Properties

Label 71.11.b.a
Level $71$
Weight $11$
Character orbit 71.b
Self dual yes
Analytic conductor $45.110$
Analytic rank $0$
Dimension $7$
CM discriminant -71
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [71,11,Mod(70,71)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(71, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("71.70");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 71 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 71.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.1103649398\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: 7.7.294755098673.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 14x^{5} + 56x^{3} - 56x - 21 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (13 \beta_{4} + 5 \beta_{3}) q^{2} + (65 \beta_{5} - 76 \beta_{2}) q^{3} + (313 \beta_{6} + 221 \beta_1 + 1024) q^{4} + (799 \beta_{6} + 1232 \beta_1) q^{5} + ( - 562 \beta_{6} - 3611 \beta_{5} - 2161 \beta_{2} - 5229 \beta_1) q^{6} + ( - 15540 \beta_{5} + 13312 \beta_{4} + 5120 \beta_{3} - 5099 \beta_{2}) q^{8} + ( - 12554 \beta_{4} + 27087 \beta_{3} + 59049) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (13 \beta_{4} + 5 \beta_{3}) q^{2} + (65 \beta_{5} - 76 \beta_{2}) q^{3} + (313 \beta_{6} + 221 \beta_1 + 1024) q^{4} + (799 \beta_{6} + 1232 \beta_1) q^{5} + ( - 562 \beta_{6} - 3611 \beta_{5} - 2161 \beta_{2} - 5229 \beta_1) q^{6} + ( - 15540 \beta_{5} + 13312 \beta_{4} + 5120 \beta_{3} - 5099 \beta_{2}) q^{8} + ( - 12554 \beta_{4} + 27087 \beta_{3} + 59049) q^{9} + ( - 45012 \beta_{5} + 37321 \beta_{4} + 30434 \beta_{3} - 995 \beta_{2}) q^{10} + (82286 \beta_{6} + 66560 \beta_{5} - 48063 \beta_{4} + \cdots + 9635 \beta_1) q^{12}+ \cdots + (3672178237 \beta_{4} + 1412376245 \beta_{3}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7168 q^{4} + 413343 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + 7168 q^{4} + 413343 q^{9} + 7340032 q^{16} - 10046225 q^{18} + 43069943 q^{20} - 66847361 q^{24} + 68359375 q^{25} - 271050857 q^{30} + 423263232 q^{36} + 358603175 q^{38} + 3453223375 q^{48} + 1977326743 q^{49} + 9379952743 q^{60} + 7516192768 q^{64} - 12629605457 q^{71} - 10287334400 q^{72} + 12262196639 q^{74} + 22879169782 q^{75} + 44103621632 q^{80} + 24407490807 q^{81} + 19300585150 q^{87} - 9134894657 q^{90} - 68451697664 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 14x^{5} + 56x^{3} - 56x - 21 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - \nu^{3} - 8\nu^{2} + 6\nu + 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\nu^{4} + 2\nu^{3} + 8\nu^{2} - 12\nu - 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 10\nu^{3} - 3\nu^{2} + 20\nu + 12 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{6} - 12\nu^{4} + 36\nu^{2} - 5\nu - 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + \beta_{3} + 6\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 2\beta_{3} + 8\beta_{2} + 24 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + 10\beta_{4} + 10\beta_{3} + 3\beta_{2} + 40\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{6} + 12\beta_{4} + 24\beta_{3} + 60\beta_{2} + 5\beta _1 + 160 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/71\mathbb{Z}\right)^\times\).

\(n\) \(7\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
70.1
1.64039
−2.61140
1.88136
−0.478208
−2.47768
2.82423
−0.778691
−63.7034 390.171 3034.12 6226.80 −24855.2 0 −128052. 93184.2 −396668.
70.2 −44.5303 −477.255 958.945 −1910.09 21252.3 0 2896.92 168724. 85056.9
70.3 −34.9065 −225.808 194.467 −861.095 7882.18 0 28956.1 −8059.70 30057.9
70.4 8.17505 469.814 −957.169 −5376.73 3840.75 0 −16196.1 161676. −43955.0
70.5 20.1756 16.7214 −616.944 −5843.58 337.364 0 −33107.1 −58769.4 −117898.
70.6 54.7244 −369.320 1970.76 4302.96 −20210.8 0 51810.8 77347.9 235477.
70.7 60.0651 195.677 2583.82 3461.73 11753.4 0 93690.9 −20759.4 207929.
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 70.7
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
71.b odd 2 1 CM by \(\Q(\sqrt{-71}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 71.11.b.a 7
71.b odd 2 1 CM 71.11.b.a 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
71.11.b.a 7 1.a even 1 1 trivial
71.11.b.a 7 71.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{7} - 7168T_{2}^{5} + 14680064T_{2}^{3} - 7516192768T_{2} + 53684057575 \) acting on \(S_{11}^{\mathrm{new}}(71, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} - 7168 T^{5} + \cdots + 53684057575 \) Copy content Toggle raw display
$3$ \( T^{7} - 413343 T^{5} + \cdots + 23\!\cdots\!50 \) Copy content Toggle raw display
$5$ \( T^{7} - 68359375 T^{5} + \cdots - 47\!\cdots\!74 \) Copy content Toggle raw display
$7$ \( T^{7} \) Copy content Toggle raw display
$11$ \( T^{7} \) Copy content Toggle raw display
$13$ \( T^{7} \) Copy content Toggle raw display
$17$ \( T^{7} \) Copy content Toggle raw display
$19$ \( T^{7} - 42917463804607 T^{5} + \cdots - 18\!\cdots\!98 \) Copy content Toggle raw display
$23$ \( T^{7} \) Copy content Toggle raw display
$29$ \( T^{7} + \cdots + 45\!\cdots\!02 \) Copy content Toggle raw display
$31$ \( T^{7} \) Copy content Toggle raw display
$37$ \( T^{7} + \cdots + 56\!\cdots\!50 \) Copy content Toggle raw display
$41$ \( T^{7} \) Copy content Toggle raw display
$43$ \( T^{7} + \cdots + 47\!\cdots\!50 \) Copy content Toggle raw display
$47$ \( T^{7} \) Copy content Toggle raw display
$53$ \( T^{7} \) Copy content Toggle raw display
$59$ \( T^{7} \) Copy content Toggle raw display
$61$ \( T^{7} \) Copy content Toggle raw display
$67$ \( T^{7} \) Copy content Toggle raw display
$71$ \( (T + 1804229351)^{7} \) Copy content Toggle raw display
$73$ \( T^{7} + \cdots - 30\!\cdots\!50 \) Copy content Toggle raw display
$79$ \( T^{7} + \cdots - 51\!\cdots\!98 \) Copy content Toggle raw display
$83$ \( T^{7} + \cdots - 26\!\cdots\!50 \) Copy content Toggle raw display
$89$ \( T^{7} + \cdots + 15\!\cdots\!98 \) Copy content Toggle raw display
$97$ \( T^{7} \) Copy content Toggle raw display
show more
show less