Properties

Label 7098.2.a.ci
Level $7098$
Weight $2$
Character orbit 7098.a
Self dual yes
Analytic conductor $56.678$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 7098 = 2 \cdot 3 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7098.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(56.6778153547\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Defining polynomial: \(x^{3} - x^{2} - 2 x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} + ( -\beta_{1} - \beta_{2} ) q^{5} - q^{6} - q^{7} + q^{8} + q^{9} +O(q^{10})\) \( q + q^{2} - q^{3} + q^{4} + ( -\beta_{1} - \beta_{2} ) q^{5} - q^{6} - q^{7} + q^{8} + q^{9} + ( -\beta_{1} - \beta_{2} ) q^{10} + ( 2 - 2 \beta_{1} + 3 \beta_{2} ) q^{11} - q^{12} - q^{14} + ( \beta_{1} + \beta_{2} ) q^{15} + q^{16} + ( 4 - 3 \beta_{1} ) q^{17} + q^{18} + ( 2 - 2 \beta_{1} + 3 \beta_{2} ) q^{19} + ( -\beta_{1} - \beta_{2} ) q^{20} + q^{21} + ( 2 - 2 \beta_{1} + 3 \beta_{2} ) q^{22} + ( 3 - 5 \beta_{1} + 3 \beta_{2} ) q^{23} - q^{24} + ( \beta_{1} + 2 \beta_{2} ) q^{25} - q^{27} - q^{28} + ( -3 + 3 \beta_{1} - 4 \beta_{2} ) q^{29} + ( \beta_{1} + \beta_{2} ) q^{30} + ( 1 - 2 \beta_{1} - 3 \beta_{2} ) q^{31} + q^{32} + ( -2 + 2 \beta_{1} - 3 \beta_{2} ) q^{33} + ( 4 - 3 \beta_{1} ) q^{34} + ( \beta_{1} + \beta_{2} ) q^{35} + q^{36} + ( 4 + 3 \beta_{1} + \beta_{2} ) q^{37} + ( 2 - 2 \beta_{1} + 3 \beta_{2} ) q^{38} + ( -\beta_{1} - \beta_{2} ) q^{40} + ( \beta_{1} - 5 \beta_{2} ) q^{41} + q^{42} + ( -9 - \beta_{1} + \beta_{2} ) q^{43} + ( 2 - 2 \beta_{1} + 3 \beta_{2} ) q^{44} + ( -\beta_{1} - \beta_{2} ) q^{45} + ( 3 - 5 \beta_{1} + 3 \beta_{2} ) q^{46} + ( 1 - 4 \beta_{2} ) q^{47} - q^{48} + q^{49} + ( \beta_{1} + 2 \beta_{2} ) q^{50} + ( -4 + 3 \beta_{1} ) q^{51} + ( 3 + 4 \beta_{1} - 3 \beta_{2} ) q^{53} - q^{54} + ( -5 \beta_{1} + 2 \beta_{2} ) q^{55} - q^{56} + ( -2 + 2 \beta_{1} - 3 \beta_{2} ) q^{57} + ( -3 + 3 \beta_{1} - 4 \beta_{2} ) q^{58} + ( -4 + \beta_{1} - \beta_{2} ) q^{59} + ( \beta_{1} + \beta_{2} ) q^{60} + ( 5 + 4 \beta_{2} ) q^{61} + ( 1 - 2 \beta_{1} - 3 \beta_{2} ) q^{62} - q^{63} + q^{64} + ( -2 + 2 \beta_{1} - 3 \beta_{2} ) q^{66} + ( 1 + 3 \beta_{1} + 4 \beta_{2} ) q^{67} + ( 4 - 3 \beta_{1} ) q^{68} + ( -3 + 5 \beta_{1} - 3 \beta_{2} ) q^{69} + ( \beta_{1} + \beta_{2} ) q^{70} + ( 2 + 4 \beta_{1} - 4 \beta_{2} ) q^{71} + q^{72} + ( -4 + 11 \beta_{1} - 8 \beta_{2} ) q^{73} + ( 4 + 3 \beta_{1} + \beta_{2} ) q^{74} + ( -\beta_{1} - 2 \beta_{2} ) q^{75} + ( 2 - 2 \beta_{1} + 3 \beta_{2} ) q^{76} + ( -2 + 2 \beta_{1} - 3 \beta_{2} ) q^{77} + ( -6 + 5 \beta_{1} - 11 \beta_{2} ) q^{79} + ( -\beta_{1} - \beta_{2} ) q^{80} + q^{81} + ( \beta_{1} - 5 \beta_{2} ) q^{82} + ( -2 + 4 \beta_{1} + 3 \beta_{2} ) q^{83} + q^{84} + ( 9 - 4 \beta_{1} + 2 \beta_{2} ) q^{85} + ( -9 - \beta_{1} + \beta_{2} ) q^{86} + ( 3 - 3 \beta_{1} + 4 \beta_{2} ) q^{87} + ( 2 - 2 \beta_{1} + 3 \beta_{2} ) q^{88} + ( 5 - 9 \beta_{1} + 6 \beta_{2} ) q^{89} + ( -\beta_{1} - \beta_{2} ) q^{90} + ( 3 - 5 \beta_{1} + 3 \beta_{2} ) q^{92} + ( -1 + 2 \beta_{1} + 3 \beta_{2} ) q^{93} + ( 1 - 4 \beta_{2} ) q^{94} + ( -5 \beta_{1} + 2 \beta_{2} ) q^{95} - q^{96} + ( -4 + 7 \beta_{1} - 11 \beta_{2} ) q^{97} + q^{98} + ( 2 - 2 \beta_{1} + 3 \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q + 3q^{2} - 3q^{3} + 3q^{4} - 3q^{6} - 3q^{7} + 3q^{8} + 3q^{9} + O(q^{10}) \) \( 3q + 3q^{2} - 3q^{3} + 3q^{4} - 3q^{6} - 3q^{7} + 3q^{8} + 3q^{9} + q^{11} - 3q^{12} - 3q^{14} + 3q^{16} + 9q^{17} + 3q^{18} + q^{19} + 3q^{21} + q^{22} + q^{23} - 3q^{24} - q^{25} - 3q^{27} - 3q^{28} - 2q^{29} + 4q^{31} + 3q^{32} - q^{33} + 9q^{34} + 3q^{36} + 14q^{37} + q^{38} + 6q^{41} + 3q^{42} - 29q^{43} + q^{44} + q^{46} + 7q^{47} - 3q^{48} + 3q^{49} - q^{50} - 9q^{51} + 16q^{53} - 3q^{54} - 7q^{55} - 3q^{56} - q^{57} - 2q^{58} - 10q^{59} + 11q^{61} + 4q^{62} - 3q^{63} + 3q^{64} - q^{66} + 2q^{67} + 9q^{68} - q^{69} + 14q^{71} + 3q^{72} + 7q^{73} + 14q^{74} + q^{75} + q^{76} - q^{77} - 2q^{79} + 3q^{81} + 6q^{82} - 5q^{83} + 3q^{84} + 21q^{85} - 29q^{86} + 2q^{87} + q^{88} + q^{92} - 4q^{93} + 7q^{94} - 7q^{95} - 3q^{96} + 6q^{97} + 3q^{98} + q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
0.445042
−1.24698
1.00000 −1.00000 1.00000 −3.04892 −1.00000 −1.00000 1.00000 1.00000 −3.04892
1.2 1.00000 −1.00000 1.00000 1.35690 −1.00000 −1.00000 1.00000 1.00000 1.35690
1.3 1.00000 −1.00000 1.00000 1.69202 −1.00000 −1.00000 1.00000 1.00000 1.69202
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(7\) \(1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7098.2.a.ci yes 3
13.b even 2 1 7098.2.a.cd 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7098.2.a.cd 3 13.b even 2 1
7098.2.a.ci yes 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7098))\):

\( T_{5}^{3} - 7 T_{5} + 7 \)
\( T_{11}^{3} - T_{11}^{2} - 16 T_{11} + 29 \)
\( T_{17}^{3} - 9 T_{17}^{2} + 6 T_{17} + 29 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( -1 + T )^{3} \)
$3$ \( ( 1 + T )^{3} \)
$5$ \( 7 - 7 T + T^{3} \)
$7$ \( ( 1 + T )^{3} \)
$11$ \( 29 - 16 T - T^{2} + T^{3} \)
$13$ \( T^{3} \)
$17$ \( 29 + 6 T - 9 T^{2} + T^{3} \)
$19$ \( 29 - 16 T - T^{2} + T^{3} \)
$23$ \( -83 - 44 T - T^{2} + T^{3} \)
$29$ \( -71 - 29 T + 2 T^{2} + T^{3} \)
$31$ \( 169 - 39 T - 4 T^{2} + T^{3} \)
$37$ \( 7 + 35 T - 14 T^{2} + T^{3} \)
$41$ \( 41 - 37 T - 6 T^{2} + T^{3} \)
$43$ \( 881 + 278 T + 29 T^{2} + T^{3} \)
$47$ \( 91 - 21 T - 7 T^{2} + T^{3} \)
$53$ \( 43 + 55 T - 16 T^{2} + T^{3} \)
$59$ \( 29 + 31 T + 10 T^{2} + T^{3} \)
$61$ \( 71 + 3 T - 11 T^{2} + T^{3} \)
$67$ \( -251 - 85 T - 2 T^{2} + T^{3} \)
$71$ \( 56 + 28 T - 14 T^{2} + T^{3} \)
$73$ \( 1267 - 210 T - 7 T^{2} + T^{3} \)
$79$ \( -1261 - 211 T + 2 T^{2} + T^{3} \)
$83$ \( -419 - 78 T + 5 T^{2} + T^{3} \)
$89$ \( -497 - 147 T + T^{3} \)
$97$ \( -757 - 205 T - 6 T^{2} + T^{3} \)
show more
show less