Properties

Label 71.8.a.a
Level $71$
Weight $8$
Character orbit 71.a
Self dual yes
Analytic conductor $22.179$
Analytic rank $1$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [71,8,Mod(1,71)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(71, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("71.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 71 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 71.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.1793368094\)
Analytic rank: \(1\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - x^{16} - 1541 x^{15} + 843 x^{14} + 955403 x^{13} - 21197 x^{12} - 306314257 x^{11} - 193726721 x^{10} + 54415399577 x^{9} + 78353550093 x^{8} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: multiple of \( 2^{14}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{16}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} + (\beta_{4} - 4) q^{3} + (\beta_{2} - \beta_1 + 54) q^{4} + ( - \beta_{4} - \beta_{3} - 4 \beta_1 - 25) q^{5} + (\beta_{6} + \beta_{3} - \beta_{2} - 8 \beta_1 - 78) q^{6} + (\beta_{9} - \beta_{6} - 3 \beta_{4} + \beta_{3} - 3 \beta_{2} - 7 \beta_1 - 100) q^{7} + (\beta_{13} - 2 \beta_{9} - 2 \beta_{6} - 9 \beta_{4} + \beta_{3} - 4 \beta_{2} + 42 \beta_1 - 181) q^{8} + (\beta_{15} - 2 \beta_{13} - \beta_{9} + \beta_{8} - \beta_{6} - 9 \beta_{4} + 3 \beta_{3} - 4 \beta_{2} + \cdots + 483) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 - 1) q^{2} + (\beta_{4} - 4) q^{3} + (\beta_{2} - \beta_1 + 54) q^{4} + ( - \beta_{4} - \beta_{3} - 4 \beta_1 - 25) q^{5} + (\beta_{6} + \beta_{3} - \beta_{2} - 8 \beta_1 - 78) q^{6} + (\beta_{9} - \beta_{6} - 3 \beta_{4} + \beta_{3} - 3 \beta_{2} - 7 \beta_1 - 100) q^{7} + (\beta_{13} - 2 \beta_{9} - 2 \beta_{6} - 9 \beta_{4} + \beta_{3} - 4 \beta_{2} + 42 \beta_1 - 181) q^{8} + (\beta_{15} - 2 \beta_{13} - \beta_{9} + \beta_{8} - \beta_{6} - 9 \beta_{4} + 3 \beta_{3} - 4 \beta_{2} + \cdots + 483) q^{9}+ \cdots + ( - 1489 \beta_{16} - 3703 \beta_{15} - 1676 \beta_{14} + \cdots - 2332557) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q - 16 q^{2} - 68 q^{3} + 922 q^{4} - 430 q^{5} - 1338 q^{6} - 1716 q^{7} - 3072 q^{8} + 8213 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 17 q - 16 q^{2} - 68 q^{3} + 922 q^{4} - 430 q^{5} - 1338 q^{6} - 1716 q^{7} - 3072 q^{8} + 8213 q^{9} - 9570 q^{10} - 7550 q^{11} - 13056 q^{12} - 17280 q^{13} - 15424 q^{14} - 30888 q^{15} + 29570 q^{16} - 55074 q^{17} + 73126 q^{18} - 56892 q^{19} + 88130 q^{20} - 92448 q^{21} - 85846 q^{22} - 57160 q^{23} - 498342 q^{24} - 71917 q^{25} - 480634 q^{26} - 314144 q^{27} - 985666 q^{28} - 376658 q^{29} - 1522556 q^{30} - 637476 q^{31} - 1068472 q^{32} - 1174712 q^{33} - 1203182 q^{34} - 709332 q^{35} - 1256228 q^{36} - 1196566 q^{37} - 1527840 q^{38} - 459060 q^{39} - 1882854 q^{40} - 1620042 q^{41} - 668930 q^{42} - 1545900 q^{43} - 1780746 q^{44} - 2063266 q^{45} - 671136 q^{46} + 368904 q^{47} - 1061128 q^{48} - 819883 q^{49} - 1162972 q^{50} - 1506564 q^{51} - 2664124 q^{52} + 981948 q^{53} + 2327754 q^{54} - 2876060 q^{55} + 860808 q^{56} - 198764 q^{57} + 9294 q^{58} + 1926882 q^{59} + 6162558 q^{60} - 7380164 q^{61} + 6654604 q^{62} - 1537800 q^{63} + 1872562 q^{64} - 1930344 q^{65} + 6960222 q^{66} + 1751278 q^{67} + 8513370 q^{68} + 61872 q^{69} + 16399994 q^{70} + 6084487 q^{71} + 15756240 q^{72} - 5262378 q^{73} + 25065924 q^{74} + 27761760 q^{75} - 2543420 q^{76} + 14009908 q^{77} + 51501736 q^{78} - 514148 q^{79} + 33396230 q^{80} + 10150673 q^{81} + 3758798 q^{82} + 18344544 q^{83} + 37949200 q^{84} - 3579476 q^{85} + 22970870 q^{86} + 5561252 q^{87} + 37822842 q^{88} - 7940378 q^{89} + 16018678 q^{90} - 22163400 q^{91} + 18345450 q^{92} + 3264208 q^{93} - 14891844 q^{94} - 12067280 q^{95} + 6093538 q^{96} - 41277242 q^{97} + 46061976 q^{98} - 39665842 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{17} - x^{16} - 1541 x^{15} + 843 x^{14} + 955403 x^{13} - 21197 x^{12} - 306314257 x^{11} - 193726721 x^{10} + 54415399577 x^{9} + 78353550093 x^{8} + \cdots - 12\!\cdots\!00 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 181 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 61\!\cdots\!97 \nu^{16} + \cdots - 10\!\cdots\!00 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 10\!\cdots\!55 \nu^{16} + \cdots + 21\!\cdots\!00 ) / 32\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 10\!\cdots\!47 \nu^{16} + \cdots + 52\!\cdots\!00 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 19\!\cdots\!83 \nu^{16} + \cdots - 34\!\cdots\!00 ) / 15\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 62\!\cdots\!23 \nu^{16} + \cdots + 34\!\cdots\!00 ) / 27\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 10\!\cdots\!85 \nu^{16} + \cdots + 74\!\cdots\!00 ) / 32\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 10\!\cdots\!09 \nu^{16} + \cdots - 29\!\cdots\!00 ) / 16\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 25\!\cdots\!87 \nu^{16} + \cdots + 30\!\cdots\!00 ) / 32\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 93\!\cdots\!77 \nu^{16} + \cdots + 52\!\cdots\!00 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 18\!\cdots\!29 \nu^{16} + \cdots - 44\!\cdots\!00 ) / 13\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 11\!\cdots\!59 \nu^{16} + \cdots + 20\!\cdots\!00 ) / 81\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 77\!\cdots\!51 \nu^{16} + \cdots - 40\!\cdots\!00 ) / 54\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 18\!\cdots\!93 \nu^{16} + \cdots - 19\!\cdots\!00 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 95\!\cdots\!67 \nu^{16} + \cdots + 49\!\cdots\!00 ) / 32\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 181 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{13} - 2\beta_{9} - 2\beta_{6} - 9\beta_{4} + \beta_{3} - \beta_{2} + 298\beta _1 + 107 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 10 \beta_{16} - 14 \beta_{15} - 18 \beta_{14} - 7 \beta_{13} + 9 \beta_{12} + 6 \beta_{11} - 9 \beta_{10} + 6 \beta_{9} + 2 \beta_{8} - \beta_{7} + \beta_{6} - 6 \beta_{5} - 76 \beta_{4} - 12 \beta_{3} + 407 \beta_{2} + 322 \beta _1 + 54597 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 74 \beta_{16} - 48 \beta_{15} - 132 \beta_{14} + 384 \beta_{13} - 63 \beta_{12} - 34 \beta_{11} + 53 \beta_{10} - 978 \beta_{9} + 14 \beta_{8} - 41 \beta_{7} - 887 \beta_{6} - 66 \beta_{5} - 4889 \beta_{4} + 399 \beta_{3} + \cdots + 36155 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 6744 \beta_{16} - 8788 \beta_{15} - 11000 \beta_{14} - 4766 \beta_{13} + 3960 \beta_{12} + 3308 \beta_{11} - 3900 \beta_{10} + 1900 \beta_{9} + 1820 \beta_{8} - 2028 \beta_{7} + 1652 \beta_{6} + \cdots + 19079067 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 60732 \beta_{16} - 48472 \beta_{15} - 116788 \beta_{14} + 107475 \beta_{13} - 38102 \beta_{12} - 20232 \beta_{11} + 39626 \beta_{10} - 406110 \beta_{9} + 6048 \beta_{8} - 44510 \beta_{7} + \cdots + 19137267 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 3480150 \beta_{16} - 4378130 \beta_{15} - 5511506 \beta_{14} - 2668585 \beta_{13} + 1426163 \beta_{12} + 1502142 \beta_{11} - 1258555 \beta_{10} + 183638 \beta_{9} + \cdots + 7111493541 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 35981134 \beta_{16} - 32280168 \beta_{15} - 72025600 \beta_{14} + 21229810 \beta_{13} - 17614153 \beta_{12} - 9082682 \beta_{11} + 22869883 \beta_{10} - 164106158 \beta_{9} + \cdots + 12378804367 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 1647390836 \beta_{16} - 2034393880 \beta_{15} - 2603137040 \beta_{14} - 1372646840 \beta_{13} + 487301810 \beta_{12} + 646594828 \beta_{11} + \cdots + 2748005901131 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 18972461216 \beta_{16} - 18303169520 \beta_{15} - 38823593336 \beta_{14} - 312135843 \beta_{13} - 7483135720 \beta_{12} - 3674619672 \beta_{11} + \cdots + 7774521265423 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 754044812722 \beta_{16} - 920934222582 \beta_{15} - 1201058686306 \beta_{14} - 671600384843 \beta_{13} + 163134185909 \beta_{12} + \cdots + 10\!\cdots\!45 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 9485799283698 \beta_{16} - 9594043142912 \beta_{15} - 19615907273772 \beta_{14} - 3595823865868 \beta_{13} - 3078459363315 \beta_{12} + \cdots + 45\!\cdots\!71 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 340425300199504 \beta_{16} - 412559599016636 \beta_{15} - 548537597080696 \beta_{14} - 318491113957730 \beta_{13} + 53818546878684 \beta_{12} + \cdots + 44\!\cdots\!19 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 46\!\cdots\!64 \beta_{16} + \cdots + 25\!\cdots\!59 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 15\!\cdots\!86 \beta_{16} + \cdots + 18\!\cdots\!01 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−19.5769
−19.1512
−18.8483
−12.0476
−9.67330
−8.80500
−7.56494
−1.93898
−1.62329
−0.779782
8.72947
8.77673
11.9708
14.8364
17.4632
17.8807
21.3520
−20.5769 −24.8746 295.408 51.8138 511.841 −964.382 −3444.74 −1568.26 −1066.17
1.2 −20.1512 50.2064 278.072 480.331 −1011.72 −492.743 −3024.14 333.680 −9679.26
1.3 −19.8483 14.7419 265.954 −39.2067 −292.602 290.193 −2738.15 −1969.68 778.186
1.4 −13.0476 −71.6658 42.2389 −299.002 935.065 −838.975 1118.97 2948.99 3901.25
1.5 −10.6733 55.6664 −14.0807 −123.787 −594.144 478.240 1516.47 911.744 1321.21
1.6 −9.80500 −22.7314 −31.8619 −426.903 222.881 1439.06 1567.45 −1670.28 4185.78
1.7 −8.56494 16.9829 −54.6417 344.458 −145.458 −965.607 1564.32 −1898.58 −2950.26
1.8 −2.93898 −48.7576 −119.362 213.468 143.298 152.324 726.993 190.307 −627.378
1.9 −2.62329 −87.0131 −121.118 −27.1608 228.261 757.218 653.510 5384.28 71.2507
1.10 −1.77978 72.7305 −124.832 −243.222 −129.444 397.740 449.987 3102.73 432.883
1.11 7.72947 35.5389 −68.2553 193.986 274.697 −930.389 −1516.95 −923.987 1499.41
1.12 7.77673 −0.574168 −67.5225 74.6631 −4.46514 1081.19 −1520.53 −2186.67 580.635
1.13 10.9708 80.3704 −7.64129 −472.591 881.729 −1084.98 −1488.10 4272.41 −5184.70
1.14 13.8364 −72.7594 63.4464 226.462 −1006.73 1016.68 −893.191 3106.93 3133.42
1.15 16.4632 9.09105 143.038 −425.151 149.668 306.368 247.579 −2104.35 −6999.36
1.16 16.8807 −7.07215 156.956 −52.2973 −119.382 −940.822 488.802 −2136.98 −882.813
1.17 20.3520 −67.8802 286.202 94.1391 −1381.49 −1417.12 3219.72 2420.72 1915.91
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.17
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(71\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 71.8.a.a 17
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
71.8.a.a 17 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{17} + 16 T_{2}^{16} - 1421 T_{2}^{15} - 21712 T_{2}^{14} + 807220 T_{2}^{13} + 11778968 T_{2}^{12} - 233835792 T_{2}^{11} - 3295109632 T_{2}^{10} + 36303285888 T_{2}^{9} + \cdots - 68\!\cdots\!16 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(71))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{17} + 16 T^{16} + \cdots - 68\!\cdots\!16 \) Copy content Toggle raw display
$3$ \( T^{17} + 68 T^{16} + \cdots + 45\!\cdots\!00 \) Copy content Toggle raw display
$5$ \( T^{17} + 430 T^{16} + \cdots + 24\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{17} + 1716 T^{16} + \cdots - 15\!\cdots\!76 \) Copy content Toggle raw display
$11$ \( T^{17} + 7550 T^{16} + \cdots + 27\!\cdots\!48 \) Copy content Toggle raw display
$13$ \( T^{17} + 17280 T^{16} + \cdots + 32\!\cdots\!48 \) Copy content Toggle raw display
$17$ \( T^{17} + 55074 T^{16} + \cdots - 34\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( T^{17} + 56892 T^{16} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{17} + 57160 T^{16} + \cdots - 28\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{17} + 376658 T^{16} + \cdots + 69\!\cdots\!80 \) Copy content Toggle raw display
$31$ \( T^{17} + 637476 T^{16} + \cdots + 78\!\cdots\!68 \) Copy content Toggle raw display
$37$ \( T^{17} + 1196566 T^{16} + \cdots + 63\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( T^{17} + 1620042 T^{16} + \cdots - 64\!\cdots\!36 \) Copy content Toggle raw display
$43$ \( T^{17} + 1545900 T^{16} + \cdots - 72\!\cdots\!40 \) Copy content Toggle raw display
$47$ \( T^{17} - 368904 T^{16} + \cdots - 21\!\cdots\!60 \) Copy content Toggle raw display
$53$ \( T^{17} - 981948 T^{16} + \cdots - 10\!\cdots\!12 \) Copy content Toggle raw display
$59$ \( T^{17} - 1926882 T^{16} + \cdots + 37\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{17} + 7380164 T^{16} + \cdots - 18\!\cdots\!60 \) Copy content Toggle raw display
$67$ \( T^{17} - 1751278 T^{16} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( (T - 357911)^{17} \) Copy content Toggle raw display
$73$ \( T^{17} + 5262378 T^{16} + \cdots + 20\!\cdots\!06 \) Copy content Toggle raw display
$79$ \( T^{17} + 514148 T^{16} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{17} - 18344544 T^{16} + \cdots + 13\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{17} + 7940378 T^{16} + \cdots - 12\!\cdots\!10 \) Copy content Toggle raw display
$97$ \( T^{17} + 41277242 T^{16} + \cdots + 25\!\cdots\!80 \) Copy content Toggle raw display
show more
show less