Properties

Label 71.3.b.a
Level $71$
Weight $3$
Character orbit 71.b
Analytic conductor $1.935$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [71,3,Mod(70,71)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(71, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("71.70");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 71 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 71.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.93460987696\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.2836736.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 108x^{2} - 40x + 2825 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 1) q^{2} + (\beta_1 - 1) q^{3} + (2 \beta_1 - 1) q^{4} + (\beta_1 - 2) q^{5} - q^{6} + \beta_{3} q^{7} + (3 \beta_1 + 1) q^{8} + ( - 2 \beta_1 - 6) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 - 1) q^{2} + (\beta_1 - 1) q^{3} + (2 \beta_1 - 1) q^{4} + (\beta_1 - 2) q^{5} - q^{6} + \beta_{3} q^{7} + (3 \beta_1 + 1) q^{8} + ( - 2 \beta_1 - 6) q^{9} + \beta_1 q^{10} + \beta_{2} q^{11} + ( - 3 \beta_1 + 5) q^{12} + (\beta_{3} + \beta_{2}) q^{13} + ( - \beta_{3} - \beta_{2}) q^{14} + ( - 3 \beta_1 + 4) q^{15} + ( - 12 \beta_1 - 3) q^{16} - \beta_{2} q^{17} + (8 \beta_1 + 10) q^{18} + (11 \beta_1 + 3) q^{19} + ( - 5 \beta_1 + 6) q^{20} + ( - \beta_{3} + \beta_{2}) q^{21} + ( - 2 \beta_{3} - \beta_{2}) q^{22} + ( - \beta_{3} - 2 \beta_{2}) q^{23} + ( - 2 \beta_1 + 5) q^{24} + ( - 4 \beta_1 - 19) q^{25} + ( - 3 \beta_{3} - 2 \beta_{2}) q^{26} + ( - 13 \beta_1 + 11) q^{27} + ( - \beta_{3} + 2 \beta_{2}) q^{28} + 7 \beta_1 q^{29} + ( - \beta_1 + 2) q^{30} + 3 \beta_{3} q^{31} + (3 \beta_1 + 23) q^{32} + (2 \beta_{3} - \beta_{2}) q^{33} + (2 \beta_{3} + \beta_{2}) q^{34} + ( - 2 \beta_{3} + \beta_{2}) q^{35} + ( - 10 \beta_1 - 2) q^{36} + (37 \beta_1 - 6) q^{37} + ( - 14 \beta_1 - 25) q^{38} + \beta_{3} q^{39} + ( - 5 \beta_1 + 4) q^{40} + (2 \beta_{3} + 3 \beta_{2}) q^{41} - \beta_{3} q^{42} + ( - 19 \beta_1 - 15) q^{43} + (4 \beta_{3} - \beta_{2}) q^{44} + ( - 2 \beta_1 + 8) q^{45} + (5 \beta_{3} + 3 \beta_{2}) q^{46} - 5 \beta_{3} q^{47} + (9 \beta_1 - 21) q^{48} + (20 \beta_1 - 60) q^{49} + (23 \beta_1 + 27) q^{50} + ( - 2 \beta_{3} + \beta_{2}) q^{51} + (3 \beta_{3} + \beta_{2}) q^{52} + (4 \beta_{3} - 2 \beta_{2}) q^{53} + (2 \beta_1 + 15) q^{54} + (2 \beta_{3} - 2 \beta_{2}) q^{55} + (\beta_{3} + 3 \beta_{2}) q^{56} + ( - 8 \beta_1 + 19) q^{57} + ( - 7 \beta_1 - 14) q^{58} - 4 \beta_{3} q^{59} + (11 \beta_1 - 16) q^{60} + (6 \beta_{3} - 2 \beta_{2}) q^{61} + ( - 3 \beta_{3} - 3 \beta_{2}) q^{62} + ( - 6 \beta_{3} - 2 \beta_{2}) q^{63} + (22 \beta_1 - 17) q^{64} - \beta_{2} q^{65} - \beta_{2} q^{66} + ( - 6 \beta_{3} - \beta_{2}) q^{67} + ( - 4 \beta_{3} + \beta_{2}) q^{68} + ( - 3 \beta_{3} + \beta_{2}) q^{69} + \beta_{2} q^{70} + (5 \beta_{3} + 2 \beta_{2} - 20 \beta_1 + 38) q^{71} + ( - 20 \beta_1 - 18) q^{72} + (58 \beta_1 + 17) q^{73} + ( - 31 \beta_1 - 68) q^{74} + ( - 15 \beta_1 + 11) q^{75} + ( - 5 \beta_1 + 41) q^{76} + ( - 109 \beta_1 + 40) q^{77} + ( - \beta_{3} - \beta_{2}) q^{78} + (33 \beta_1 + 48) q^{79} + (21 \beta_1 - 18) q^{80} + (42 \beta_1 + 17) q^{81} + ( - 8 \beta_{3} - 5 \beta_{2}) q^{82} + ( - 24 \beta_1 + 82) q^{83} + (5 \beta_{3} - 3 \beta_{2}) q^{84} + ( - 2 \beta_{3} + 2 \beta_{2}) q^{85} + (34 \beta_1 + 53) q^{86} + ( - 7 \beta_1 + 14) q^{87} + (6 \beta_{3} + \beta_{2}) q^{88} + ( - 22 \beta_1 - 47) q^{89} + ( - 6 \beta_1 - 4) q^{90} + ( - 89 \beta_1 - 69) q^{91} - 7 \beta_{3} q^{92} + ( - 3 \beta_{3} + 3 \beta_{2}) q^{93} + (5 \beta_{3} + 5 \beta_{2}) q^{94} + ( - 19 \beta_1 + 16) q^{95} + (20 \beta_1 - 17) q^{96} + 7 \beta_{2} q^{97} + (40 \beta_1 + 20) q^{98} + ( - 4 \beta_{3} - 6 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 4 q^{3} - 4 q^{4} - 8 q^{5} - 4 q^{6} + 4 q^{8} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} - 4 q^{3} - 4 q^{4} - 8 q^{5} - 4 q^{6} + 4 q^{8} - 24 q^{9} + 20 q^{12} + 16 q^{15} - 12 q^{16} + 40 q^{18} + 12 q^{19} + 24 q^{20} + 20 q^{24} - 76 q^{25} + 44 q^{27} + 8 q^{30} + 92 q^{32} - 8 q^{36} - 24 q^{37} - 100 q^{38} + 16 q^{40} - 60 q^{43} + 32 q^{45} - 84 q^{48} - 240 q^{49} + 108 q^{50} + 60 q^{54} + 76 q^{57} - 56 q^{58} - 64 q^{60} - 68 q^{64} + 152 q^{71} - 72 q^{72} + 68 q^{73} - 272 q^{74} + 44 q^{75} + 164 q^{76} + 160 q^{77} + 192 q^{79} - 72 q^{80} + 68 q^{81} + 328 q^{83} + 212 q^{86} + 56 q^{87} - 188 q^{89} - 16 q^{90} - 276 q^{91} + 64 q^{95} - 68 q^{96} + 80 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 108x^{2} - 40x + 2825 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 10\nu^{2} - 53\nu + 570 ) / 155 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 10\nu^{2} + 363\nu - 570 ) / 155 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{3} + 11\nu^{2} + 106\nu + 534 ) / 31 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 10\beta _1 - 54 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 20\beta_{3} - 53\beta_{2} - 163\beta _1 + 60 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/71\mathbb{Z}\right)^\times\).

\(n\) \(7\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
70.1
0.707107 6.35278i
0.707107 + 6.35278i
−0.707107 + 8.28505i
−0.707107 8.28505i
−2.41421 0.414214 1.82843 −0.585786 −1.00000 8.98419i 5.24264 −8.82843 1.41421
70.2 −2.41421 0.414214 1.82843 −0.585786 −1.00000 8.98419i 5.24264 −8.82843 1.41421
70.3 0.414214 −2.41421 −3.82843 −3.41421 −1.00000 11.7168i −3.24264 −3.17157 −1.41421
70.4 0.414214 −2.41421 −3.82843 −3.41421 −1.00000 11.7168i −3.24264 −3.17157 −1.41421
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
71.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 71.3.b.a 4
3.b odd 2 1 639.3.d.a 4
4.b odd 2 1 1136.3.h.a 4
71.b odd 2 1 inner 71.3.b.a 4
213.b even 2 1 639.3.d.a 4
284.c even 2 1 1136.3.h.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
71.3.b.a 4 1.a even 1 1 trivial
71.3.b.a 4 71.b odd 2 1 inner
639.3.d.a 4 3.b odd 2 1
639.3.d.a 4 213.b even 2 1
1136.3.h.a 4 4.b odd 2 1
1136.3.h.a 4 284.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 2T_{2} - 1 \) acting on \(S_{3}^{\mathrm{new}}(71, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2 T - 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 2 T - 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 4 T + 2)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 218 T^{2} + 11081 \) Copy content Toggle raw display
$11$ \( T^{4} + 436 T^{2} + 44324 \) Copy content Toggle raw display
$13$ \( T^{4} + 494 T^{2} + 11081 \) Copy content Toggle raw display
$17$ \( T^{4} + 436 T^{2} + 44324 \) Copy content Toggle raw display
$19$ \( (T^{2} - 6 T - 233)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 1642 T^{2} + 542969 \) Copy content Toggle raw display
$29$ \( (T^{2} - 98)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 1962 T^{2} + 897561 \) Copy content Toggle raw display
$37$ \( (T^{2} + 12 T - 2702)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 3836 T^{2} + \cdots + 2171876 \) Copy content Toggle raw display
$43$ \( (T^{2} + 30 T - 497)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 5450 T^{2} + \cdots + 6925625 \) Copy content Toggle raw display
$53$ \( T^{4} + 6512 T^{2} + 709184 \) Copy content Toggle raw display
$59$ \( T^{4} + 3488 T^{2} + \cdots + 2836736 \) Copy content Toggle raw display
$61$ \( T^{4} + 11512 T^{2} + \cdots + 8687504 \) Copy content Toggle raw display
$67$ \( T^{4} + 7324 T^{2} + \cdots + 12809636 \) Copy content Toggle raw display
$71$ \( T^{4} - 152 T^{3} + \cdots + 25411681 \) Copy content Toggle raw display
$73$ \( (T^{2} - 34 T - 6439)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 96 T + 126)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 164 T + 5572)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 94 T + 1241)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 21364 T^{2} + \cdots + 106421924 \) Copy content Toggle raw display
show more
show less