1.03445
\(92\) 0 0
\(93\) −0.726656 −0.0753508
\(94\) 0 0
\(95\) −6.54669 −0.671676
\(96\) 0 0
\(97\) −10.4626 −1.06232 −0.531160 0.847271i \(-0.678244\pi\)
−0.531160 + 0.847271i \(0.678244\pi\)
\(98\) 0 0
\(99\) 5.14134 0.516724
\(100\) 0 0
\(101\) 18.5653 1.84732 0.923660 0.383212i \(-0.125182\pi\)
0.923660 + 0.383212i \(0.125182\pi\)
\(102\) 0 0
\(103\) −16.3013 −1.60622 −0.803109 0.595832i \(-0.796822\pi\)
−0.803109 + 0.595832i \(0.796822\pi\)
\(104\) 0 0
\(105\) 11.0093 1.07440
\(106\) 0 0
\(107\) 16.9800 1.64152 0.820760 0.571273i \(-0.193550\pi\)
0.820760 + 0.571273i \(0.193550\pi\)
\(108\) 0 0
\(109\) 12.5946 1.20635 0.603174 0.797609i \(-0.293902\pi\)
0.603174 + 0.797609i \(0.293902\pi\)
\(110\) 0 0
\(111\) 1.00000 0.0949158
\(112\) 0 0
\(113\) 12.3340 1.16029 0.580144 0.814514i \(-0.302996\pi\)
0.580144 + 0.814514i \(0.302996\pi\)
\(114\) 0 0
\(115\) −12.7453 −1.18851
\(116\) 0 0
\(117\) −3.14134 −0.290417
\(118\) 0 0
\(119\) 9.70668 0.889810
\(120\) 0 0
\(121\) 15.4333 1.40303
\(122\) 0 0
\(123\) 2.00000 0.180334
\(124\) 0 0
\(125\) 8.00000 0.715542
\(126\) 0 0
\(127\) −18.4333 −1.63569 −0.817847 0.575436i \(-0.804833\pi\)
−0.817847 + 0.575436i \(0.804833\pi\)
\(128\) 0 0
\(129\) 5.55602 0.489180
\(130\) 0 0
\(131\) −5.60737 −0.489918 −0.244959 0.969533i \(-0.578774\pi\)
−0.244959 + 0.969533i \(0.578774\pi\)
\(132\) 0 0
\(133\) −5.86799 −0.508819
\(134\) 0 0
\(135\) 3.50466 0.301633
\(136\) 0 0
\(137\) −15.2920 −1.30648 −0.653242 0.757149i \(-0.726592\pi\)
−0.653242 + 0.757149i \(0.726592\pi\)
\(138\) 0 0
\(139\) −7.55602 −0.640893 −0.320446 0.947267i \(-0.603833\pi\)
−0.320446 + 0.947267i \(0.603833\pi\)
\(140\) 0 0
\(141\) −11.7360 −0.988348
\(142\) 0 0
\(143\) −16.1507 −1.35059
\(144\) 0 0
\(145\) −12.2827 −1.02002
\(146\) 0 0
\(147\) 2.86799 0.236548
\(148\) 0 0
\(149\) 4.54669 0.372479 0.186240 0.982504i \(-0.440370\pi\)
0.186240 + 0.982504i \(0.440370\pi\)
\(150\) 0 0
\(151\) −10.4333 −0.849053 −0.424526 0.905416i \(-0.639559\pi\)
−0.424526 + 0.905416i \(0.639559\pi\)
\(152\) 0 0
\(153\) 3.08998 0.249810
\(154\) 0 0
\(155\) −2.54669 −0.204555
\(156\) 0 0
\(157\) 5.45331 0.435222 0.217611 0.976036i \(-0.430174\pi\)
0.217611 + 0.976036i \(0.430174\pi\)
\(158\) 0 0
\(159\) −1.68802 −0.133869
\(160\) 0 0
\(161\) −11.4240 −0.900338
\(162\) 0 0
\(163\) −1.14134 −0.0893963 −0.0446982 0.999001i \(-0.514233\pi\)
−0.0446982 + 0.999001i \(0.514233\pi\)
\(164\) 0 0
\(165\) 18.0187 1.40275
\(166\) 0 0
\(167\) −1.35400 −0.104776 −0.0523878 0.998627i \(-0.516683\pi\)
−0.0523878 + 0.998627i \(0.516683\pi\)
\(168\) 0 0
\(169\) −3.13201 −0.240924
\(170\) 0 0
\(171\) −1.86799 −0.142849
\(172\) 0 0
\(173\) −15.4427 −1.17408 −0.587042 0.809556i \(-0.699708\pi\)
−0.587042 + 0.809556i \(0.699708\pi\)
\(174\) 0 0
\(175\) 22.8773 1.72936
\(176\) 0 0
\(177\) 14.2313 1.06969
\(178\) 0 0
\(179\) 1.76868 0.132197 0.0660986 0.997813i \(-0.478945\pi\)
0.0660986 + 0.997813i \(0.478945\pi\)
\(180\) 0 0
\(181\) 24.5653 1.82593 0.912964 0.408040i \(-0.133788\pi\)
0.912964 + 0.408040i \(0.133788\pi\)
\(182\) 0 0
\(183\) 6.00000 0.443533
\(184\) 0 0
\(185\) 3.50466 0.257668
\(186\) 0 0
\(187\) 15.8867 1.16175
\(188\) 0 0
\(189\) 3.14134 0.228499
\(190\) 0 0
\(191\) 2.91002 0.210561 0.105281 0.994443i \(-0.466426\pi\)
0.105281 + 0.994443i \(0.466426\pi\)
\(192\) 0 0
\(193\) 16.0187 1.15305 0.576524 0.817080i \(-0.304409\pi\)
0.576524 + 0.817080i \(0.304409\pi\)
\(194\) 0 0
\(195\) −11.0093 −0.788394
\(196\) 0 0
\(197\) −12.4333 −0.885839 −0.442919 0.896561i \(-0.646057\pi\)
−0.442919 + 0.896561i \(0.646057\pi\)
\(198\) 0 0
\(199\) 0.990671 0.0702268 0.0351134 0.999383i \(-0.488821\pi\)
0.0351134 + 0.999383i \(0.488821\pi\)
\(200\) 0 0
\(201\) −3.55602 −0.250822
\(202\) 0 0
\(203\) −11.0093 −0.772703
\(204\) 0 0
\(205\) 7.00933 0.489553
\(206\) 0 0
\(207\) −3.63667 −0.252766
\(208\) 0 0
\(209\) −9.60398 −0.664321
\(210\) 0 0
\(211\) −5.45331 −0.375422 −0.187711 0.982224i \(-0.560107\pi\)
−0.187711 + 0.982224i \(0.560107\pi\)
\(212\) 0 0
\(213\) 14.0187 0.960543
\(214\) 0 0
\(215\) 19.4720 1.32798
\(216\) 0 0
\(217\) −2.28267 −0.154958
\(218\) 0 0
\(219\) −10.6974 −0.722860
\(220\) 0 0
\(221\) −9.70668 −0.652942
\(222\) 0 0
\(223\) −6.01866 −0.403039 −0.201520 0.979484i \(-0.564588\pi\)
−0.201520 + 0.979484i \(0.564588\pi\)
\(224\) 0 0
\(225\) 7.28267 0.485511
\(226\) 0 0
\(227\) −25.2406 −1.67528 −0.837640 0.546222i \(-0.816065\pi\)
−0.837640 + 0.546222i \(0.816065\pi\)
\(228\) 0 0
\(229\) −15.3947 −1.01731 −0.508655 0.860970i \(-0.669857\pi\)
−0.508655 + 0.860970i \(0.669857\pi\)
\(230\) 0 0
\(231\) 16.1507 1.06264
\(232\) 0 0
\(233\) 7.45331 0.488283 0.244141 0.969740i \(-0.421494\pi\)
0.244141 + 0.969740i \(0.421494\pi\)
\(234\) 0 0
\(235\) −41.1307 −2.68307
\(236\) 0 0
\(237\) −7.73599 −0.502506
\(238\) 0 0
\(239\) −19.7873 −1.27994 −0.639968 0.768401i \(-0.721052\pi\)
−0.639968 + 0.768401i \(0.721052\pi\)
\(240\) 0 0
\(241\) 20.7453 1.33632 0.668162 0.744016i \(-0.267081\pi\)
0.668162 + 0.744016i \(0.267081\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 10.0514 0.642157
\(246\) 0 0
\(247\) 5.86799 0.373371
\(248\) 0 0
\(249\) −8.87732 −0.562577
\(250\) 0 0
\(251\) −17.9673 −1.13409 −0.567043 0.823688i \(-0.691913\pi\)
−0.567043 + 0.823688i \(0.691913\pi\)
\(252\) 0 0
\(253\) −18.6974 −1.17549
\(254\) 0 0
\(255\) 10.8294 0.678161
\(256\) 0 0
\(257\) 8.54330 0.532916 0.266458 0.963846i \(-0.414147\pi\)
0.266458 + 0.963846i \(0.414147\pi\)
\(258\) 0 0
\(259\) 3.14134 0.195193
\(260\) 0 0
\(261\) −3.50466 −0.216933
\(262\) 0 0
\(263\) −18.7453 −1.15589 −0.577943 0.816077i \(-0.696144\pi\)
−0.577943 + 0.816077i \(0.696144\pi\)
\(264\) 0 0
\(265\) −5.91595 −0.363414
\(266\) 0 0
\(267\) 11.6553 0.713295
\(268\) 0 0
\(269\) −30.4520 −1.85669 −0.928345 0.371719i \(-0.878769\pi\)
−0.928345 + 0.371719i \(0.878769\pi\)
\(270\) 0 0
\(271\) 18.7267 1.13756 0.568782 0.822489i \(-0.307415\pi\)
0.568782 + 0.822489i \(0.307415\pi\)
\(272\) 0 0
\(273\) −9.86799 −0.597238
\(274\) 0 0
\(275\) 37.4427 2.25788
\(276\) 0 0
\(277\) 14.2534 0.856402 0.428201 0.903684i \(-0.359148\pi\)
0.428201 + 0.903684i \(0.359148\pi\)
\(278\) 0 0
\(279\) −0.726656 −0.0435038
\(280\) 0 0
\(281\) −17.8353 −1.06396 −0.531982 0.846755i \(-0.678553\pi\)
−0.531982 + 0.846755i \(0.678553\pi\)
\(282\) 0 0
\(283\) −14.6974 −0.873667 −0.436833 0.899542i \(-0.643900\pi\)
−0.436833 + 0.899542i \(0.643900\pi\)
\(284\) 0 0
\(285\) −6.54669 −0.387792
\(286\) 0 0
\(287\) 6.28267 0.370854
\(288\) 0 0
\(289\) −7.45199 −0.438353
\(290\) 0 0
\(291\) −10.4626 −0.613331
\(292\) 0 0
\(293\) 20.3306 1.18773 0.593864 0.804565i \(-0.297602\pi\)
0.593864 + 0.804565i \(0.297602\pi\)
\(294\) 0 0
\(295\) 49.8760 2.90389
\(296\) 0 0
\(297\) 5.14134 0.298331
\(298\) 0 0
\(299\) 11.4240 0.660667
\(300\) 0 0
\(301\) 17.4533 1.00599
\(302\) 0 0
\(303\) 18.5653 1.06655
\(304\) 0 0
\(305\) 21.0280 1.20406
\(306\) 0 0
\(307\) −5.45331 −0.311237 −0.155619 0.987817i \(-0.549737\pi\)
−0.155619 + 0.987817i \(0.549737\pi\)
\(308\) 0 0
\(309\) −16.3013 −0.927350
\(310\) 0 0
\(311\) −3.78734 −0.214760 −0.107380 0.994218i \(-0.534246\pi\)
−0.107380 + 0.994218i \(0.534246\pi\)
\(312\) 0 0
\(313\) −15.1307 −0.855237 −0.427619 0.903959i \(-0.640647\pi\)
−0.427619 + 0.903959i \(0.640647\pi\)
\(314\) 0 0
\(315\) 11.0093 0.620305
\(316\) 0 0
\(317\) 22.4626 1.26163 0.630814 0.775934i \(-0.282721\pi\)
0.630814 + 0.775934i \(0.282721\pi\)
\(318\) 0 0
\(319\) −18.0187 −1.00885
\(320\) 0 0
\(321\) 16.9800 0.947733
\(322\) 0 0
\(323\) −5.77207 −0.321166
\(324\) 0 0
\(325\) −22.8773 −1.26901
\(326\) 0 0
\(327\) 12.5946 0.696486
\(328\) 0 0
\(329\) −36.8667 −2.03253
\(330\) 0 0
\(331\) 23.4720 1.29014 0.645068 0.764125i \(-0.276829\pi\)
0.645068 + 0.764125i \(0.276829\pi\)
\(332\) 0 0
\(333\) 1.00000 0.0547997
\(334\) 0 0
\(335\) −12.4626 −0.680907
\(336\) 0 0
\(337\) −4.43334 −0.241499 −0.120750 0.992683i \(-0.538530\pi\)
−0.120750 + 0.992683i \(0.538530\pi\)
\(338\) 0 0
\(339\) 12.3340 0.669892
\(340\) 0 0
\(341\) −3.73599 −0.202315
\(342\) 0 0
\(343\) −12.9800 −0.700855
\(344\) 0 0
\(345\) −12.7453 −0.686185
\(346\) 0 0
\(347\) 22.5327 1.20962 0.604808 0.796371i \(-0.293250\pi\)
0.604808 + 0.796371i \(0.293250\pi\)
\(348\) 0 0
\(349\) 27.4134 1.46740 0.733702 0.679472i \(-0.237791\pi\)
0.733702 + 0.679472i \(0.237791\pi\)
\(350\) 0 0
\(351\) −3.14134 −0.167672
\(352\) 0 0
\(353\) −11.8060 −0.628370 −0.314185 0.949362i \(-0.601731\pi\)
−0.314185 + 0.949362i \(0.601731\pi\)
\(354\) 0 0
\(355\) 49.1307 2.60759
\(356\) 0 0
\(357\) 9.70668 0.513732
\(358\) 0 0
\(359\) −5.82003 −0.307169 −0.153585 0.988135i \(-0.549082\pi\)
−0.153585 + 0.988135i \(0.549082\pi\)
\(360\) 0 0
\(361\) −15.5106 −0.816348
\(362\) 0 0
\(363\) 15.4333 0.810040
\(364\) 0 0
\(365\) −37.4906 −1.96235
\(366\) 0 0
\(367\) 8.77462 0.458031 0.229016 0.973423i \(-0.426449\pi\)
0.229016 + 0.973423i \(0.426449\pi\)
\(368\) 0 0
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) −5.30265 −0.275300
\(372\) 0 0
\(373\) −37.4906 −1.94119 −0.970596 0.240716i \(-0.922618\pi\)
−0.970596 + 0.240716i \(0.922618\pi\)
\(374\) 0 0
\(375\) 8.00000 0.413118
\(376\) 0 0
\(377\) 11.0093 0.567009
\(378\) 0 0
\(379\) −26.4040 −1.35628 −0.678142 0.734931i \(-0.737215\pi\)
−0.678142 + 0.734931i \(0.737215\pi\)
\(380\) 0 0
\(381\) −18.4333 −0.944368
\(382\) 0 0
\(383\) −23.4754 −1.19953 −0.599767 0.800174i \(-0.704740\pi\)
−0.599767 + 0.800174i \(0.704740\pi\)
\(384\) 0 0
\(385\) 56.6027 2.88474
\(386\) 0 0
\(387\) 5.55602 0.282428
\(388\) 0 0
\(389\) 5.89004 0.298637 0.149318 0.988789i \(-0.452292\pi\)
0.149318 + 0.988789i \(0.452292\pi\)
\(390\) 0 0
\(391\) −11.2373 −0.568293
\(392\) 0 0
\(393\) −5.60737 −0.282854
\(394\) 0 0
\(395\) −27.1120 −1.36415
\(396\) 0 0
\(397\) −13.4533 −0.675202 −0.337601 0.941289i \(-0.609616\pi\)
−0.337601 + 0.941289i \(0.609616\pi\)
\(398\) 0 0
\(399\) −5.86799 −0.293767
\(400\) 0 0
\(401\) 27.0900 1.35281 0.676405 0.736530i \(-0.263537\pi\)
0.676405 + 0.736530i \(0.263537\pi\)
\(402\) 0 0
\(403\) 2.28267 0.113708
\(404\) 0 0
\(405\) 3.50466 0.174148
\(406\) 0 0
\(407\) 5.14134 0.254847
\(408\) 0 0
\(409\) 33.0093 1.63221 0.816103 0.577906i \(-0.196130\pi\)
0.816103 + 0.577906i \(0.196130\pi\)
\(410\) 0 0
\(411\) −15.2920 −0.754299
\(412\) 0 0
\(413\) 44.7054 2.19981
\(414\) 0 0
\(415\) −31.1120 −1.52723
\(416\) 0 0
\(417\) −7.55602 −0.370020
\(418\) 0 0
\(419\) −21.1787 −1.03464 −0.517322 0.855791i \(-0.673071\pi\)
−0.517322 + 0.855791i \(0.673071\pi\)
\(420\) 0 0
\(421\) −17.5747 −0.856537 −0.428269 0.903651i \(-0.640876\pi\)
−0.428269 + 0.903651i \(0.640876\pi\)
\(422\) 0 0
\(423\) −11.7360 −0.570623
\(424\) 0 0
\(425\) 22.5033 1.09157
\(426\) 0 0
\(427\) 18.8480 0.912119
\(428\) 0 0
\(429\) −16.1507 −0.779761
\(430\) 0 0
\(431\) 23.7767 1.14528 0.572641 0.819806i \(-0.305919\pi\)
0.572641 + 0.819806i \(0.305919\pi\)
\(432\) 0 0
\(433\) 22.1320 1.06360 0.531798 0.846871i \(-0.321516\pi\)
0.531798 + 0.846871i \(0.321516\pi\)
\(434\) 0 0
\(435\) −12.2827 −0.588909
\(436\) 0 0
\(437\) 6.79328 0.324966
\(438\) 0 0
\(439\) 20.4040 0.973831 0.486916 0.873449i \(-0.338122\pi\)
0.486916 + 0.873449i \(0.338122\pi\)
\(440\) 0 0
\(441\) 2.86799 0.136571
\(442\) 0 0
\(443\) 15.6774 0.744855 0.372427 0.928061i \(-0.378526\pi\)
0.372427 + 0.928061i \(0.378526\pi\)
\(444\) 0 0
\(445\) 40.8480 1.93638
\(446\) 0 0
\(447\) 4.54669 0.215051
\(448\) 0 0
\(449\) −18.1473 −0.856423 −0.428211 0.903679i \(-0.640856\pi\)
−0.428211 + 0.903679i \(0.640856\pi\)
\(450\) 0 0
\(451\) 10.2827 0.484192
\(452\) 0 0
\(453\) −10.4333 −0.490201
\(454\) 0 0
\(455\) −34.5840 −1.62132
\(456\) 0 0
\(457\) 9.83869 0.460234 0.230117 0.973163i \(-0.426089\pi\)
0.230117 + 0.973163i \(0.426089\pi\)
\(458\) 0 0
\(459\) 3.08998 0.144228
\(460\) 0 0
\(461\) 27.7033 1.29027 0.645135 0.764068i \(-0.276801\pi\)
0.645135 + 0.764068i \(0.276801\pi\)
\(462\) 0 0
\(463\) −0.689342 −0.0320364 −0.0160182 0.999872i \(-0.505099\pi\)
−0.0160182 + 0.999872i \(0.505099\pi\)
\(464\) 0 0
\(465\) −2.54669 −0.118100
\(466\) 0 0
\(467\) −34.9953 −1.61939 −0.809694 0.586852i \(-0.800367\pi\)
−0.809694 + 0.586852i \(0.800367\pi\)
\(468\) 0 0
\(469\) −11.1706 −0.515812
\(470\) 0 0
\(471\) 5.45331 0.251275
\(472\) 0 0
\(473\) 28.5653 1.31344
\(474\) 0 0
\(475\) −13.6040 −0.624193
\(476\) 0 0
\(477\) −1.68802 −0.0772893
\(478\) 0 0
\(479\) −40.5033 −1.85065 −0.925323 0.379181i \(-0.876206\pi\)
−0.925323 + 0.379181i \(0.876206\pi\)
\(480\) 0 0
\(481\) −3.14134 −0.143233
\(482\) 0 0
\(483\) −11.4240 −0.519810
\(484\) 0 0
\(485\) −36.6680 −1.66501
\(486\) 0 0
\(487\) 2.81070 0.127365 0.0636825 0.997970i \(-0.479715\pi\)
0.0636825 + 0.997970i \(0.479715\pi\)
\(488\) 0 0
\(489\) −1.14134 −0.0516130
\(490\) 0 0
\(491\) −12.3120 −0.555632 −0.277816 0.960634i \(-0.589611\pi\)
−0.277816 + 0.960634i \(0.589611\pi\)
\(492\) 0 0
\(493\) −10.8294 −0.487730
\(494\) 0 0
\(495\) 18.0187 0.809878
\(496\) 0 0
\(497\) 44.0373 1.97534
\(498\) 0 0
\(499\) 25.4054 1.13730 0.568650 0.822580i \(-0.307466\pi\)
0.568650 + 0.822580i \(0.307466\pi\)
\(500\) 0 0
\(501\) −1.35400 −0.0604922
\(502\) 0 0
\(503\) 20.9180 0.932689 0.466344 0.884603i \(-0.345571\pi\)
0.466344 + 0.884603i \(0.345571\pi\)
\(504\) 0 0
\(505\) 65.0653 2.89537
\(506\) 0 0
\(507\) −3.13201 −0.139097
\(508\) 0 0
\(509\) 35.0827 1.55501 0.777507 0.628874i \(-0.216484\pi\)
0.777507 + 0.628874i \(0.216484\pi\)
\(510\) 0 0
\(511\) −33.6040 −1.48655
\(512\) 0 0
\(513\) −1.86799 −0.0824739
\(514\) 0 0
\(515\) −57.1307 −2.51748
\(516\) 0 0
\(517\) −60.3386 −2.65369
\(518\) 0 0
\(519\) −15.4427 −0.677858
\(520\) 0 0
\(521\) −44.5840 −1.95326 −0.976630 0.214926i \(-0.931049\pi\)
−0.976630 + 0.214926i \(0.931049\pi\)
\(522\) 0 0
\(523\) −7.00933 −0.306497 −0.153248 0.988188i \(-0.548973\pi\)
−0.153248 + 0.988188i \(0.548973\pi\)
\(524\) 0 0
\(525\) 22.8773 0.998448
\(526\) 0 0
\(527\) −2.24536 −0.0978093
\(528\) 0 0
\(529\) −9.77462 −0.424983
\(530\) 0 0
\(531\) 14.2313 0.617587
\(532\) 0 0
\(533\) −6.28267 −0.272133
\(534\) 0 0
\(535\) 59.5093 2.57281
\(536\) 0 0
\(537\) 1.76868 0.0763241
\(538\) 0 0
\(539\) 14.7453 0.635126
\(540\) 0 0
\(541\) −10.2534 −0.440827 −0.220413 0.975407i \(-0.570741\pi\)
−0.220413 + 0.975407i \(0.570741\pi\)
\(542\) 0 0
\(543\) 24.5653 1.05420
\(544\) 0 0
\(545\) 44.1400 1.89075
\(546\) 0 0
\(547\) 1.76529 0.0754783 0.0377392 0.999288i \(-0.487984\pi\)
0.0377392 + 0.999288i \(0.487984\pi\)
\(548\) 0 0
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) 6.54669 0.278898
\(552\) 0 0
\(553\) −24.3013 −1.03340
\(554\) 0 0
\(555\) 3.50466 0.148765
\(556\) 0 0
\(557\) 6.88071 0.291545 0.145773 0.989318i \(-0.453433\pi\)
0.145773 + 0.989318i \(0.453433\pi\)
\(558\) 0 0
\(559\) −17.4533 −0.738196
\(560\) 0 0
\(561\) 15.8867 0.670735
\(562\) 0 0
\(563\) −27.9274 −1.17700 −0.588499 0.808498i \(-0.700281\pi\)
−0.588499 + 0.808498i \(0.700281\pi\)
\(564\) 0 0
\(565\) 43.2266 1.81856
\(566\) 0 0
\(567\) 3.14134 0.131924
\(568\) 0 0
\(569\) −6.62734 −0.277833 −0.138916 0.990304i \(-0.544362\pi\)
−0.138916 + 0.990304i \(0.544362\pi\)
\(570\) 0 0
\(571\) 11.8200 0.494653 0.247326 0.968932i \(-0.420448\pi\)
0.247326 + 0.968932i \(0.420448\pi\)
\(572\) 0 0
\(573\) 2.91002 0.121568
\(574\) 0 0
\(575\) −26.4847 −1.10449
\(576\) 0 0
\(577\) 22.0000 0.915872 0.457936 0.888985i \(-0.348589\pi\)
0.457936 + 0.888985i \(0.348589\pi\)
\(578\) 0 0
\(579\) 16.0187 0.665713
\(580\) 0 0
\(581\) −27.8867 −1.15693
\(582\) 0 0
\(583\) −8.67869 −0.359435
\(584\) 0 0
\(585\) −11.0093 −0.455180
\(586\) 0 0
\(587\) −11.3247 −0.467420 −0.233710 0.972306i \(-0.575087\pi\)
−0.233710 + 0.972306i \(0.575087\pi\)
\(588\) 0 0
\(589\) 1.35739 0.0559302
\(590\) 0 0
\(591\) −12.4333 −0.511439
\(592\) 0 0
\(593\) −40.2827 −1.65421 −0.827106 0.562047i \(-0.810014\pi\)
−0.827106 + 0.562047i \(0.810014\pi\)
\(594\) 0 0
\(595\) 34.0187 1.39463
\(596\) 0 0
\(597\) 0.990671 0.0405455
\(598\) 0 0
\(599\) −25.3947 −1.03760 −0.518800 0.854896i \(-0.673621\pi\)
−0.518800 + 0.854896i \(0.673621\pi\)
\(600\) 0 0
\(601\) 20.5106 0.836645 0.418322 0.908299i \(-0.362618\pi\)
0.418322 + 0.908299i \(0.362618\pi\)
\(602\) 0 0
\(603\) −3.55602 −0.144812
\(604\) 0 0
\(605\) 54.0887 2.19902
\(606\) 0 0
\(607\) 39.4134 1.59974 0.799869 0.600174i \(-0.204902\pi\)
0.799869 + 0.600174i \(0.204902\pi\)
\(608\) 0 0
\(609\) −11.0093 −0.446121
\(610\) 0 0
\(611\) 36.8667 1.49147
\(612\) 0 0
\(613\) 40.9439 1.65371 0.826855 0.562415i \(-0.190128\pi\)
0.826855 + 0.562415i \(0.190128\pi\)
\(614\) 0 0
\(615\) 7.00933 0.282643
\(616\) 0 0
\(617\) −29.8760 −1.20276 −0.601381 0.798962i \(-0.705383\pi\)
−0.601381 + 0.798962i \(0.705383\pi\)
\(618\) 0 0
\(619\) −26.6426 −1.07086 −0.535428 0.844581i \(-0.679850\pi\)
−0.535428 + 0.844581i \(0.679850\pi\)
\(620\) 0 0
\(621\) −3.63667 −0.145935
\(622\) 0 0
\(623\) 36.6133 1.46688
\(624\) 0 0
\(625\) −8.37605 −0.335042
\(626\) 0 0
\(627\) −9.60398 −0.383546
\(628\) 0 0
\(629\) 3.08998 0.123206
\(630\) 0 0
\(631\) 9.45331 0.376330 0.188165 0.982137i \(-0.439746\pi\)
0.188165 + 0.982137i \(0.439746\pi\)
\(632\) 0 0
\(633\) −5.45331 −0.216750
\(634\) 0 0
\(635\) −64.6027 −2.56368
\(636\) 0 0
\(637\) −9.00933 −0.356963
\(638\) 0 0
\(639\) 14.0187 0.554570
\(640\) 0 0
\(641\) 42.3386 1.67228 0.836138 0.548519i \(-0.184808\pi\)
0.836138 + 0.548519i \(0.184808\pi\)
\(642\) 0 0
\(643\) 24.3561 0.960510 0.480255 0.877129i \(-0.340544\pi\)
0.480255 + 0.877129i \(0.340544\pi\)
\(644\) 0 0
\(645\) 19.4720 0.766708
\(646\) 0 0
\(647\) 3.01272 0.118442 0.0592211 0.998245i \(-0.481138\pi\)
0.0592211 + 0.998245i \(0.481138\pi\)
\(648\) 0 0
\(649\) 73.1680 2.87210
\(650\) 0 0
\(651\) −2.28267 −0.0894650
\(652\) 0 0
\(653\) 8.95798 0.350553 0.175276 0.984519i \(-0.443918\pi\)
0.175276 + 0.984519i \(0.443918\pi\)
\(654\) 0 0
\(655\) −19.6519 −0.767865
\(656\) 0 0
\(657\) −10.6974 −0.417343
\(658\) 0 0
\(659\) 23.5747 0.918339 0.459169 0.888349i \(-0.348147\pi\)
0.459169 + 0.888349i \(0.348147\pi\)
\(660\) 0 0
\(661\) 44.7933 1.74226 0.871128 0.491056i \(-0.163389\pi\)
0.871128 + 0.491056i \(0.163389\pi\)
\(662\) 0 0
\(663\) −9.70668 −0.376976
\(664\) 0 0
\(665\) −20.5653 −0.797490
\(666\) 0 0
\(667\) 12.7453 0.493501
\(668\) 0 0
\(669\) −6.01866 −0.232695
\(670\) 0 0
\(671\) 30.8480 1.19087
\(672\) 0 0
\(673\) 8.77462 0.338237 0.169118 0.985596i \(-0.445908\pi\)
0.169118 + 0.985596i \(0.445908\pi\)
\(674\) 0 0
\(675\) 7.28267 0.280310
\(676\) 0 0
\(677\) 14.6133 0.561635 0.280817 0.959761i \(-0.409394\pi\)
0.280817 + 0.959761i \(0.409394\pi\)
\(678\) 0 0
\(679\) −32.8667 −1.26131
\(680\) 0 0
\(681\) −25.2406 −0.967224
\(682\) 0 0
\(683\) 28.5513 1.09249 0.546243 0.837627i \(-0.316058\pi\)
0.546243 + 0.837627i \(0.316058\pi\)
\(684\) 0 0
\(685\) −53.5933 −2.04770
\(686\) 0 0
\(687\) −15.3947 −0.587345
\(688\) 0 0
\(689\) 5.30265 0.202015
\(690\) 0 0
\(691\) 6.72666 0.255894 0.127947 0.991781i \(-0.459161\pi\)
0.127947 + 0.991781i \(0.459161\pi\)
\(692\) 0 0
\(693\) 16.1507 0.613513
\(694\) 0 0
\(695\) −26.4813 −1.00449
\(696\) 0 0
\(697\) 6.17997 0.234083
\(698\) 0 0
\(699\) 7.45331 0.281910
\(700\) 0 0
\(701\) 1.48601 0.0561257 0.0280629 0.999606i \(-0.491066\pi\)
0.0280629 + 0.999606i \(0.491066\pi\)
\(702\) 0 0
\(703\) −1.86799 −0.0704527
\(704\) 0 0
\(705\) −41.1307 −1.54907
\(706\) 0 0
\(707\) 58.3200 2.19335
\(708\) 0 0
\(709\) 32.5360 1.22192 0.610958 0.791663i \(-0.290784\pi\)
0.610958 + 0.791663i \(0.290784\pi\)
\(710\) 0 0
\(711\) −7.73599 −0.290122
\(712\) 0 0
\(713\) 2.64261 0.0989666
\(714\) 0 0
\(715\) −56.6027 −2.11682
\(716\) 0 0
\(717\) −19.7873 −0.738972
\(718\) 0 0
\(719\) −39.0093 −1.45480 −0.727401 0.686212i \(-0.759272\pi\)
−0.727401 + 0.686212i \(0.759272\pi\)
\(720\) 0 0
\(721\) −51.2080 −1.90708
\(722\) 0 0
\(723\) 20.7453 0.771527
\(724\) 0 0
\(725\) −25.5233 −0.947912
\(726\) 0 0
\(727\) 18.8039 0.697399 0.348699 0.937235i \(-0.386623\pi\)
0.348699 + 0.937235i \(0.386623\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 17.1680 0.634982
\(732\) 0 0
\(733\) −14.0000 −0.517102 −0.258551 0.965998i \(-0.583245\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) 0 0
\(735\) 10.0514 0.370750
\(736\) 0 0
\(737\) −18.2827 −0.673451
\(738\) 0 0
\(739\) −18.8480 −0.693336 −0.346668 0.937988i \(-0.612687\pi\)
−0.346668 + 0.937988i \(0.612687\pi\)
\(740\) 0 0
\(741\) 5.86799 0.215566
\(742\) 0 0
\(743\) 37.5933 1.37917 0.689583 0.724207i \(-0.257794\pi\)
0.689583 + 0.724207i \(0.257794\pi\)
\(744\) 0 0
\(745\) 15.9346 0.583799
\(746\) 0 0
\(747\) −8.87732 −0.324804
\(748\) 0 0
\(749\) 53.3400 1.94900
\(750\) 0 0
\(751\) −24.5399 −0.895474 −0.447737 0.894165i \(-0.647770\pi\)
−0.447737 + 0.894165i \(0.647770\pi\)
\(752\) 0 0
\(753\) −17.9673 −0.654765
\(754\) 0 0
\(755\) −36.5653 −1.33075
\(756\) 0 0
\(757\) −36.3306 −1.32046 −0.660230 0.751064i \(-0.729541\pi\)
−0.660230 + 0.751064i \(0.729541\pi\)
\(758\) 0 0
\(759\) −18.6974 −0.678671
\(760\) 0 0
\(761\) −2.42533 −0.0879180 −0.0439590 0.999033i \(-0.513997\pi\)
−0.0439590 + 0.999033i \(0.513997\pi\)
\(762\) 0 0
\(763\) 39.5640 1.43231
\(764\) 0 0
\(765\) 10.8294 0.391536
\(766\) 0 0
\(767\) −44.7054 −1.61422
\(768\) 0 0
\(769\) −43.7546 −1.57783 −0.788916 0.614501i \(-0.789358\pi\)
−0.788916 + 0.614501i \(0.789358\pi\)
\(770\) 0 0
\(771\) 8.54330 0.307679
\(772\) 0 0
\(773\) −6.62009 −0.238108 −0.119054 0.992888i \(-0.537986\pi\)
−0.119054 + 0.992888i \(0.537986\pi\)
\(774\) 0 0
\(775\) −5.29200 −0.190094
\(776\) 0 0
\(777\) 3.14134 0.112695
\(778\) 0 0
\(779\) −3.73599 −0.133856
\(780\) 0 0
\(781\) 72.0746 2.57903
\(782\) 0 0
\(783\) −3.50466 −0.125246
\(784\) 0 0
\(785\) 19.1120 0.682138
\(786\) 0 0
\(787\) 21.5492 0.768147 0.384074 0.923302i \(-0.374521\pi\)
0.384074 + 0.923302i \(0.374521\pi\)
\(788\) 0 0
\(789\) −18.7453 −0.667351
\(790\) 0 0
\(791\) 38.7453 1.37762
\(792\) 0 0
\(793\) −18.8480 −0.669313
\(794\) 0 0
\(795\) −5.91595 −0.209817
\(796\) 0 0
\(797\) −36.4953 −1.29273 −0.646366 0.763028i \(-0.723712\pi\)
−0.646366 + 0.763028i \(0.723712\pi\)
\(798\) 0 0
\(799\) −36.2640 −1.28293
\(800\) 0 0
\(801\) 11.6553 0.411821
\(802\) 0 0
\(803\) −54.9987 −1.94086
\(804\) 0 0
\(805\) −40.0373 −1.41113
\(806\) 0 0
\(807\) −30.4520 −1.07196
\(808\) 0 0
\(809\) −5.69528 −0.200235 −0.100118 0.994976i \(-0.531922\pi\)
−0.100118 + 0.994976i \(0.531922\pi\)
\(810\) 0 0
\(811\) −18.1613 −0.637730 −0.318865 0.947800i \(-0.603302\pi\)
−0.318865 + 0.947800i \(0.603302\pi\)
\(812\) 0 0
\(813\) 18.7267 0.656773
\(814\) 0 0
\(815\) −4.00000 −0.140114
\(816\) 0 0
\(817\) −10.3786 −0.363101
\(818\) 0 0
\(819\) −9.86799 −0.344816
\(820\) 0 0
\(821\) 46.5547 1.62477 0.812385 0.583121i \(-0.198169\pi\)
0.812385 + 0.583121i \(0.198169\pi\)
\(822\) 0 0
\(823\) 28.1880 0.982571 0.491286 0.870999i \(-0.336527\pi\)
0.491286 + 0.870999i \(0.336527\pi\)
\(824\) 0 0
\(825\) 37.4427 1.30359
\(826\) 0 0
\(827\) −45.0793 −1.56756 −0.783781 0.621037i \(-0.786712\pi\)
−0.783781 + 0.621037i \(0.786712\pi\)
\(828\) 0 0
\(829\) 31.1787 1.08288 0.541440 0.840740i \(-0.317879\pi\)
0.541440 + 0.840740i \(0.317879\pi\)
\(830\) 0 0
\(831\) 14.2534 0.494444
\(832\) 0 0
\(833\) 8.86205 0.307052
\(834\) 0 0
\(835\) −4.74531 −0.164218
\(836\) 0 0
\(837\) −0.726656 −0.0251169
\(838\) 0 0
\(839\) −22.6867 −0.783232 −0.391616 0.920129i \(-0.628084\pi\)
−0.391616 + 0.920129i \(0.628084\pi\)
\(840\) 0 0
\(841\) −16.7173 −0.576460
\(842\) 0 0
\(843\) −17.8353 −0.614280
\(844\) 0 0
\(845\) −10.9766 −0.377608
\(846\) 0 0
\(847\) 48.4813 1.66584
\(848\) 0 0
\(849\) −14.6974 −0.504412
\(850\) 0 0
\(851\) −3.63667 −0.124664
\(852\) 0 0
\(853\) −13.2254 −0.452828 −0.226414 0.974031i \(-0.572700\pi\)
−0.226414 + 0.974031i \(0.572700\pi\)
\(854\) 0 0
\(855\) −6.54669 −0.223892
\(856\) 0 0
\(857\) 28.6901 0.980035 0.490017 0.871713i \(-0.336990\pi\)
0.490017 + 0.871713i \(0.336990\pi\)
\(858\) 0 0
\(859\) 38.8587 1.32584 0.662920 0.748690i \(-0.269317\pi\)
0.662920 + 0.748690i \(0.269317\pi\)
\(860\) 0 0
\(861\) 6.28267 0.214113
\(862\) 0 0
\(863\) −29.6519 −1.00936 −0.504682 0.863305i \(-0.668390\pi\)
−0.504682 + 0.863305i \(0.668390\pi\)
\(864\) 0 0
\(865\) −54.1214 −1.84018
\(866\) 0 0
\(867\) −7.45199 −0.253083
\(868\) 0 0
\(869\) −39.7733 −1.34922
\(870\) 0 0
\(871\) 11.1706 0.378503
\(872\) 0 0
\(873\) −10.4626 −0.354107
\(874\) 0 0
\(875\) 25.1307 0.849572
\(876\) 0 0
\(877\) 5.75464 0.194320 0.0971602 0.995269i \(-0.469024\pi\)
0.0971602 + 0.995269i \(0.469024\pi\)
\(878\) 0 0
\(879\) 20.3306 0.685735
\(880\) 0 0
\(881\) 27.6146 0.930360 0.465180 0.885216i \(-0.345990\pi\)
0.465180 + 0.885216i \(0.345990\pi\)
\(882\) 0 0
\(883\) 23.3213 0.784824 0.392412 0.919789i \(-0.371641\pi\)
0.392412 + 0.919789i \(0.371641\pi\)
\(884\) 0 0
\(885\) 49.8760 1.67656
\(886\) 0 0
\(887\) 26.9507 0.904917 0.452458 0.891786i \(-0.350547\pi\)
0.452458 + 0.891786i \(0.350547\pi\)
\(888\) 0 0
\(889\) −57.9053 −1.94208
\(890\) 0 0
\(891\) 5.14134 0.172241
\(892\) 0 0
\(893\) 21.9227 0.733616
\(894\) 0 0
\(895\) 6.19863 0.207197
\(896\) 0 0
\(897\) 11.4240 0.381437
\(898\) 0 0
\(899\) 2.54669 0.0849368
\(900\) 0 0
\(901\) −5.21597 −0.173769
\(902\) 0 0
\(903\) 17.4533 0.580810
\(904\) 0 0
\(905\) 86.0933 2.86184
\(906\) 0 0
\(907\) −14.2720 −0.473895 −0.236947 0.971522i \(-0.576147\pi\)
−0.236947 + 0.971522i \(0.576147\pi\)
\(908\) 0 0
\(909\) 18.5653 0.615774
\(910\) 0 0
\(911\) 42.9367 1.42256 0.711278 0.702911i \(-0.248117\pi\)
0.711278 + 0.702911i \(0.248117\pi\)
\(912\) 0 0
\(913\) −45.6413 −1.51051
\(914\) 0 0
\(915\) 21.0280 0.695164
\(916\) 0 0
\(917\) −17.6146 −0.581686
\(918\) 0 0
\(919\) −2.64261 −0.0871717 −0.0435858 0.999050i \(-0.513878\pi\)
−0.0435858 + 0.999050i \(0.513878\pi\)
\(920\) 0 0
\(921\) −5.45331 −0.179693
\(922\) 0 0
\(923\) −44.0373 −1.44951
\(924\) 0 0
\(925\) 7.28267 0.239453
\(926\) 0 0
\(927\) −16.3013 −0.535406
\(928\) 0 0
\(929\) 12.3786 0.406129 0.203064 0.979165i \(-0.434910\pi\)
0.203064 + 0.979165i \(0.434910\pi\)
\(930\) 0 0
\(931\) −5.35739 −0.175581
\(932\) 0 0
\(933\) −3.78734 −0.123992
\(934\) 0 0
\(935\) 55.6774 1.82084
\(936\) 0 0
\(937\) −27.1307 −0.886321 −0.443160 0.896442i \(-0.646143\pi\)
−0.443160 + 0.896442i \(0.646143\pi\)
\(938\) 0 0
\(939\) −15.1307 −0.493771
\(940\) 0 0
\(941\) 5.57467 0.181729 0.0908646 0.995863i \(-0.471037\pi\)
0.0908646 + 0.995863i \(0.471037\pi\)
\(942\) 0 0
\(943\) −7.27334 −0.236853
\(944\) 0 0
\(945\) 11.0093 0.358133
\(946\) 0 0
\(947\) 23.4860 0.763193 0.381596 0.924329i \(-0.375374\pi\)
0.381596 + 0.924329i \(0.375374\pi\)
\(948\) 0 0
\(949\) 33.6040 1.09083
\(950\) 0 0
\(951\) 22.4626 0.728401
\(952\) 0 0
\(953\) −12.7080 −0.411652 −0.205826 0.978589i \(-0.565988\pi\)
−0.205826 + 0.978589i \(0.565988\pi\)
\(954\) 0 0
\(955\) 10.1986 0.330020
\(956\) 0 0
\(957\) −18.0187 −0.582460
\(958\) 0 0
\(959\) −48.0373 −1.55121
\(960\) 0 0
\(961\) −30.4720 −0.982967
\(962\) 0 0
\(963\) 16.9800 0.547174
\(964\) 0 0
\(965\) 56.1400 1.80721
\(966\) 0 0
\(967\) −11.7801 −0.378822 −0.189411 0.981898i \(-0.560658\pi\)
−0.189411 + 0.981898i \(0.560658\pi\)
\(968\) 0 0
\(969\) −5.77207 −0.185426
\(970\) 0 0
\(971\) −7.89730 −0.253436 −0.126718 0.991939i \(-0.540444\pi\)
−0.126718 + 0.991939i \(0.540444\pi\)
\(972\) 0 0
\(973\) −23.7360 −0.760941
\(974\) 0 0
\(975\) −22.8773 −0.732661
\(976\) 0 0
\(977\) 44.2207 1.41474 0.707372 0.706841i \(-0.249880\pi\)
0.707372 + 0.706841i \(0.249880\pi\)
\(978\) 0 0
\(979\) 59.9240 1.91518
\(980\) 0 0
\(981\) 12.5946 0.402116
\(982\) 0 0
\(983\) −10.1800 −0.324691 −0.162345 0.986734i \(-0.551906\pi\)
−0.162345 + 0.986734i \(0.551906\pi\)
\(984\) 0 0
\(985\) −43.5747 −1.38840
\(986\) 0 0
\(987\) −36.8667 −1.17348
\(988\) 0 0
\(989\) −20.2054 −0.642495
\(990\) 0 0
\(991\) 49.3879 1.56886 0.784430 0.620218i \(-0.212956\pi\)
0.784430 + 0.620218i \(0.212956\pi\)
\(992\) 0 0
\(993\) 23.4720 0.744860
\(994\) 0 0
\(995\) 3.47197 0.110069
\(996\) 0 0
\(997\) −47.0173 −1.48905 −0.744527 0.667592i \(-0.767325\pi\)
−0.744527 + 0.667592i \(0.767325\pi\)
\(998\) 0 0
\(999\) 1.00000 0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7104.2.a.bx.1.3 3
4.3 odd 2 7104.2.a.br.1.3 3
8.3 odd 2 888.2.a.j.1.1 3
8.5 even 2 1776.2.a.r.1.1 3
24.5 odd 2 5328.2.a.bm.1.3 3
24.11 even 2 2664.2.a.o.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
888.2.a.j.1.1 3 8.3 odd 2
1776.2.a.r.1.1 3 8.5 even 2
2664.2.a.o.1.3 3 24.11 even 2
5328.2.a.bm.1.3 3 24.5 odd 2
7104.2.a.br.1.3 3 4.3 odd 2
7104.2.a.bx.1.3 3 1.1 even 1 trivial