Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [71,3,Mod(23,71)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(71, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("71.23");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 71 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 71.f (of order \(14\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.93460987696\) |
Analytic rank: | \(0\) |
Dimension: | \(66\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{14})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{14}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 | −2.07321 | − | 2.59972i | −0.565462 | + | 2.47745i | −1.57027 | + | 6.87980i | 2.58721 | 7.61300 | − | 3.66623i | 5.17779 | + | 4.12915i | 9.15755 | − | 4.41004i | 2.29070 | + | 1.10314i | −5.36382 | − | 6.72602i | ||
23.2 | −1.73422 | − | 2.17464i | 0.0310597 | − | 0.136081i | −0.831473 | + | 3.64292i | −4.59838 | −0.349793 | + | 0.168452i | −7.92451 | − | 6.31959i | −0.660074 | + | 0.317875i | 8.09117 | + | 3.89650i | 7.97461 | + | 9.99984i | ||
23.3 | −1.43374 | − | 1.79786i | 0.942120 | − | 4.12770i | −0.286587 | + | 1.25562i | 9.11661 | −8.77177 | + | 4.22426i | −1.03036 | − | 0.821685i | −5.61896 | + | 2.70595i | −8.04157 | − | 3.87262i | −13.0709 | − | 16.3904i | ||
23.4 | −0.970698 | − | 1.21722i | 0.916004 | − | 4.01328i | 0.350721 | − | 1.53661i | −7.45794 | −5.77419 | + | 2.78070i | 8.92623 | + | 7.11843i | −7.82163 | + | 3.76670i | −7.15860 | − | 3.44740i | 7.23941 | + | 9.07793i | ||
23.5 | −0.782507 | − | 0.981232i | −1.29850 | + | 5.68910i | 0.539583 | − | 2.36407i | −7.08500 | 6.59841 | − | 3.17763i | −0.969711 | − | 0.773319i | −7.26495 | + | 3.49862i | −22.5710 | − | 10.8696i | 5.54406 | + | 6.95204i | ||
23.6 | −0.227195 | − | 0.284893i | 0.182110 | − | 0.797877i | 0.860537 | − | 3.77026i | 0.978655 | −0.268684 | + | 0.129392i | −6.28969 | − | 5.01586i | −2.58285 | + | 1.24384i | 7.50528 | + | 3.61435i | −0.222345 | − | 0.278812i | ||
23.7 | 0.0359468 | + | 0.0450758i | −0.500010 | + | 2.19069i | 0.889344 | − | 3.89647i | 3.84308 | −0.116721 | + | 0.0562097i | 5.29029 | + | 4.21887i | 0.415384 | − | 0.200038i | 3.55962 | + | 1.71422i | 0.138146 | + | 0.173230i | ||
23.8 | 1.06381 | + | 1.33398i | 0.836918 | − | 3.66678i | 0.242281 | − | 1.06150i | −1.38116 | 5.78173 | − | 2.78434i | 0.126351 | + | 0.100762i | 7.82278 | − | 3.76725i | −4.63612 | − | 2.23264i | −1.46930 | − | 1.84244i | ||
23.9 | 1.57767 | + | 1.97833i | −0.852792 | + | 3.73633i | −0.534684 | + | 2.34260i | 3.85116 | −8.73713 | + | 4.20758i | −7.78266 | − | 6.20647i | 3.64119 | − | 1.75350i | −5.12416 | − | 2.46767i | 6.07585 | + | 7.61888i | ||
23.10 | 1.71893 | + | 2.15547i | −0.471597 | + | 2.06620i | −0.801242 | + | 3.51047i | −7.06965 | −5.26427 | + | 2.53514i | 6.72247 | + | 5.36099i | 0.991709 | − | 0.477582i | 4.06193 | + | 1.95612i | −12.1522 | − | 15.2384i | ||
23.11 | 2.32521 | + | 2.91573i | 0.582086 | − | 2.55029i | −2.20476 | + | 9.65967i | 1.47448 | 8.78942 | − | 4.23276i | −3.46871 | − | 2.76620i | −19.8513 | + | 9.55990i | 1.94358 | + | 0.935978i | 3.42847 | + | 4.29917i | ||
26.1 | −3.30342 | + | 1.59084i | −0.247110 | + | 0.309866i | 5.88786 | − | 7.38314i | −4.34217 | 0.323360 | − | 1.41673i | 5.09184 | − | 10.5733i | −4.44114 | + | 19.4579i | 1.96773 | + | 8.62121i | 14.3440 | − | 6.90772i | ||
26.2 | −2.70627 | + | 1.30327i | −0.0764317 | + | 0.0958423i | 3.13143 | − | 3.92669i | 5.85528 | 0.0819363 | − | 0.358986i | −3.40360 | + | 7.06764i | −0.683380 | + | 2.99408i | 1.99934 | + | 8.75970i | −15.8460 | + | 7.63102i | ||
26.3 | −2.15213 | + | 1.03641i | −3.08981 | + | 3.87450i | 1.06356 | − | 1.33366i | −0.0562760 | 2.63410 | − | 11.5407i | −1.54196 | + | 3.20191i | 1.21943 | − | 5.34269i | −3.46212 | − | 15.1685i | 0.121113 | − | 0.0583251i | ||
26.4 | −1.49930 | + | 0.722023i | 2.58296 | − | 3.23893i | −0.767386 | + | 0.962271i | 2.51761 | −1.53404 | + | 6.72108i | 2.66416 | − | 5.53219i | 1.93694 | − | 8.48629i | −1.81630 | − | 7.95775i | −3.77465 | + | 1.81777i | ||
26.5 | −1.06218 | + | 0.511518i | 0.733756 | − | 0.920101i | −1.62739 | + | 2.04068i | −8.50231 | −0.308731 | + | 1.35264i | −1.67072 | + | 3.46929i | 1.73408 | − | 7.59749i | 1.69450 | + | 7.42409i | 9.03097 | − | 4.34908i | ||
26.6 | 0.188461 | − | 0.0907581i | −0.565562 | + | 0.709193i | −2.46668 | + | 3.09312i | 7.26947 | −0.0422215 | + | 0.184985i | −1.82316 | + | 3.78583i | −0.370332 | + | 1.62253i | 1.81959 | + | 7.97217i | 1.37001 | − | 0.659763i | ||
26.7 | 0.890369 | − | 0.428779i | −2.26035 | + | 2.83438i | −1.88505 | + | 2.36378i | −4.08904 | −0.797217 | + | 3.49284i | 0.0396541 | − | 0.0823427i | −1.54446 | + | 6.76674i | −0.921881 | − | 4.03903i | −3.64076 | + | 1.75330i | ||
26.8 | 1.53694 | − | 0.740150i | 3.41140 | − | 4.27775i | −0.679605 | + | 0.852198i | −0.471725 | 2.07692 | − | 9.09958i | −4.29854 | + | 8.92602i | −1.93212 | + | 8.46519i | −4.65888 | − | 20.4119i | −0.725011 | + | 0.349147i | ||
26.9 | 1.66922 | − | 0.803853i | 1.13552 | − | 1.42390i | −0.353852 | + | 0.443716i | 1.73750 | 0.750825 | − | 3.28958i | 5.22052 | − | 10.8405i | −1.88302 | + | 8.25007i | 1.26461 | + | 5.54063i | 2.90026 | − | 1.39669i | ||
See all 66 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
71.f | odd | 14 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 71.3.f.a | ✓ | 66 |
71.f | odd | 14 | 1 | inner | 71.3.f.a | ✓ | 66 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
71.3.f.a | ✓ | 66 | 1.a | even | 1 | 1 | trivial |
71.3.f.a | ✓ | 66 | 71.f | odd | 14 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(71, [\chi])\).