Properties

Label 71.1.b
Level 71
Weight 1
Character orbit b
Rep. character \(\chi_{71}(70,\cdot)\)
Character field \(\Q\)
Dimension 3
Newforms 1
Sturm bound 6
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 71 \)
Weight: \( k \) = \( 1 \)
Character orbit: \([\chi]\) = 71.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 71 \)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(71, [\chi])\).

Total New Old
Modular forms 4 4 0
Cusp forms 3 3 0
Eisenstein series 1 1 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 3 0 0 0

Trace form

\( 3q - q^{2} - q^{3} + 2q^{4} - q^{5} - 2q^{6} - 2q^{8} + 2q^{9} + O(q^{10}) \) \( 3q - q^{2} - q^{3} + 2q^{4} - q^{5} - 2q^{6} - 2q^{8} + 2q^{9} - 2q^{10} - 3q^{12} - 2q^{15} + q^{16} + 4q^{18} - q^{19} + 4q^{20} + 3q^{24} + 2q^{25} - 2q^{27} - q^{29} + 3q^{30} - 3q^{32} - q^{36} - q^{37} + 5q^{38} - 4q^{40} - q^{43} - 3q^{45} + 2q^{48} + 3q^{49} - 3q^{50} - 4q^{54} - 2q^{57} - 2q^{58} + q^{60} + 3q^{71} + q^{72} - q^{73} + 5q^{74} + 4q^{75} - 3q^{76} - q^{79} + 2q^{80} + q^{81} - q^{83} - 2q^{86} + 5q^{87} - q^{89} + q^{90} - 2q^{95} + q^{96} - q^{98} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(71, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
71.1.b.a \(3\) \(0.035\) \(\Q(\zeta_{14})^+\) \(D_{7}\) \(\Q(\sqrt{-71}) \) None \(-1\) \(-1\) \(-1\) \(0\) \(q-\beta _{1}q^{2}+(-1+\beta _{1}-\beta _{2})q^{3}+(1+\beta _{2})q^{4}+\cdots\)