Properties

Label 7098.2.a.bu.1.1
Level $7098$
Weight $2$
Character 7098.1
Self dual yes
Analytic conductor $56.678$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7098 = 2 \cdot 3 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7098.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(56.6778153547\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
Defining polynomial: \(x^{2} - x - 14\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.27492\) of defining polynomial
Character \(\chi\) \(=\) 7098.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -3.27492 q^{5} -1.00000 q^{6} -1.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -3.27492 q^{5} -1.00000 q^{6} -1.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} -3.27492 q^{10} -5.27492 q^{11} -1.00000 q^{12} -1.00000 q^{14} +3.27492 q^{15} +1.00000 q^{16} -7.27492 q^{17} +1.00000 q^{18} -5.27492 q^{19} -3.27492 q^{20} +1.00000 q^{21} -5.27492 q^{22} -5.27492 q^{23} -1.00000 q^{24} +5.72508 q^{25} -1.00000 q^{27} -1.00000 q^{28} +0.725083 q^{29} +3.27492 q^{30} -8.00000 q^{31} +1.00000 q^{32} +5.27492 q^{33} -7.27492 q^{34} +3.27492 q^{35} +1.00000 q^{36} -3.27492 q^{37} -5.27492 q^{38} -3.27492 q^{40} +8.54983 q^{41} +1.00000 q^{42} +5.27492 q^{43} -5.27492 q^{44} -3.27492 q^{45} -5.27492 q^{46} -1.00000 q^{48} +1.00000 q^{49} +5.72508 q^{50} +7.27492 q^{51} +10.0000 q^{53} -1.00000 q^{54} +17.2749 q^{55} -1.00000 q^{56} +5.27492 q^{57} +0.725083 q^{58} -8.00000 q^{59} +3.27492 q^{60} -4.72508 q^{61} -8.00000 q^{62} -1.00000 q^{63} +1.00000 q^{64} +5.27492 q^{66} +2.54983 q^{67} -7.27492 q^{68} +5.27492 q^{69} +3.27492 q^{70} +1.00000 q^{72} -9.82475 q^{73} -3.27492 q^{74} -5.72508 q^{75} -5.27492 q^{76} +5.27492 q^{77} -2.54983 q^{79} -3.27492 q^{80} +1.00000 q^{81} +8.54983 q^{82} -10.5498 q^{83} +1.00000 q^{84} +23.8248 q^{85} +5.27492 q^{86} -0.725083 q^{87} -5.27492 q^{88} +14.0000 q^{89} -3.27492 q^{90} -5.27492 q^{92} +8.00000 q^{93} +17.2749 q^{95} -1.00000 q^{96} +15.0997 q^{97} +1.00000 q^{98} -5.27492 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} + q^{5} - 2 q^{6} - 2 q^{7} + 2 q^{8} + 2 q^{9} + O(q^{10}) \) \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} + q^{5} - 2 q^{6} - 2 q^{7} + 2 q^{8} + 2 q^{9} + q^{10} - 3 q^{11} - 2 q^{12} - 2 q^{14} - q^{15} + 2 q^{16} - 7 q^{17} + 2 q^{18} - 3 q^{19} + q^{20} + 2 q^{21} - 3 q^{22} - 3 q^{23} - 2 q^{24} + 19 q^{25} - 2 q^{27} - 2 q^{28} + 9 q^{29} - q^{30} - 16 q^{31} + 2 q^{32} + 3 q^{33} - 7 q^{34} - q^{35} + 2 q^{36} + q^{37} - 3 q^{38} + q^{40} + 2 q^{41} + 2 q^{42} + 3 q^{43} - 3 q^{44} + q^{45} - 3 q^{46} - 2 q^{48} + 2 q^{49} + 19 q^{50} + 7 q^{51} + 20 q^{53} - 2 q^{54} + 27 q^{55} - 2 q^{56} + 3 q^{57} + 9 q^{58} - 16 q^{59} - q^{60} - 17 q^{61} - 16 q^{62} - 2 q^{63} + 2 q^{64} + 3 q^{66} - 10 q^{67} - 7 q^{68} + 3 q^{69} - q^{70} + 2 q^{72} + 3 q^{73} + q^{74} - 19 q^{75} - 3 q^{76} + 3 q^{77} + 10 q^{79} + q^{80} + 2 q^{81} + 2 q^{82} - 6 q^{83} + 2 q^{84} + 25 q^{85} + 3 q^{86} - 9 q^{87} - 3 q^{88} + 28 q^{89} + q^{90} - 3 q^{92} + 16 q^{93} + 27 q^{95} - 2 q^{96} + 2 q^{98} - 3 q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −3.27492 −1.46459 −0.732294 0.680989i \(-0.761550\pi\)
−0.732294 + 0.680989i \(0.761550\pi\)
\(6\) −1.00000 −0.408248
\(7\) −1.00000 −0.377964
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −3.27492 −1.03562
\(11\) −5.27492 −1.59045 −0.795224 0.606316i \(-0.792647\pi\)
−0.795224 + 0.606316i \(0.792647\pi\)
\(12\) −1.00000 −0.288675
\(13\) 0 0
\(14\) −1.00000 −0.267261
\(15\) 3.27492 0.845580
\(16\) 1.00000 0.250000
\(17\) −7.27492 −1.76443 −0.882213 0.470850i \(-0.843947\pi\)
−0.882213 + 0.470850i \(0.843947\pi\)
\(18\) 1.00000 0.235702
\(19\) −5.27492 −1.21015 −0.605075 0.796169i \(-0.706857\pi\)
−0.605075 + 0.796169i \(0.706857\pi\)
\(20\) −3.27492 −0.732294
\(21\) 1.00000 0.218218
\(22\) −5.27492 −1.12462
\(23\) −5.27492 −1.09990 −0.549948 0.835199i \(-0.685353\pi\)
−0.549948 + 0.835199i \(0.685353\pi\)
\(24\) −1.00000 −0.204124
\(25\) 5.72508 1.14502
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) −1.00000 −0.188982
\(29\) 0.725083 0.134644 0.0673222 0.997731i \(-0.478554\pi\)
0.0673222 + 0.997731i \(0.478554\pi\)
\(30\) 3.27492 0.597915
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 1.00000 0.176777
\(33\) 5.27492 0.918245
\(34\) −7.27492 −1.24764
\(35\) 3.27492 0.553562
\(36\) 1.00000 0.166667
\(37\) −3.27492 −0.538393 −0.269197 0.963085i \(-0.586758\pi\)
−0.269197 + 0.963085i \(0.586758\pi\)
\(38\) −5.27492 −0.855705
\(39\) 0 0
\(40\) −3.27492 −0.517810
\(41\) 8.54983 1.33526 0.667630 0.744493i \(-0.267309\pi\)
0.667630 + 0.744493i \(0.267309\pi\)
\(42\) 1.00000 0.154303
\(43\) 5.27492 0.804417 0.402209 0.915548i \(-0.368243\pi\)
0.402209 + 0.915548i \(0.368243\pi\)
\(44\) −5.27492 −0.795224
\(45\) −3.27492 −0.488196
\(46\) −5.27492 −0.777744
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −1.00000 −0.144338
\(49\) 1.00000 0.142857
\(50\) 5.72508 0.809649
\(51\) 7.27492 1.01869
\(52\) 0 0
\(53\) 10.0000 1.37361 0.686803 0.726844i \(-0.259014\pi\)
0.686803 + 0.726844i \(0.259014\pi\)
\(54\) −1.00000 −0.136083
\(55\) 17.2749 2.32935
\(56\) −1.00000 −0.133631
\(57\) 5.27492 0.698680
\(58\) 0.725083 0.0952080
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 3.27492 0.422790
\(61\) −4.72508 −0.604985 −0.302492 0.953152i \(-0.597819\pi\)
−0.302492 + 0.953152i \(0.597819\pi\)
\(62\) −8.00000 −1.01600
\(63\) −1.00000 −0.125988
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 5.27492 0.649297
\(67\) 2.54983 0.311512 0.155756 0.987796i \(-0.450219\pi\)
0.155756 + 0.987796i \(0.450219\pi\)
\(68\) −7.27492 −0.882213
\(69\) 5.27492 0.635025
\(70\) 3.27492 0.391427
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 1.00000 0.117851
\(73\) −9.82475 −1.14990 −0.574950 0.818188i \(-0.694979\pi\)
−0.574950 + 0.818188i \(0.694979\pi\)
\(74\) −3.27492 −0.380701
\(75\) −5.72508 −0.661076
\(76\) −5.27492 −0.605075
\(77\) 5.27492 0.601133
\(78\) 0 0
\(79\) −2.54983 −0.286879 −0.143439 0.989659i \(-0.545816\pi\)
−0.143439 + 0.989659i \(0.545816\pi\)
\(80\) −3.27492 −0.366147
\(81\) 1.00000 0.111111
\(82\) 8.54983 0.944171
\(83\) −10.5498 −1.15799 −0.578997 0.815329i \(-0.696556\pi\)
−0.578997 + 0.815329i \(0.696556\pi\)
\(84\) 1.00000 0.109109
\(85\) 23.8248 2.58416
\(86\) 5.27492 0.568809
\(87\) −0.725083 −0.0777370
\(88\) −5.27492 −0.562308
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) −3.27492 −0.345207
\(91\) 0 0
\(92\) −5.27492 −0.549948
\(93\) 8.00000 0.829561
\(94\) 0 0
\(95\) 17.2749 1.77237
\(96\) −1.00000 −0.102062
\(97\) 15.0997 1.53314 0.766570 0.642161i \(-0.221962\pi\)
0.766570 + 0.642161i \(0.221962\pi\)
\(98\) 1.00000 0.101015
\(99\) −5.27492 −0.530149
\(100\) 5.72508 0.572508
\(101\) −12.5498 −1.24876 −0.624378 0.781123i \(-0.714647\pi\)
−0.624378 + 0.781123i \(0.714647\pi\)
\(102\) 7.27492 0.720324
\(103\) 2.72508 0.268510 0.134255 0.990947i \(-0.457136\pi\)
0.134255 + 0.990947i \(0.457136\pi\)
\(104\) 0 0
\(105\) −3.27492 −0.319599
\(106\) 10.0000 0.971286
\(107\) −14.5498 −1.40659 −0.703293 0.710900i \(-0.748288\pi\)
−0.703293 + 0.710900i \(0.748288\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 7.27492 0.696811 0.348405 0.937344i \(-0.386723\pi\)
0.348405 + 0.937344i \(0.386723\pi\)
\(110\) 17.2749 1.64710
\(111\) 3.27492 0.310841
\(112\) −1.00000 −0.0944911
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 5.27492 0.494041
\(115\) 17.2749 1.61089
\(116\) 0.725083 0.0673222
\(117\) 0 0
\(118\) −8.00000 −0.736460
\(119\) 7.27492 0.666891
\(120\) 3.27492 0.298958
\(121\) 16.8248 1.52952
\(122\) −4.72508 −0.427789
\(123\) −8.54983 −0.770913
\(124\) −8.00000 −0.718421
\(125\) −2.37459 −0.212389
\(126\) −1.00000 −0.0890871
\(127\) −5.45017 −0.483624 −0.241812 0.970323i \(-0.577742\pi\)
−0.241812 + 0.970323i \(0.577742\pi\)
\(128\) 1.00000 0.0883883
\(129\) −5.27492 −0.464431
\(130\) 0 0
\(131\) −15.8248 −1.38261 −0.691307 0.722561i \(-0.742965\pi\)
−0.691307 + 0.722561i \(0.742965\pi\)
\(132\) 5.27492 0.459123
\(133\) 5.27492 0.457393
\(134\) 2.54983 0.220272
\(135\) 3.27492 0.281860
\(136\) −7.27492 −0.623819
\(137\) −20.3746 −1.74072 −0.870359 0.492417i \(-0.836113\pi\)
−0.870359 + 0.492417i \(0.836113\pi\)
\(138\) 5.27492 0.449031
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 3.27492 0.276781
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) −2.37459 −0.197199
\(146\) −9.82475 −0.813102
\(147\) −1.00000 −0.0824786
\(148\) −3.27492 −0.269197
\(149\) −7.45017 −0.610341 −0.305171 0.952298i \(-0.598714\pi\)
−0.305171 + 0.952298i \(0.598714\pi\)
\(150\) −5.72508 −0.467451
\(151\) 1.27492 0.103751 0.0518756 0.998654i \(-0.483480\pi\)
0.0518756 + 0.998654i \(0.483480\pi\)
\(152\) −5.27492 −0.427852
\(153\) −7.27492 −0.588142
\(154\) 5.27492 0.425065
\(155\) 26.1993 2.10438
\(156\) 0 0
\(157\) 24.3746 1.94530 0.972652 0.232268i \(-0.0746146\pi\)
0.972652 + 0.232268i \(0.0746146\pi\)
\(158\) −2.54983 −0.202854
\(159\) −10.0000 −0.793052
\(160\) −3.27492 −0.258905
\(161\) 5.27492 0.415722
\(162\) 1.00000 0.0785674
\(163\) 2.54983 0.199718 0.0998592 0.995002i \(-0.468161\pi\)
0.0998592 + 0.995002i \(0.468161\pi\)
\(164\) 8.54983 0.667630
\(165\) −17.2749 −1.34485
\(166\) −10.5498 −0.818826
\(167\) 9.27492 0.717715 0.358857 0.933392i \(-0.383166\pi\)
0.358857 + 0.933392i \(0.383166\pi\)
\(168\) 1.00000 0.0771517
\(169\) 0 0
\(170\) 23.8248 1.82728
\(171\) −5.27492 −0.403383
\(172\) 5.27492 0.402209
\(173\) −23.0997 −1.75624 −0.878118 0.478445i \(-0.841201\pi\)
−0.878118 + 0.478445i \(0.841201\pi\)
\(174\) −0.725083 −0.0549684
\(175\) −5.72508 −0.432776
\(176\) −5.27492 −0.397612
\(177\) 8.00000 0.601317
\(178\) 14.0000 1.04934
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) −3.27492 −0.244098
\(181\) −11.0997 −0.825032 −0.412516 0.910950i \(-0.635350\pi\)
−0.412516 + 0.910950i \(0.635350\pi\)
\(182\) 0 0
\(183\) 4.72508 0.349288
\(184\) −5.27492 −0.388872
\(185\) 10.7251 0.788524
\(186\) 8.00000 0.586588
\(187\) 38.3746 2.80623
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 17.2749 1.25325
\(191\) −5.27492 −0.381680 −0.190840 0.981621i \(-0.561121\pi\)
−0.190840 + 0.981621i \(0.561121\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 3.45017 0.248348 0.124174 0.992260i \(-0.460372\pi\)
0.124174 + 0.992260i \(0.460372\pi\)
\(194\) 15.0997 1.08409
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −12.5498 −0.894139 −0.447069 0.894499i \(-0.647532\pi\)
−0.447069 + 0.894499i \(0.647532\pi\)
\(198\) −5.27492 −0.374872
\(199\) −15.8248 −1.12179 −0.560893 0.827888i \(-0.689542\pi\)
−0.560893 + 0.827888i \(0.689542\pi\)
\(200\) 5.72508 0.404824
\(201\) −2.54983 −0.179851
\(202\) −12.5498 −0.883003
\(203\) −0.725083 −0.0508908
\(204\) 7.27492 0.509346
\(205\) −28.0000 −1.95560
\(206\) 2.72508 0.189866
\(207\) −5.27492 −0.366632
\(208\) 0 0
\(209\) 27.8248 1.92468
\(210\) −3.27492 −0.225991
\(211\) 23.8248 1.64016 0.820082 0.572246i \(-0.193928\pi\)
0.820082 + 0.572246i \(0.193928\pi\)
\(212\) 10.0000 0.686803
\(213\) 0 0
\(214\) −14.5498 −0.994606
\(215\) −17.2749 −1.17814
\(216\) −1.00000 −0.0680414
\(217\) 8.00000 0.543075
\(218\) 7.27492 0.492720
\(219\) 9.82475 0.663895
\(220\) 17.2749 1.16467
\(221\) 0 0
\(222\) 3.27492 0.219798
\(223\) 23.6495 1.58369 0.791844 0.610723i \(-0.209121\pi\)
0.791844 + 0.610723i \(0.209121\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 5.72508 0.381672
\(226\) −6.00000 −0.399114
\(227\) 5.45017 0.361740 0.180870 0.983507i \(-0.442109\pi\)
0.180870 + 0.983507i \(0.442109\pi\)
\(228\) 5.27492 0.349340
\(229\) 11.0997 0.733487 0.366743 0.930322i \(-0.380473\pi\)
0.366743 + 0.930322i \(0.380473\pi\)
\(230\) 17.2749 1.13907
\(231\) −5.27492 −0.347064
\(232\) 0.725083 0.0476040
\(233\) 20.5498 1.34626 0.673132 0.739522i \(-0.264948\pi\)
0.673132 + 0.739522i \(0.264948\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −8.00000 −0.520756
\(237\) 2.54983 0.165630
\(238\) 7.27492 0.471563
\(239\) 5.09967 0.329870 0.164935 0.986304i \(-0.447259\pi\)
0.164935 + 0.986304i \(0.447259\pi\)
\(240\) 3.27492 0.211395
\(241\) 15.0997 0.972655 0.486328 0.873777i \(-0.338336\pi\)
0.486328 + 0.873777i \(0.338336\pi\)
\(242\) 16.8248 1.08154
\(243\) −1.00000 −0.0641500
\(244\) −4.72508 −0.302492
\(245\) −3.27492 −0.209227
\(246\) −8.54983 −0.545118
\(247\) 0 0
\(248\) −8.00000 −0.508001
\(249\) 10.5498 0.668569
\(250\) −2.37459 −0.150182
\(251\) −28.9244 −1.82569 −0.912847 0.408303i \(-0.866121\pi\)
−0.912847 + 0.408303i \(0.866121\pi\)
\(252\) −1.00000 −0.0629941
\(253\) 27.8248 1.74933
\(254\) −5.45017 −0.341974
\(255\) −23.8248 −1.49196
\(256\) 1.00000 0.0625000
\(257\) −14.0000 −0.873296 −0.436648 0.899632i \(-0.643834\pi\)
−0.436648 + 0.899632i \(0.643834\pi\)
\(258\) −5.27492 −0.328402
\(259\) 3.27492 0.203493
\(260\) 0 0
\(261\) 0.725083 0.0448815
\(262\) −15.8248 −0.977656
\(263\) 28.0000 1.72655 0.863277 0.504730i \(-0.168408\pi\)
0.863277 + 0.504730i \(0.168408\pi\)
\(264\) 5.27492 0.324649
\(265\) −32.7492 −2.01177
\(266\) 5.27492 0.323426
\(267\) −14.0000 −0.856786
\(268\) 2.54983 0.155756
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 3.27492 0.199305
\(271\) −13.4502 −0.817039 −0.408520 0.912750i \(-0.633955\pi\)
−0.408520 + 0.912750i \(0.633955\pi\)
\(272\) −7.27492 −0.441107
\(273\) 0 0
\(274\) −20.3746 −1.23087
\(275\) −30.1993 −1.82109
\(276\) 5.27492 0.317513
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 4.00000 0.239904
\(279\) −8.00000 −0.478947
\(280\) 3.27492 0.195714
\(281\) 15.0997 0.900771 0.450385 0.892834i \(-0.351287\pi\)
0.450385 + 0.892834i \(0.351287\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 0 0
\(285\) −17.2749 −1.02328
\(286\) 0 0
\(287\) −8.54983 −0.504681
\(288\) 1.00000 0.0589256
\(289\) 35.9244 2.11320
\(290\) −2.37459 −0.139440
\(291\) −15.0997 −0.885158
\(292\) −9.82475 −0.574950
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) −1.00000 −0.0583212
\(295\) 26.1993 1.52538
\(296\) −3.27492 −0.190351
\(297\) 5.27492 0.306082
\(298\) −7.45017 −0.431577
\(299\) 0 0
\(300\) −5.72508 −0.330538
\(301\) −5.27492 −0.304041
\(302\) 1.27492 0.0733632
\(303\) 12.5498 0.720969
\(304\) −5.27492 −0.302537
\(305\) 15.4743 0.886053
\(306\) −7.27492 −0.415879
\(307\) 9.09967 0.519346 0.259673 0.965697i \(-0.416385\pi\)
0.259673 + 0.965697i \(0.416385\pi\)
\(308\) 5.27492 0.300566
\(309\) −2.72508 −0.155025
\(310\) 26.1993 1.48802
\(311\) 18.5498 1.05186 0.525932 0.850526i \(-0.323717\pi\)
0.525932 + 0.850526i \(0.323717\pi\)
\(312\) 0 0
\(313\) 17.6495 0.997609 0.498804 0.866715i \(-0.333773\pi\)
0.498804 + 0.866715i \(0.333773\pi\)
\(314\) 24.3746 1.37554
\(315\) 3.27492 0.184521
\(316\) −2.54983 −0.143439
\(317\) 16.5498 0.929531 0.464766 0.885434i \(-0.346139\pi\)
0.464766 + 0.885434i \(0.346139\pi\)
\(318\) −10.0000 −0.560772
\(319\) −3.82475 −0.214145
\(320\) −3.27492 −0.183073
\(321\) 14.5498 0.812093
\(322\) 5.27492 0.293960
\(323\) 38.3746 2.13522
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) 2.54983 0.141222
\(327\) −7.27492 −0.402304
\(328\) 8.54983 0.472086
\(329\) 0 0
\(330\) −17.2749 −0.950953
\(331\) −15.6495 −0.860174 −0.430087 0.902787i \(-0.641517\pi\)
−0.430087 + 0.902787i \(0.641517\pi\)
\(332\) −10.5498 −0.578997
\(333\) −3.27492 −0.179464
\(334\) 9.27492 0.507501
\(335\) −8.35050 −0.456236
\(336\) 1.00000 0.0545545
\(337\) −28.3746 −1.54566 −0.772831 0.634612i \(-0.781160\pi\)
−0.772831 + 0.634612i \(0.781160\pi\)
\(338\) 0 0
\(339\) 6.00000 0.325875
\(340\) 23.8248 1.29208
\(341\) 42.1993 2.28522
\(342\) −5.27492 −0.285235
\(343\) −1.00000 −0.0539949
\(344\) 5.27492 0.284404
\(345\) −17.2749 −0.930050
\(346\) −23.0997 −1.24185
\(347\) −25.0997 −1.34742 −0.673710 0.738995i \(-0.735300\pi\)
−0.673710 + 0.738995i \(0.735300\pi\)
\(348\) −0.725083 −0.0388685
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) −5.72508 −0.306019
\(351\) 0 0
\(352\) −5.27492 −0.281154
\(353\) 3.09967 0.164979 0.0824894 0.996592i \(-0.473713\pi\)
0.0824894 + 0.996592i \(0.473713\pi\)
\(354\) 8.00000 0.425195
\(355\) 0 0
\(356\) 14.0000 0.741999
\(357\) −7.27492 −0.385029
\(358\) 12.0000 0.634220
\(359\) 32.0000 1.68890 0.844448 0.535638i \(-0.179929\pi\)
0.844448 + 0.535638i \(0.179929\pi\)
\(360\) −3.27492 −0.172603
\(361\) 8.82475 0.464461
\(362\) −11.0997 −0.583386
\(363\) −16.8248 −0.883070
\(364\) 0 0
\(365\) 32.1752 1.68413
\(366\) 4.72508 0.246984
\(367\) −33.0997 −1.72779 −0.863894 0.503673i \(-0.831982\pi\)
−0.863894 + 0.503673i \(0.831982\pi\)
\(368\) −5.27492 −0.274974
\(369\) 8.54983 0.445087
\(370\) 10.7251 0.557571
\(371\) −10.0000 −0.519174
\(372\) 8.00000 0.414781
\(373\) 11.4502 0.592867 0.296434 0.955053i \(-0.404203\pi\)
0.296434 + 0.955053i \(0.404203\pi\)
\(374\) 38.3746 1.98430
\(375\) 2.37459 0.122623
\(376\) 0 0
\(377\) 0 0
\(378\) 1.00000 0.0514344
\(379\) 2.90033 0.148980 0.0744900 0.997222i \(-0.476267\pi\)
0.0744900 + 0.997222i \(0.476267\pi\)
\(380\) 17.2749 0.886185
\(381\) 5.45017 0.279220
\(382\) −5.27492 −0.269888
\(383\) −22.7251 −1.16120 −0.580599 0.814190i \(-0.697181\pi\)
−0.580599 + 0.814190i \(0.697181\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −17.2749 −0.880411
\(386\) 3.45017 0.175609
\(387\) 5.27492 0.268139
\(388\) 15.0997 0.766570
\(389\) −32.1993 −1.63257 −0.816286 0.577649i \(-0.803970\pi\)
−0.816286 + 0.577649i \(0.803970\pi\)
\(390\) 0 0
\(391\) 38.3746 1.94069
\(392\) 1.00000 0.0505076
\(393\) 15.8248 0.798253
\(394\) −12.5498 −0.632252
\(395\) 8.35050 0.420159
\(396\) −5.27492 −0.265075
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) −15.8248 −0.793223
\(399\) −5.27492 −0.264076
\(400\) 5.72508 0.286254
\(401\) −27.0997 −1.35329 −0.676646 0.736308i \(-0.736567\pi\)
−0.676646 + 0.736308i \(0.736567\pi\)
\(402\) −2.54983 −0.127174
\(403\) 0 0
\(404\) −12.5498 −0.624378
\(405\) −3.27492 −0.162732
\(406\) −0.725083 −0.0359853
\(407\) 17.2749 0.856286
\(408\) 7.27492 0.360162
\(409\) 29.8248 1.47474 0.737370 0.675490i \(-0.236068\pi\)
0.737370 + 0.675490i \(0.236068\pi\)
\(410\) −28.0000 −1.38282
\(411\) 20.3746 1.00500
\(412\) 2.72508 0.134255
\(413\) 8.00000 0.393654
\(414\) −5.27492 −0.259248
\(415\) 34.5498 1.69598
\(416\) 0 0
\(417\) −4.00000 −0.195881
\(418\) 27.8248 1.36095
\(419\) −5.27492 −0.257697 −0.128848 0.991664i \(-0.541128\pi\)
−0.128848 + 0.991664i \(0.541128\pi\)
\(420\) −3.27492 −0.159800
\(421\) 27.0997 1.32076 0.660379 0.750933i \(-0.270396\pi\)
0.660379 + 0.750933i \(0.270396\pi\)
\(422\) 23.8248 1.15977
\(423\) 0 0
\(424\) 10.0000 0.485643
\(425\) −41.6495 −2.02030
\(426\) 0 0
\(427\) 4.72508 0.228663
\(428\) −14.5498 −0.703293
\(429\) 0 0
\(430\) −17.2749 −0.833070
\(431\) 26.5498 1.27886 0.639430 0.768849i \(-0.279170\pi\)
0.639430 + 0.768849i \(0.279170\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −21.6495 −1.04041 −0.520204 0.854042i \(-0.674144\pi\)
−0.520204 + 0.854042i \(0.674144\pi\)
\(434\) 8.00000 0.384012
\(435\) 2.37459 0.113853
\(436\) 7.27492 0.348405
\(437\) 27.8248 1.33104
\(438\) 9.82475 0.469445
\(439\) 7.82475 0.373455 0.186728 0.982412i \(-0.440212\pi\)
0.186728 + 0.982412i \(0.440212\pi\)
\(440\) 17.2749 0.823549
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 22.5498 1.07137 0.535687 0.844416i \(-0.320053\pi\)
0.535687 + 0.844416i \(0.320053\pi\)
\(444\) 3.27492 0.155421
\(445\) −45.8488 −2.17344
\(446\) 23.6495 1.11984
\(447\) 7.45017 0.352381
\(448\) −1.00000 −0.0472456
\(449\) −7.27492 −0.343325 −0.171662 0.985156i \(-0.554914\pi\)
−0.171662 + 0.985156i \(0.554914\pi\)
\(450\) 5.72508 0.269883
\(451\) −45.0997 −2.12366
\(452\) −6.00000 −0.282216
\(453\) −1.27492 −0.0599008
\(454\) 5.45017 0.255789
\(455\) 0 0
\(456\) 5.27492 0.247021
\(457\) 3.45017 0.161392 0.0806960 0.996739i \(-0.474286\pi\)
0.0806960 + 0.996739i \(0.474286\pi\)
\(458\) 11.0997 0.518653
\(459\) 7.27492 0.339564
\(460\) 17.2749 0.805447
\(461\) −34.9244 −1.62659 −0.813296 0.581850i \(-0.802329\pi\)
−0.813296 + 0.581850i \(0.802329\pi\)
\(462\) −5.27492 −0.245411
\(463\) −22.7251 −1.05612 −0.528062 0.849206i \(-0.677081\pi\)
−0.528062 + 0.849206i \(0.677081\pi\)
\(464\) 0.725083 0.0336611
\(465\) −26.1993 −1.21497
\(466\) 20.5498 0.951953
\(467\) −18.7251 −0.866493 −0.433247 0.901275i \(-0.642632\pi\)
−0.433247 + 0.901275i \(0.642632\pi\)
\(468\) 0 0
\(469\) −2.54983 −0.117740
\(470\) 0 0
\(471\) −24.3746 −1.12312
\(472\) −8.00000 −0.368230
\(473\) −27.8248 −1.27938
\(474\) 2.54983 0.117118
\(475\) −30.1993 −1.38564
\(476\) 7.27492 0.333445
\(477\) 10.0000 0.457869
\(478\) 5.09967 0.233253
\(479\) −14.3746 −0.656792 −0.328396 0.944540i \(-0.606508\pi\)
−0.328396 + 0.944540i \(0.606508\pi\)
\(480\) 3.27492 0.149479
\(481\) 0 0
\(482\) 15.0997 0.687771
\(483\) −5.27492 −0.240017
\(484\) 16.8248 0.764761
\(485\) −49.4502 −2.24542
\(486\) −1.00000 −0.0453609
\(487\) −42.1993 −1.91223 −0.956117 0.292984i \(-0.905352\pi\)
−0.956117 + 0.292984i \(0.905352\pi\)
\(488\) −4.72508 −0.213894
\(489\) −2.54983 −0.115307
\(490\) −3.27492 −0.147946
\(491\) −6.54983 −0.295590 −0.147795 0.989018i \(-0.547218\pi\)
−0.147795 + 0.989018i \(0.547218\pi\)
\(492\) −8.54983 −0.385456
\(493\) −5.27492 −0.237570
\(494\) 0 0
\(495\) 17.2749 0.776450
\(496\) −8.00000 −0.359211
\(497\) 0 0
\(498\) 10.5498 0.472749
\(499\) 5.09967 0.228293 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(500\) −2.37459 −0.106195
\(501\) −9.27492 −0.414373
\(502\) −28.9244 −1.29096
\(503\) −18.5498 −0.827096 −0.413548 0.910482i \(-0.635711\pi\)
−0.413548 + 0.910482i \(0.635711\pi\)
\(504\) −1.00000 −0.0445435
\(505\) 41.0997 1.82891
\(506\) 27.8248 1.23696
\(507\) 0 0
\(508\) −5.45017 −0.241812
\(509\) −42.9244 −1.90259 −0.951296 0.308280i \(-0.900247\pi\)
−0.951296 + 0.308280i \(0.900247\pi\)
\(510\) −23.8248 −1.05498
\(511\) 9.82475 0.434621
\(512\) 1.00000 0.0441942
\(513\) 5.27492 0.232893
\(514\) −14.0000 −0.617514
\(515\) −8.92442 −0.393257
\(516\) −5.27492 −0.232215
\(517\) 0 0
\(518\) 3.27492 0.143892
\(519\) 23.0997 1.01396
\(520\) 0 0
\(521\) 3.27492 0.143477 0.0717384 0.997423i \(-0.477145\pi\)
0.0717384 + 0.997423i \(0.477145\pi\)
\(522\) 0.725083 0.0317360
\(523\) 36.0000 1.57417 0.787085 0.616844i \(-0.211589\pi\)
0.787085 + 0.616844i \(0.211589\pi\)
\(524\) −15.8248 −0.691307
\(525\) 5.72508 0.249863
\(526\) 28.0000 1.22086
\(527\) 58.1993 2.53520
\(528\) 5.27492 0.229561
\(529\) 4.82475 0.209772
\(530\) −32.7492 −1.42253
\(531\) −8.00000 −0.347170
\(532\) 5.27492 0.228697
\(533\) 0 0
\(534\) −14.0000 −0.605839
\(535\) 47.6495 2.06007
\(536\) 2.54983 0.110136
\(537\) −12.0000 −0.517838
\(538\) 6.00000 0.258678
\(539\) −5.27492 −0.227207
\(540\) 3.27492 0.140930
\(541\) 25.4743 1.09522 0.547612 0.836732i \(-0.315537\pi\)
0.547612 + 0.836732i \(0.315537\pi\)
\(542\) −13.4502 −0.577734
\(543\) 11.0997 0.476332
\(544\) −7.27492 −0.311910
\(545\) −23.8248 −1.02054
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) −20.3746 −0.870359
\(549\) −4.72508 −0.201662
\(550\) −30.1993 −1.28770
\(551\) −3.82475 −0.162940
\(552\) 5.27492 0.224515
\(553\) 2.54983 0.108430
\(554\) −10.0000 −0.424859
\(555\) −10.7251 −0.455254
\(556\) 4.00000 0.169638
\(557\) −30.7492 −1.30288 −0.651442 0.758698i \(-0.725836\pi\)
−0.651442 + 0.758698i \(0.725836\pi\)
\(558\) −8.00000 −0.338667
\(559\) 0 0
\(560\) 3.27492 0.138391
\(561\) −38.3746 −1.62018
\(562\) 15.0997 0.636941
\(563\) 2.37459 0.100077 0.0500384 0.998747i \(-0.484066\pi\)
0.0500384 + 0.998747i \(0.484066\pi\)
\(564\) 0 0
\(565\) 19.6495 0.826661
\(566\) −4.00000 −0.168133
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) −27.0997 −1.13608 −0.568039 0.823002i \(-0.692298\pi\)
−0.568039 + 0.823002i \(0.692298\pi\)
\(570\) −17.2749 −0.723567
\(571\) −6.90033 −0.288770 −0.144385 0.989522i \(-0.546120\pi\)
−0.144385 + 0.989522i \(0.546120\pi\)
\(572\) 0 0
\(573\) 5.27492 0.220363
\(574\) −8.54983 −0.356863
\(575\) −30.1993 −1.25940
\(576\) 1.00000 0.0416667
\(577\) 39.0997 1.62774 0.813870 0.581047i \(-0.197357\pi\)
0.813870 + 0.581047i \(0.197357\pi\)
\(578\) 35.9244 1.49426
\(579\) −3.45017 −0.143384
\(580\) −2.37459 −0.0985993
\(581\) 10.5498 0.437681
\(582\) −15.0997 −0.625901
\(583\) −52.7492 −2.18465
\(584\) −9.82475 −0.406551
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) 28.7492 1.18661 0.593303 0.804979i \(-0.297824\pi\)
0.593303 + 0.804979i \(0.297824\pi\)
\(588\) −1.00000 −0.0412393
\(589\) 42.1993 1.73879
\(590\) 26.1993 1.07861
\(591\) 12.5498 0.516231
\(592\) −3.27492 −0.134598
\(593\) −23.0997 −0.948590 −0.474295 0.880366i \(-0.657297\pi\)
−0.474295 + 0.880366i \(0.657297\pi\)
\(594\) 5.27492 0.216432
\(595\) −23.8248 −0.976720
\(596\) −7.45017 −0.305171
\(597\) 15.8248 0.647664
\(598\) 0 0
\(599\) 29.2749 1.19614 0.598070 0.801444i \(-0.295934\pi\)
0.598070 + 0.801444i \(0.295934\pi\)
\(600\) −5.72508 −0.233726
\(601\) −21.6495 −0.883102 −0.441551 0.897236i \(-0.645572\pi\)
−0.441551 + 0.897236i \(0.645572\pi\)
\(602\) −5.27492 −0.214990
\(603\) 2.54983 0.103837
\(604\) 1.27492 0.0518756
\(605\) −55.0997 −2.24012
\(606\) 12.5498 0.509802
\(607\) 31.8248 1.29173 0.645863 0.763453i \(-0.276498\pi\)
0.645863 + 0.763453i \(0.276498\pi\)
\(608\) −5.27492 −0.213926
\(609\) 0.725083 0.0293818
\(610\) 15.4743 0.626534
\(611\) 0 0
\(612\) −7.27492 −0.294071
\(613\) −8.72508 −0.352403 −0.176201 0.984354i \(-0.556381\pi\)
−0.176201 + 0.984354i \(0.556381\pi\)
\(614\) 9.09967 0.367233
\(615\) 28.0000 1.12907
\(616\) 5.27492 0.212532
\(617\) −1.82475 −0.0734617 −0.0367309 0.999325i \(-0.511694\pi\)
−0.0367309 + 0.999325i \(0.511694\pi\)
\(618\) −2.72508 −0.109619
\(619\) −37.2749 −1.49821 −0.749103 0.662454i \(-0.769515\pi\)
−0.749103 + 0.662454i \(0.769515\pi\)
\(620\) 26.1993 1.05219
\(621\) 5.27492 0.211675
\(622\) 18.5498 0.743781
\(623\) −14.0000 −0.560898
\(624\) 0 0
\(625\) −20.8488 −0.833954
\(626\) 17.6495 0.705416
\(627\) −27.8248 −1.11121
\(628\) 24.3746 0.972652
\(629\) 23.8248 0.949955
\(630\) 3.27492 0.130476
\(631\) −11.8248 −0.470736 −0.235368 0.971906i \(-0.575630\pi\)
−0.235368 + 0.971906i \(0.575630\pi\)
\(632\) −2.54983 −0.101427
\(633\) −23.8248 −0.946949
\(634\) 16.5498 0.657278
\(635\) 17.8488 0.708310
\(636\) −10.0000 −0.396526
\(637\) 0 0
\(638\) −3.82475 −0.151423
\(639\) 0 0
\(640\) −3.27492 −0.129452
\(641\) 15.0997 0.596401 0.298201 0.954503i \(-0.403614\pi\)
0.298201 + 0.954503i \(0.403614\pi\)
\(642\) 14.5498 0.574236
\(643\) −28.9244 −1.14067 −0.570334 0.821413i \(-0.693186\pi\)
−0.570334 + 0.821413i \(0.693186\pi\)
\(644\) 5.27492 0.207861
\(645\) 17.2749 0.680199
\(646\) 38.3746 1.50983
\(647\) 42.1993 1.65903 0.829514 0.558487i \(-0.188618\pi\)
0.829514 + 0.558487i \(0.188618\pi\)
\(648\) 1.00000 0.0392837
\(649\) 42.1993 1.65647
\(650\) 0 0
\(651\) −8.00000 −0.313545
\(652\) 2.54983 0.0998592
\(653\) 32.3746 1.26692 0.633458 0.773777i \(-0.281635\pi\)
0.633458 + 0.773777i \(0.281635\pi\)
\(654\) −7.27492 −0.284472
\(655\) 51.8248 2.02496
\(656\) 8.54983 0.333815
\(657\) −9.82475 −0.383300
\(658\) 0 0
\(659\) −22.5498 −0.878417 −0.439208 0.898385i \(-0.644741\pi\)
−0.439208 + 0.898385i \(0.644741\pi\)
\(660\) −17.2749 −0.672425
\(661\) −20.1993 −0.785663 −0.392832 0.919610i \(-0.628504\pi\)
−0.392832 + 0.919610i \(0.628504\pi\)
\(662\) −15.6495 −0.608235
\(663\) 0 0
\(664\) −10.5498 −0.409413
\(665\) −17.2749 −0.669893
\(666\) −3.27492 −0.126900
\(667\) −3.82475 −0.148095
\(668\) 9.27492 0.358857
\(669\) −23.6495 −0.914343
\(670\) −8.35050 −0.322608
\(671\) 24.9244 0.962197
\(672\) 1.00000 0.0385758
\(673\) 8.72508 0.336327 0.168164 0.985759i \(-0.446216\pi\)
0.168164 + 0.985759i \(0.446216\pi\)
\(674\) −28.3746 −1.09295
\(675\) −5.72508 −0.220359
\(676\) 0 0
\(677\) −44.1993 −1.69872 −0.849359 0.527815i \(-0.823011\pi\)
−0.849359 + 0.527815i \(0.823011\pi\)
\(678\) 6.00000 0.230429
\(679\) −15.0997 −0.579472
\(680\) 23.8248 0.913638
\(681\) −5.45017 −0.208851
\(682\) 42.1993 1.61590
\(683\) 34.3746 1.31531 0.657653 0.753321i \(-0.271549\pi\)
0.657653 + 0.753321i \(0.271549\pi\)
\(684\) −5.27492 −0.201692
\(685\) 66.7251 2.54943
\(686\) −1.00000 −0.0381802
\(687\) −11.0997 −0.423479
\(688\) 5.27492 0.201104
\(689\) 0 0
\(690\) −17.2749 −0.657645
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) −23.0997 −0.878118
\(693\) 5.27492 0.200378
\(694\) −25.0997 −0.952770
\(695\) −13.0997 −0.496899
\(696\) −0.725083 −0.0274842
\(697\) −62.1993 −2.35597
\(698\) −2.00000 −0.0757011
\(699\) −20.5498 −0.777266
\(700\) −5.72508 −0.216388
\(701\) 15.0997 0.570307 0.285153 0.958482i \(-0.407955\pi\)
0.285153 + 0.958482i \(0.407955\pi\)
\(702\) 0 0
\(703\) 17.2749 0.651536
\(704\) −5.27492 −0.198806
\(705\) 0 0
\(706\) 3.09967 0.116658
\(707\) 12.5498 0.471985
\(708\) 8.00000 0.300658
\(709\) −7.09967 −0.266634 −0.133317 0.991073i \(-0.542563\pi\)
−0.133317 + 0.991073i \(0.542563\pi\)
\(710\) 0 0
\(711\) −2.54983 −0.0956263
\(712\) 14.0000 0.524672
\(713\) 42.1993 1.58038
\(714\) −7.27492 −0.272257
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) −5.09967 −0.190451
\(718\) 32.0000 1.19423
\(719\) 15.6495 0.583628 0.291814 0.956475i \(-0.405741\pi\)
0.291814 + 0.956475i \(0.405741\pi\)
\(720\) −3.27492 −0.122049
\(721\) −2.72508 −0.101487
\(722\) 8.82475 0.328423
\(723\) −15.0997 −0.561563
\(724\) −11.0997 −0.412516
\(725\) 4.15116 0.154170
\(726\) −16.8248 −0.624425
\(727\) −2.37459 −0.0880685 −0.0440343 0.999030i \(-0.514021\pi\)
−0.0440343 + 0.999030i \(0.514021\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 32.1752 1.19086
\(731\) −38.3746 −1.41934
\(732\) 4.72508 0.174644
\(733\) 0.549834 0.0203086 0.0101543 0.999948i \(-0.496768\pi\)
0.0101543 + 0.999948i \(0.496768\pi\)
\(734\) −33.0997 −1.22173
\(735\) 3.27492 0.120797
\(736\) −5.27492 −0.194436
\(737\) −13.4502 −0.495443
\(738\) 8.54983 0.314724
\(739\) 7.64950 0.281392 0.140696 0.990053i \(-0.455066\pi\)
0.140696 + 0.990053i \(0.455066\pi\)
\(740\) 10.7251 0.394262
\(741\) 0 0
\(742\) −10.0000 −0.367112
\(743\) −26.5498 −0.974019 −0.487009 0.873397i \(-0.661912\pi\)
−0.487009 + 0.873397i \(0.661912\pi\)
\(744\) 8.00000 0.293294
\(745\) 24.3987 0.893898
\(746\) 11.4502 0.419220
\(747\) −10.5498 −0.385998
\(748\) 38.3746 1.40311
\(749\) 14.5498 0.531639
\(750\) 2.37459 0.0867076
\(751\) −50.1993 −1.83180 −0.915900 0.401407i \(-0.868521\pi\)
−0.915900 + 0.401407i \(0.868521\pi\)
\(752\) 0 0
\(753\) 28.9244 1.05406
\(754\) 0 0
\(755\) −4.17525 −0.151953
\(756\) 1.00000 0.0363696
\(757\) −4.90033 −0.178106 −0.0890528 0.996027i \(-0.528384\pi\)
−0.0890528 + 0.996027i \(0.528384\pi\)
\(758\) 2.90033 0.105345
\(759\) −27.8248 −1.00997
\(760\) 17.2749 0.626627
\(761\) −23.4502 −0.850068 −0.425034 0.905177i \(-0.639738\pi\)
−0.425034 + 0.905177i \(0.639738\pi\)
\(762\) 5.45017 0.197439
\(763\) −7.27492 −0.263370
\(764\) −5.27492 −0.190840
\(765\) 23.8248 0.861386
\(766\) −22.7251 −0.821091
\(767\) 0 0
\(768\) −1.00000 −0.0360844
\(769\) −10.1752 −0.366929 −0.183464 0.983026i \(-0.558731\pi\)
−0.183464 + 0.983026i \(0.558731\pi\)
\(770\) −17.2749 −0.622545
\(771\) 14.0000 0.504198
\(772\) 3.45017 0.124174
\(773\) −42.9244 −1.54388 −0.771942 0.635693i \(-0.780714\pi\)
−0.771942 + 0.635693i \(0.780714\pi\)
\(774\) 5.27492 0.189603
\(775\) −45.8007 −1.64521
\(776\) 15.0997 0.542047
\(777\) −3.27492 −0.117487
\(778\) −32.1993 −1.15440
\(779\) −45.0997 −1.61586
\(780\) 0 0
\(781\) 0 0
\(782\) 38.3746 1.37227
\(783\) −0.725083 −0.0259123
\(784\) 1.00000 0.0357143
\(785\) −79.8248 −2.84907
\(786\) 15.8248 0.564450
\(787\) 2.72508 0.0971387 0.0485694 0.998820i \(-0.484534\pi\)
0.0485694 + 0.998820i \(0.484534\pi\)
\(788\) −12.5498 −0.447069
\(789\) −28.0000 −0.996826
\(790\) 8.35050 0.297097
\(791\) 6.00000 0.213335
\(792\) −5.27492 −0.187436
\(793\) 0 0
\(794\) 14.0000 0.496841
\(795\) 32.7492 1.16149
\(796\) −15.8248 −0.560893
\(797\) 29.6495 1.05024 0.525120 0.851028i \(-0.324021\pi\)
0.525120 + 0.851028i \(0.324021\pi\)
\(798\) −5.27492 −0.186730
\(799\) 0 0
\(800\) 5.72508 0.202412
\(801\) 14.0000 0.494666
\(802\) −27.0997 −0.956923
\(803\) 51.8248 1.82886
\(804\) −2.54983 −0.0899257
\(805\) −17.2749 −0.608861
\(806\) 0 0
\(807\) −6.00000 −0.211210
\(808\) −12.5498 −0.441502
\(809\) 4.19934 0.147641 0.0738204 0.997272i \(-0.476481\pi\)
0.0738204 + 0.997272i \(0.476481\pi\)
\(810\) −3.27492 −0.115069
\(811\) −26.3746 −0.926137 −0.463068 0.886322i \(-0.653252\pi\)
−0.463068 + 0.886322i \(0.653252\pi\)
\(812\) −0.725083 −0.0254454
\(813\) 13.4502 0.471718
\(814\) 17.2749 0.605486
\(815\) −8.35050 −0.292505
\(816\) 7.27492 0.254673
\(817\) −27.8248 −0.973465
\(818\) 29.8248 1.04280
\(819\) 0 0
\(820\) −28.0000 −0.977802
\(821\) 13.6495 0.476371 0.238185 0.971220i \(-0.423447\pi\)
0.238185 + 0.971220i \(0.423447\pi\)
\(822\) 20.3746 0.710645
\(823\) 5.09967 0.177763 0.0888816 0.996042i \(-0.471671\pi\)
0.0888816 + 0.996042i \(0.471671\pi\)
\(824\) 2.72508 0.0949328
\(825\) 30.1993 1.05141
\(826\) 8.00000 0.278356
\(827\) 18.7251 0.651135 0.325567 0.945519i \(-0.394445\pi\)
0.325567 + 0.945519i \(0.394445\pi\)
\(828\) −5.27492 −0.183316
\(829\) 19.2749 0.669446 0.334723 0.942317i \(-0.391357\pi\)
0.334723 + 0.942317i \(0.391357\pi\)
\(830\) 34.5498 1.19924
\(831\) 10.0000 0.346896
\(832\) 0 0
\(833\) −7.27492 −0.252061
\(834\) −4.00000 −0.138509
\(835\) −30.3746 −1.05116
\(836\) 27.8248 0.962339
\(837\) 8.00000 0.276520
\(838\) −5.27492 −0.182219
\(839\) −53.0997 −1.83320 −0.916602 0.399801i \(-0.869079\pi\)
−0.916602 + 0.399801i \(0.869079\pi\)
\(840\) −3.27492 −0.112995
\(841\) −28.4743 −0.981871
\(842\) 27.0997 0.933916
\(843\) −15.0997 −0.520060
\(844\) 23.8248 0.820082
\(845\) 0 0
\(846\) 0 0
\(847\) −16.8248 −0.578105
\(848\) 10.0000 0.343401
\(849\) 4.00000 0.137280
\(850\) −41.6495 −1.42857
\(851\) 17.2749 0.592177
\(852\) 0 0
\(853\) −17.6495 −0.604307 −0.302154 0.953259i \(-0.597706\pi\)
−0.302154 + 0.953259i \(0.597706\pi\)
\(854\) 4.72508 0.161689
\(855\) 17.2749 0.590790
\(856\) −14.5498 −0.497303
\(857\) −11.0997 −0.379157 −0.189579 0.981866i \(-0.560712\pi\)
−0.189579 + 0.981866i \(0.560712\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) −17.2749 −0.589070
\(861\) 8.54983 0.291378
\(862\) 26.5498 0.904291
\(863\) 15.6495 0.532715 0.266358 0.963874i \(-0.414180\pi\)
0.266358 + 0.963874i \(0.414180\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 75.6495 2.57216
\(866\) −21.6495 −0.735680
\(867\) −35.9244 −1.22006
\(868\) 8.00000 0.271538
\(869\) 13.4502 0.456266
\(870\) 2.37459 0.0805060
\(871\) 0 0
\(872\) 7.27492 0.246360
\(873\) 15.0997 0.511046
\(874\) 27.8248 0.941186
\(875\) 2.37459 0.0802757
\(876\) 9.82475 0.331948
\(877\) −20.9003 −0.705754 −0.352877 0.935670i \(-0.614797\pi\)
−0.352877 + 0.935670i \(0.614797\pi\)
\(878\) 7.82475 0.264073
\(879\) −6.00000 −0.202375
\(880\) 17.2749 0.582337
\(881\) −39.2749 −1.32321 −0.661603 0.749854i \(-0.730123\pi\)
−0.661603 + 0.749854i \(0.730123\pi\)
\(882\) 1.00000 0.0336718
\(883\) −20.9244 −0.704163 −0.352081 0.935969i \(-0.614526\pi\)
−0.352081 + 0.935969i \(0.614526\pi\)
\(884\) 0 0
\(885\) −26.1993 −0.880681
\(886\) 22.5498 0.757577
\(887\) −2.90033 −0.0973836 −0.0486918 0.998814i \(-0.515505\pi\)
−0.0486918 + 0.998814i \(0.515505\pi\)
\(888\) 3.27492 0.109899
\(889\) 5.45017 0.182793
\(890\) −45.8488 −1.53686
\(891\) −5.27492 −0.176716
\(892\) 23.6495 0.791844
\(893\) 0 0
\(894\) 7.45017 0.249171
\(895\) −39.2990 −1.31362
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −7.27492 −0.242767
\(899\) −5.80066 −0.193463
\(900\) 5.72508 0.190836
\(901\) −72.7492 −2.42363
\(902\) −45.0997 −1.50165
\(903\) 5.27492 0.175538
\(904\) −6.00000 −0.199557
\(905\) 36.3505 1.20833
\(906\) −1.27492 −0.0423563
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) 5.45017 0.180870
\(909\) −12.5498 −0.416252
\(910\) 0 0
\(911\) 15.4743 0.512685 0.256342 0.966586i \(-0.417483\pi\)
0.256342 + 0.966586i \(0.417483\pi\)
\(912\) 5.27492 0.174670
\(913\) 55.6495 1.84173
\(914\) 3.45017 0.114121
\(915\) −15.4743 −0.511563
\(916\) 11.0997 0.366743
\(917\) 15.8248 0.522579
\(918\) 7.27492 0.240108
\(919\) 2.54983 0.0841113 0.0420556 0.999115i \(-0.486609\pi\)
0.0420556 + 0.999115i \(0.486609\pi\)
\(920\) 17.2749 0.569537
\(921\) −9.09967 −0.299844
\(922\) −34.9244 −1.15017
\(923\) 0 0
\(924\) −5.27492 −0.173532
\(925\) −18.7492 −0.616469
\(926\) −22.7251 −0.746793
\(927\) 2.72508 0.0895035
\(928\) 0.725083 0.0238020
\(929\) 0.549834 0.0180395 0.00901974 0.999959i \(-0.497129\pi\)
0.00901974 + 0.999959i \(0.497129\pi\)
\(930\) −26.1993 −0.859110
\(931\) −5.27492 −0.172878
\(932\) 20.5498 0.673132
\(933\) −18.5498 −0.607294
\(934\) −18.7251 −0.612703
\(935\) −125.674 −4.10997
\(936\) 0 0
\(937\) 47.0997 1.53868 0.769340 0.638840i \(-0.220585\pi\)
0.769340 + 0.638840i \(0.220585\pi\)
\(938\) −2.54983 −0.0832550
\(939\) −17.6495 −0.575970
\(940\) 0 0
\(941\) −20.9003 −0.681331 −0.340666 0.940185i \(-0.610652\pi\)
−0.340666 + 0.940185i \(0.610652\pi\)
\(942\) −24.3746 −0.794167
\(943\) −45.0997 −1.46865
\(944\) −8.00000 −0.260378
\(945\) −3.27492 −0.106533
\(946\) −27.8248 −0.904661
\(947\) 39.8248 1.29413 0.647065 0.762435i \(-0.275996\pi\)
0.647065 + 0.762435i \(0.275996\pi\)
\(948\) 2.54983 0.0828148
\(949\) 0 0
\(950\) −30.1993 −0.979796
\(951\) −16.5498 −0.536665
\(952\) 7.27492 0.235781
\(953\) −13.6495 −0.442151 −0.221075 0.975257i \(-0.570957\pi\)
−0.221075 + 0.975257i \(0.570957\pi\)
\(954\) 10.0000 0.323762
\(955\) 17.2749 0.559003
\(956\) 5.09967 0.164935
\(957\) 3.82475 0.123637
\(958\) −14.3746 −0.464422
\(959\) 20.3746 0.657930
\(960\) 3.27492 0.105697
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) −14.5498 −0.468862
\(964\) 15.0997 0.486328
\(965\) −11.2990 −0.363728
\(966\) −5.27492 −0.169718
\(967\) −20.1752 −0.648792 −0.324396 0.945921i \(-0.605161\pi\)
−0.324396 + 0.945921i \(0.605161\pi\)
\(968\) 16.8248 0.540768
\(969\) −38.3746 −1.23277
\(970\) −49.4502 −1.58775
\(971\) 1.09967 0.0352901 0.0176450 0.999844i \(-0.494383\pi\)
0.0176450 + 0.999844i \(0.494383\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −4.00000 −0.128234
\(974\) −42.1993 −1.35215
\(975\) 0 0
\(976\) −4.72508 −0.151246
\(977\) −38.9244 −1.24530 −0.622651 0.782499i \(-0.713944\pi\)
−0.622651 + 0.782499i \(0.713944\pi\)
\(978\) −2.54983 −0.0815347
\(979\) −73.8488 −2.36022
\(980\) −3.27492 −0.104613
\(981\) 7.27492 0.232270
\(982\) −6.54983 −0.209014
\(983\) 22.0241 0.702459 0.351230 0.936289i \(-0.385764\pi\)
0.351230 + 0.936289i \(0.385764\pi\)
\(984\) −8.54983 −0.272559
\(985\) 41.0997 1.30954
\(986\) −5.27492 −0.167988
\(987\) 0 0
\(988\) 0 0
\(989\) −27.8248 −0.884776
\(990\) 17.2749 0.549033
\(991\) 28.7492 0.913248 0.456624 0.889660i \(-0.349059\pi\)
0.456624 + 0.889660i \(0.349059\pi\)
\(992\) −8.00000 −0.254000
\(993\) 15.6495 0.496622
\(994\) 0 0
\(995\) 51.8248 1.64296
\(996\) 10.5498 0.334284
\(997\) −43.0997 −1.36498 −0.682490 0.730895i \(-0.739103\pi\)
−0.682490 + 0.730895i \(0.739103\pi\)
\(998\) 5.09967 0.161427
\(999\) 3.27492 0.103614
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7098.2.a.bu.1.1 2
13.12 even 2 546.2.a.h.1.2 2
39.38 odd 2 1638.2.a.y.1.1 2
52.51 odd 2 4368.2.a.bh.1.2 2
91.90 odd 2 3822.2.a.bm.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.a.h.1.2 2 13.12 even 2
1638.2.a.y.1.1 2 39.38 odd 2
3822.2.a.bm.1.1 2 91.90 odd 2
4368.2.a.bh.1.2 2 52.51 odd 2
7098.2.a.bu.1.1 2 1.1 even 1 trivial