Properties

Label 7098.2.a.bm.1.2
Level $7098$
Weight $2$
Character 7098.1
Self dual yes
Analytic conductor $56.678$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7098,2,Mod(1,7098)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7098, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7098.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7098 = 2 \cdot 3 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7098.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.6778153547\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.27492\) of defining polynomial
Character \(\chi\) \(=\) 7098.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +3.27492 q^{5} -1.00000 q^{6} -1.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} -3.27492 q^{10} +4.00000 q^{11} +1.00000 q^{12} +1.00000 q^{14} +3.27492 q^{15} +1.00000 q^{16} +3.00000 q^{17} -1.00000 q^{18} +8.54983 q^{19} +3.27492 q^{20} -1.00000 q^{21} -4.00000 q^{22} +2.27492 q^{23} -1.00000 q^{24} +5.72508 q^{25} +1.00000 q^{27} -1.00000 q^{28} +0.725083 q^{29} -3.27492 q^{30} -6.27492 q^{31} -1.00000 q^{32} +4.00000 q^{33} -3.00000 q^{34} -3.27492 q^{35} +1.00000 q^{36} +7.27492 q^{37} -8.54983 q^{38} -3.27492 q^{40} -0.725083 q^{41} +1.00000 q^{42} +10.8248 q^{43} +4.00000 q^{44} +3.27492 q^{45} -2.27492 q^{46} -8.54983 q^{47} +1.00000 q^{48} +1.00000 q^{49} -5.72508 q^{50} +3.00000 q^{51} +11.5498 q^{53} -1.00000 q^{54} +13.0997 q^{55} +1.00000 q^{56} +8.54983 q^{57} -0.725083 q^{58} -10.8248 q^{59} +3.27492 q^{60} -9.00000 q^{61} +6.27492 q^{62} -1.00000 q^{63} +1.00000 q^{64} -4.00000 q^{66} +10.2749 q^{67} +3.00000 q^{68} +2.27492 q^{69} +3.27492 q^{70} +2.27492 q^{71} -1.00000 q^{72} -13.2749 q^{73} -7.27492 q^{74} +5.72508 q^{75} +8.54983 q^{76} -4.00000 q^{77} -8.00000 q^{79} +3.27492 q^{80} +1.00000 q^{81} +0.725083 q^{82} -10.8248 q^{83} -1.00000 q^{84} +9.82475 q^{85} -10.8248 q^{86} +0.725083 q^{87} -4.00000 q^{88} -8.27492 q^{89} -3.27492 q^{90} +2.27492 q^{92} -6.27492 q^{93} +8.54983 q^{94} +28.0000 q^{95} -1.00000 q^{96} -14.5498 q^{97} -1.00000 q^{98} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} - q^{5} - 2 q^{6} - 2 q^{7} - 2 q^{8} + 2 q^{9} + q^{10} + 8 q^{11} + 2 q^{12} + 2 q^{14} - q^{15} + 2 q^{16} + 6 q^{17} - 2 q^{18} + 2 q^{19} - q^{20} - 2 q^{21} - 8 q^{22}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 3.27492 1.46459 0.732294 0.680989i \(-0.238450\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(6\) −1.00000 −0.408248
\(7\) −1.00000 −0.377964
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −3.27492 −1.03562
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 1.00000 0.288675
\(13\) 0 0
\(14\) 1.00000 0.267261
\(15\) 3.27492 0.845580
\(16\) 1.00000 0.250000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) −1.00000 −0.235702
\(19\) 8.54983 1.96147 0.980733 0.195352i \(-0.0625848\pi\)
0.980733 + 0.195352i \(0.0625848\pi\)
\(20\) 3.27492 0.732294
\(21\) −1.00000 −0.218218
\(22\) −4.00000 −0.852803
\(23\) 2.27492 0.474353 0.237177 0.971467i \(-0.423778\pi\)
0.237177 + 0.971467i \(0.423778\pi\)
\(24\) −1.00000 −0.204124
\(25\) 5.72508 1.14502
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) −1.00000 −0.188982
\(29\) 0.725083 0.134644 0.0673222 0.997731i \(-0.478554\pi\)
0.0673222 + 0.997731i \(0.478554\pi\)
\(30\) −3.27492 −0.597915
\(31\) −6.27492 −1.12701 −0.563504 0.826113i \(-0.690547\pi\)
−0.563504 + 0.826113i \(0.690547\pi\)
\(32\) −1.00000 −0.176777
\(33\) 4.00000 0.696311
\(34\) −3.00000 −0.514496
\(35\) −3.27492 −0.553562
\(36\) 1.00000 0.166667
\(37\) 7.27492 1.19599 0.597995 0.801500i \(-0.295964\pi\)
0.597995 + 0.801500i \(0.295964\pi\)
\(38\) −8.54983 −1.38697
\(39\) 0 0
\(40\) −3.27492 −0.517810
\(41\) −0.725083 −0.113239 −0.0566195 0.998396i \(-0.518032\pi\)
−0.0566195 + 0.998396i \(0.518032\pi\)
\(42\) 1.00000 0.154303
\(43\) 10.8248 1.65076 0.825380 0.564578i \(-0.190961\pi\)
0.825380 + 0.564578i \(0.190961\pi\)
\(44\) 4.00000 0.603023
\(45\) 3.27492 0.488196
\(46\) −2.27492 −0.335418
\(47\) −8.54983 −1.24712 −0.623561 0.781775i \(-0.714315\pi\)
−0.623561 + 0.781775i \(0.714315\pi\)
\(48\) 1.00000 0.144338
\(49\) 1.00000 0.142857
\(50\) −5.72508 −0.809649
\(51\) 3.00000 0.420084
\(52\) 0 0
\(53\) 11.5498 1.58649 0.793246 0.608901i \(-0.208390\pi\)
0.793246 + 0.608901i \(0.208390\pi\)
\(54\) −1.00000 −0.136083
\(55\) 13.0997 1.76636
\(56\) 1.00000 0.133631
\(57\) 8.54983 1.13245
\(58\) −0.725083 −0.0952080
\(59\) −10.8248 −1.40926 −0.704631 0.709574i \(-0.748888\pi\)
−0.704631 + 0.709574i \(0.748888\pi\)
\(60\) 3.27492 0.422790
\(61\) −9.00000 −1.15233 −0.576166 0.817333i \(-0.695452\pi\)
−0.576166 + 0.817333i \(0.695452\pi\)
\(62\) 6.27492 0.796915
\(63\) −1.00000 −0.125988
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −4.00000 −0.492366
\(67\) 10.2749 1.25528 0.627640 0.778503i \(-0.284021\pi\)
0.627640 + 0.778503i \(0.284021\pi\)
\(68\) 3.00000 0.363803
\(69\) 2.27492 0.273868
\(70\) 3.27492 0.391427
\(71\) 2.27492 0.269983 0.134992 0.990847i \(-0.456899\pi\)
0.134992 + 0.990847i \(0.456899\pi\)
\(72\) −1.00000 −0.117851
\(73\) −13.2749 −1.55371 −0.776856 0.629679i \(-0.783187\pi\)
−0.776856 + 0.629679i \(0.783187\pi\)
\(74\) −7.27492 −0.845692
\(75\) 5.72508 0.661076
\(76\) 8.54983 0.980733
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 3.27492 0.366147
\(81\) 1.00000 0.111111
\(82\) 0.725083 0.0800720
\(83\) −10.8248 −1.18817 −0.594085 0.804402i \(-0.702486\pi\)
−0.594085 + 0.804402i \(0.702486\pi\)
\(84\) −1.00000 −0.109109
\(85\) 9.82475 1.06564
\(86\) −10.8248 −1.16726
\(87\) 0.725083 0.0777370
\(88\) −4.00000 −0.426401
\(89\) −8.27492 −0.877139 −0.438570 0.898697i \(-0.644515\pi\)
−0.438570 + 0.898697i \(0.644515\pi\)
\(90\) −3.27492 −0.345207
\(91\) 0 0
\(92\) 2.27492 0.237177
\(93\) −6.27492 −0.650679
\(94\) 8.54983 0.881848
\(95\) 28.0000 2.87274
\(96\) −1.00000 −0.102062
\(97\) −14.5498 −1.47731 −0.738656 0.674083i \(-0.764539\pi\)
−0.738656 + 0.674083i \(0.764539\pi\)
\(98\) −1.00000 −0.101015
\(99\) 4.00000 0.402015
\(100\) 5.72508 0.572508
\(101\) 9.27492 0.922889 0.461444 0.887169i \(-0.347331\pi\)
0.461444 + 0.887169i \(0.347331\pi\)
\(102\) −3.00000 −0.297044
\(103\) −2.27492 −0.224154 −0.112077 0.993700i \(-0.535750\pi\)
−0.112077 + 0.993700i \(0.535750\pi\)
\(104\) 0 0
\(105\) −3.27492 −0.319599
\(106\) −11.5498 −1.12182
\(107\) −12.5498 −1.21324 −0.606619 0.794993i \(-0.707475\pi\)
−0.606619 + 0.794993i \(0.707475\pi\)
\(108\) 1.00000 0.0962250
\(109\) −10.5498 −1.01049 −0.505245 0.862976i \(-0.668598\pi\)
−0.505245 + 0.862976i \(0.668598\pi\)
\(110\) −13.0997 −1.24900
\(111\) 7.27492 0.690505
\(112\) −1.00000 −0.0944911
\(113\) −7.82475 −0.736091 −0.368045 0.929808i \(-0.619973\pi\)
−0.368045 + 0.929808i \(0.619973\pi\)
\(114\) −8.54983 −0.800765
\(115\) 7.45017 0.694732
\(116\) 0.725083 0.0673222
\(117\) 0 0
\(118\) 10.8248 0.996499
\(119\) −3.00000 −0.275010
\(120\) −3.27492 −0.298958
\(121\) 5.00000 0.454545
\(122\) 9.00000 0.814822
\(123\) −0.725083 −0.0653785
\(124\) −6.27492 −0.563504
\(125\) 2.37459 0.212389
\(126\) 1.00000 0.0890871
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 10.8248 0.953066
\(130\) 0 0
\(131\) −10.2749 −0.897724 −0.448862 0.893601i \(-0.648170\pi\)
−0.448862 + 0.893601i \(0.648170\pi\)
\(132\) 4.00000 0.348155
\(133\) −8.54983 −0.741365
\(134\) −10.2749 −0.887618
\(135\) 3.27492 0.281860
\(136\) −3.00000 −0.257248
\(137\) −0.175248 −0.0149725 −0.00748624 0.999972i \(-0.502383\pi\)
−0.00748624 + 0.999972i \(0.502383\pi\)
\(138\) −2.27492 −0.193654
\(139\) 21.0997 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(140\) −3.27492 −0.276781
\(141\) −8.54983 −0.720026
\(142\) −2.27492 −0.190907
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 2.37459 0.197199
\(146\) 13.2749 1.09864
\(147\) 1.00000 0.0824786
\(148\) 7.27492 0.597995
\(149\) 1.00000 0.0819232 0.0409616 0.999161i \(-0.486958\pi\)
0.0409616 + 0.999161i \(0.486958\pi\)
\(150\) −5.72508 −0.467451
\(151\) 17.0997 1.39155 0.695776 0.718259i \(-0.255061\pi\)
0.695776 + 0.718259i \(0.255061\pi\)
\(152\) −8.54983 −0.693483
\(153\) 3.00000 0.242536
\(154\) 4.00000 0.322329
\(155\) −20.5498 −1.65060
\(156\) 0 0
\(157\) −11.2749 −0.899836 −0.449918 0.893070i \(-0.648547\pi\)
−0.449918 + 0.893070i \(0.648547\pi\)
\(158\) 8.00000 0.636446
\(159\) 11.5498 0.915961
\(160\) −3.27492 −0.258905
\(161\) −2.27492 −0.179289
\(162\) −1.00000 −0.0785674
\(163\) 5.72508 0.448423 0.224212 0.974540i \(-0.428019\pi\)
0.224212 + 0.974540i \(0.428019\pi\)
\(164\) −0.725083 −0.0566195
\(165\) 13.0997 1.01981
\(166\) 10.8248 0.840164
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 1.00000 0.0771517
\(169\) 0 0
\(170\) −9.82475 −0.753524
\(171\) 8.54983 0.653822
\(172\) 10.8248 0.825380
\(173\) 10.5498 0.802089 0.401045 0.916059i \(-0.368647\pi\)
0.401045 + 0.916059i \(0.368647\pi\)
\(174\) −0.725083 −0.0549684
\(175\) −5.72508 −0.432776
\(176\) 4.00000 0.301511
\(177\) −10.8248 −0.813638
\(178\) 8.27492 0.620231
\(179\) 16.5498 1.23699 0.618496 0.785788i \(-0.287742\pi\)
0.618496 + 0.785788i \(0.287742\pi\)
\(180\) 3.27492 0.244098
\(181\) 5.82475 0.432950 0.216475 0.976288i \(-0.430544\pi\)
0.216475 + 0.976288i \(0.430544\pi\)
\(182\) 0 0
\(183\) −9.00000 −0.665299
\(184\) −2.27492 −0.167709
\(185\) 23.8248 1.75163
\(186\) 6.27492 0.460099
\(187\) 12.0000 0.877527
\(188\) −8.54983 −0.623561
\(189\) −1.00000 −0.0727393
\(190\) −28.0000 −2.03133
\(191\) 14.2749 1.03290 0.516448 0.856318i \(-0.327254\pi\)
0.516448 + 0.856318i \(0.327254\pi\)
\(192\) 1.00000 0.0721688
\(193\) 2.17525 0.156578 0.0782889 0.996931i \(-0.475054\pi\)
0.0782889 + 0.996931i \(0.475054\pi\)
\(194\) 14.5498 1.04462
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −0.824752 −0.0587611 −0.0293806 0.999568i \(-0.509353\pi\)
−0.0293806 + 0.999568i \(0.509353\pi\)
\(198\) −4.00000 −0.284268
\(199\) −10.8248 −0.767346 −0.383673 0.923469i \(-0.625341\pi\)
−0.383673 + 0.923469i \(0.625341\pi\)
\(200\) −5.72508 −0.404824
\(201\) 10.2749 0.724737
\(202\) −9.27492 −0.652581
\(203\) −0.725083 −0.0508908
\(204\) 3.00000 0.210042
\(205\) −2.37459 −0.165848
\(206\) 2.27492 0.158501
\(207\) 2.27492 0.158118
\(208\) 0 0
\(209\) 34.1993 2.36562
\(210\) 3.27492 0.225991
\(211\) −9.09967 −0.626447 −0.313224 0.949679i \(-0.601409\pi\)
−0.313224 + 0.949679i \(0.601409\pi\)
\(212\) 11.5498 0.793246
\(213\) 2.27492 0.155875
\(214\) 12.5498 0.857889
\(215\) 35.4502 2.41768
\(216\) −1.00000 −0.0680414
\(217\) 6.27492 0.425969
\(218\) 10.5498 0.714525
\(219\) −13.2749 −0.897036
\(220\) 13.0997 0.883179
\(221\) 0 0
\(222\) −7.27492 −0.488260
\(223\) −18.2749 −1.22378 −0.611889 0.790943i \(-0.709590\pi\)
−0.611889 + 0.790943i \(0.709590\pi\)
\(224\) 1.00000 0.0668153
\(225\) 5.72508 0.381672
\(226\) 7.82475 0.520495
\(227\) −9.09967 −0.603966 −0.301983 0.953313i \(-0.597649\pi\)
−0.301983 + 0.953313i \(0.597649\pi\)
\(228\) 8.54983 0.566227
\(229\) −20.2749 −1.33980 −0.669902 0.742449i \(-0.733664\pi\)
−0.669902 + 0.742449i \(0.733664\pi\)
\(230\) −7.45017 −0.491249
\(231\) −4.00000 −0.263181
\(232\) −0.725083 −0.0476040
\(233\) 22.5498 1.47729 0.738644 0.674095i \(-0.235466\pi\)
0.738644 + 0.674095i \(0.235466\pi\)
\(234\) 0 0
\(235\) −28.0000 −1.82652
\(236\) −10.8248 −0.704631
\(237\) −8.00000 −0.519656
\(238\) 3.00000 0.194461
\(239\) −2.27492 −0.147152 −0.0735761 0.997290i \(-0.523441\pi\)
−0.0735761 + 0.997290i \(0.523441\pi\)
\(240\) 3.27492 0.211395
\(241\) 23.2749 1.49927 0.749635 0.661852i \(-0.230229\pi\)
0.749635 + 0.661852i \(0.230229\pi\)
\(242\) −5.00000 −0.321412
\(243\) 1.00000 0.0641500
\(244\) −9.00000 −0.576166
\(245\) 3.27492 0.209227
\(246\) 0.725083 0.0462296
\(247\) 0 0
\(248\) 6.27492 0.398458
\(249\) −10.8248 −0.685991
\(250\) −2.37459 −0.150182
\(251\) 5.72508 0.361364 0.180682 0.983542i \(-0.442170\pi\)
0.180682 + 0.983542i \(0.442170\pi\)
\(252\) −1.00000 −0.0629941
\(253\) 9.09967 0.572091
\(254\) −8.00000 −0.501965
\(255\) 9.82475 0.615250
\(256\) 1.00000 0.0625000
\(257\) 15.0000 0.935674 0.467837 0.883815i \(-0.345033\pi\)
0.467837 + 0.883815i \(0.345033\pi\)
\(258\) −10.8248 −0.673920
\(259\) −7.27492 −0.452041
\(260\) 0 0
\(261\) 0.725083 0.0448815
\(262\) 10.2749 0.634787
\(263\) −9.09967 −0.561110 −0.280555 0.959838i \(-0.590518\pi\)
−0.280555 + 0.959838i \(0.590518\pi\)
\(264\) −4.00000 −0.246183
\(265\) 37.8248 2.32356
\(266\) 8.54983 0.524224
\(267\) −8.27492 −0.506417
\(268\) 10.2749 0.627640
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) −3.27492 −0.199305
\(271\) −17.7251 −1.07672 −0.538361 0.842714i \(-0.680956\pi\)
−0.538361 + 0.842714i \(0.680956\pi\)
\(272\) 3.00000 0.181902
\(273\) 0 0
\(274\) 0.175248 0.0105871
\(275\) 22.9003 1.38094
\(276\) 2.27492 0.136934
\(277\) −7.82475 −0.470144 −0.235072 0.971978i \(-0.575533\pi\)
−0.235072 + 0.971978i \(0.575533\pi\)
\(278\) −21.0997 −1.26547
\(279\) −6.27492 −0.375669
\(280\) 3.27492 0.195714
\(281\) −1.82475 −0.108856 −0.0544278 0.998518i \(-0.517333\pi\)
−0.0544278 + 0.998518i \(0.517333\pi\)
\(282\) 8.54983 0.509135
\(283\) −24.5498 −1.45934 −0.729668 0.683801i \(-0.760325\pi\)
−0.729668 + 0.683801i \(0.760325\pi\)
\(284\) 2.27492 0.134992
\(285\) 28.0000 1.65858
\(286\) 0 0
\(287\) 0.725083 0.0428003
\(288\) −1.00000 −0.0589256
\(289\) −8.00000 −0.470588
\(290\) −2.37459 −0.139440
\(291\) −14.5498 −0.852926
\(292\) −13.2749 −0.776856
\(293\) 10.7251 0.626566 0.313283 0.949660i \(-0.398571\pi\)
0.313283 + 0.949660i \(0.398571\pi\)
\(294\) −1.00000 −0.0583212
\(295\) −35.4502 −2.06399
\(296\) −7.27492 −0.422846
\(297\) 4.00000 0.232104
\(298\) −1.00000 −0.0579284
\(299\) 0 0
\(300\) 5.72508 0.330538
\(301\) −10.8248 −0.623928
\(302\) −17.0997 −0.983975
\(303\) 9.27492 0.532830
\(304\) 8.54983 0.490367
\(305\) −29.4743 −1.68769
\(306\) −3.00000 −0.171499
\(307\) 16.5498 0.944549 0.472274 0.881452i \(-0.343433\pi\)
0.472274 + 0.881452i \(0.343433\pi\)
\(308\) −4.00000 −0.227921
\(309\) −2.27492 −0.129416
\(310\) 20.5498 1.16715
\(311\) 12.5498 0.711636 0.355818 0.934555i \(-0.384202\pi\)
0.355818 + 0.934555i \(0.384202\pi\)
\(312\) 0 0
\(313\) −27.6495 −1.56284 −0.781421 0.624004i \(-0.785505\pi\)
−0.781421 + 0.624004i \(0.785505\pi\)
\(314\) 11.2749 0.636280
\(315\) −3.27492 −0.184521
\(316\) −8.00000 −0.450035
\(317\) −7.54983 −0.424041 −0.212020 0.977265i \(-0.568004\pi\)
−0.212020 + 0.977265i \(0.568004\pi\)
\(318\) −11.5498 −0.647683
\(319\) 2.90033 0.162387
\(320\) 3.27492 0.183073
\(321\) −12.5498 −0.700463
\(322\) 2.27492 0.126776
\(323\) 25.6495 1.42718
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −5.72508 −0.317083
\(327\) −10.5498 −0.583407
\(328\) 0.725083 0.0400360
\(329\) 8.54983 0.471368
\(330\) −13.0997 −0.721113
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) −10.8248 −0.594085
\(333\) 7.27492 0.398663
\(334\) 0 0
\(335\) 33.6495 1.83847
\(336\) −1.00000 −0.0545545
\(337\) −7.27492 −0.396290 −0.198145 0.980173i \(-0.563492\pi\)
−0.198145 + 0.980173i \(0.563492\pi\)
\(338\) 0 0
\(339\) −7.82475 −0.424982
\(340\) 9.82475 0.532822
\(341\) −25.0997 −1.35922
\(342\) −8.54983 −0.462322
\(343\) −1.00000 −0.0539949
\(344\) −10.8248 −0.583631
\(345\) 7.45017 0.401103
\(346\) −10.5498 −0.567163
\(347\) 15.4502 0.829408 0.414704 0.909956i \(-0.363885\pi\)
0.414704 + 0.909956i \(0.363885\pi\)
\(348\) 0.725083 0.0388685
\(349\) −17.9244 −0.959472 −0.479736 0.877413i \(-0.659268\pi\)
−0.479736 + 0.877413i \(0.659268\pi\)
\(350\) 5.72508 0.306019
\(351\) 0 0
\(352\) −4.00000 −0.213201
\(353\) 4.45017 0.236858 0.118429 0.992962i \(-0.462214\pi\)
0.118429 + 0.992962i \(0.462214\pi\)
\(354\) 10.8248 0.575329
\(355\) 7.45017 0.395414
\(356\) −8.27492 −0.438570
\(357\) −3.00000 −0.158777
\(358\) −16.5498 −0.874686
\(359\) −29.0997 −1.53582 −0.767911 0.640557i \(-0.778704\pi\)
−0.767911 + 0.640557i \(0.778704\pi\)
\(360\) −3.27492 −0.172603
\(361\) 54.0997 2.84735
\(362\) −5.82475 −0.306142
\(363\) 5.00000 0.262432
\(364\) 0 0
\(365\) −43.4743 −2.27555
\(366\) 9.00000 0.470438
\(367\) 5.72508 0.298847 0.149423 0.988773i \(-0.452258\pi\)
0.149423 + 0.988773i \(0.452258\pi\)
\(368\) 2.27492 0.118588
\(369\) −0.725083 −0.0377463
\(370\) −23.8248 −1.23859
\(371\) −11.5498 −0.599638
\(372\) −6.27492 −0.325339
\(373\) 4.17525 0.216186 0.108093 0.994141i \(-0.465526\pi\)
0.108093 + 0.994141i \(0.465526\pi\)
\(374\) −12.0000 −0.620505
\(375\) 2.37459 0.122623
\(376\) 8.54983 0.440924
\(377\) 0 0
\(378\) 1.00000 0.0514344
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 28.0000 1.43637
\(381\) 8.00000 0.409852
\(382\) −14.2749 −0.730368
\(383\) 38.1993 1.95189 0.975947 0.218006i \(-0.0699551\pi\)
0.975947 + 0.218006i \(0.0699551\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −13.0997 −0.667621
\(386\) −2.17525 −0.110717
\(387\) 10.8248 0.550253
\(388\) −14.5498 −0.738656
\(389\) 20.6495 1.04697 0.523486 0.852034i \(-0.324631\pi\)
0.523486 + 0.852034i \(0.324631\pi\)
\(390\) 0 0
\(391\) 6.82475 0.345143
\(392\) −1.00000 −0.0505076
\(393\) −10.2749 −0.518301
\(394\) 0.824752 0.0415504
\(395\) −26.1993 −1.31823
\(396\) 4.00000 0.201008
\(397\) −15.7251 −0.789219 −0.394610 0.918849i \(-0.629120\pi\)
−0.394610 + 0.918849i \(0.629120\pi\)
\(398\) 10.8248 0.542596
\(399\) −8.54983 −0.428027
\(400\) 5.72508 0.286254
\(401\) −5.27492 −0.263417 −0.131708 0.991289i \(-0.542046\pi\)
−0.131708 + 0.991289i \(0.542046\pi\)
\(402\) −10.2749 −0.512466
\(403\) 0 0
\(404\) 9.27492 0.461444
\(405\) 3.27492 0.162732
\(406\) 0.725083 0.0359853
\(407\) 29.0997 1.44242
\(408\) −3.00000 −0.148522
\(409\) −22.9244 −1.13354 −0.566770 0.823876i \(-0.691807\pi\)
−0.566770 + 0.823876i \(0.691807\pi\)
\(410\) 2.37459 0.117272
\(411\) −0.175248 −0.00864436
\(412\) −2.27492 −0.112077
\(413\) 10.8248 0.532651
\(414\) −2.27492 −0.111806
\(415\) −35.4502 −1.74018
\(416\) 0 0
\(417\) 21.0997 1.03326
\(418\) −34.1993 −1.67274
\(419\) 15.3746 0.751098 0.375549 0.926803i \(-0.377454\pi\)
0.375549 + 0.926803i \(0.377454\pi\)
\(420\) −3.27492 −0.159800
\(421\) −0.725083 −0.0353384 −0.0176692 0.999844i \(-0.505625\pi\)
−0.0176692 + 0.999844i \(0.505625\pi\)
\(422\) 9.09967 0.442965
\(423\) −8.54983 −0.415707
\(424\) −11.5498 −0.560910
\(425\) 17.1752 0.833122
\(426\) −2.27492 −0.110220
\(427\) 9.00000 0.435541
\(428\) −12.5498 −0.606619
\(429\) 0 0
\(430\) −35.4502 −1.70956
\(431\) 5.72508 0.275768 0.137884 0.990448i \(-0.455970\pi\)
0.137884 + 0.990448i \(0.455970\pi\)
\(432\) 1.00000 0.0481125
\(433\) −2.72508 −0.130959 −0.0654796 0.997854i \(-0.520858\pi\)
−0.0654796 + 0.997854i \(0.520858\pi\)
\(434\) −6.27492 −0.301206
\(435\) 2.37459 0.113853
\(436\) −10.5498 −0.505245
\(437\) 19.4502 0.930428
\(438\) 13.2749 0.634300
\(439\) −17.0997 −0.816123 −0.408061 0.912955i \(-0.633795\pi\)
−0.408061 + 0.912955i \(0.633795\pi\)
\(440\) −13.0997 −0.624502
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 19.4502 0.924105 0.462053 0.886853i \(-0.347113\pi\)
0.462053 + 0.886853i \(0.347113\pi\)
\(444\) 7.27492 0.345252
\(445\) −27.0997 −1.28465
\(446\) 18.2749 0.865342
\(447\) 1.00000 0.0472984
\(448\) −1.00000 −0.0472456
\(449\) −11.0997 −0.523826 −0.261913 0.965092i \(-0.584353\pi\)
−0.261913 + 0.965092i \(0.584353\pi\)
\(450\) −5.72508 −0.269883
\(451\) −2.90033 −0.136571
\(452\) −7.82475 −0.368045
\(453\) 17.0997 0.803413
\(454\) 9.09967 0.427069
\(455\) 0 0
\(456\) −8.54983 −0.400383
\(457\) 17.0000 0.795226 0.397613 0.917553i \(-0.369839\pi\)
0.397613 + 0.917553i \(0.369839\pi\)
\(458\) 20.2749 0.947385
\(459\) 3.00000 0.140028
\(460\) 7.45017 0.347366
\(461\) −18.3746 −0.855790 −0.427895 0.903829i \(-0.640745\pi\)
−0.427895 + 0.903829i \(0.640745\pi\)
\(462\) 4.00000 0.186097
\(463\) −4.54983 −0.211449 −0.105724 0.994395i \(-0.533716\pi\)
−0.105724 + 0.994395i \(0.533716\pi\)
\(464\) 0.725083 0.0336611
\(465\) −20.5498 −0.952976
\(466\) −22.5498 −1.04460
\(467\) −30.8248 −1.42640 −0.713200 0.700961i \(-0.752755\pi\)
−0.713200 + 0.700961i \(0.752755\pi\)
\(468\) 0 0
\(469\) −10.2749 −0.474452
\(470\) 28.0000 1.29154
\(471\) −11.2749 −0.519521
\(472\) 10.8248 0.498250
\(473\) 43.2990 1.99089
\(474\) 8.00000 0.367452
\(475\) 48.9485 2.24591
\(476\) −3.00000 −0.137505
\(477\) 11.5498 0.528831
\(478\) 2.27492 0.104052
\(479\) −20.0000 −0.913823 −0.456912 0.889512i \(-0.651044\pi\)
−0.456912 + 0.889512i \(0.651044\pi\)
\(480\) −3.27492 −0.149479
\(481\) 0 0
\(482\) −23.2749 −1.06014
\(483\) −2.27492 −0.103512
\(484\) 5.00000 0.227273
\(485\) −47.6495 −2.16365
\(486\) −1.00000 −0.0453609
\(487\) −29.0997 −1.31863 −0.659316 0.751866i \(-0.729154\pi\)
−0.659316 + 0.751866i \(0.729154\pi\)
\(488\) 9.00000 0.407411
\(489\) 5.72508 0.258897
\(490\) −3.27492 −0.147946
\(491\) −5.09967 −0.230145 −0.115072 0.993357i \(-0.536710\pi\)
−0.115072 + 0.993357i \(0.536710\pi\)
\(492\) −0.725083 −0.0326893
\(493\) 2.17525 0.0979683
\(494\) 0 0
\(495\) 13.0997 0.588786
\(496\) −6.27492 −0.281752
\(497\) −2.27492 −0.102044
\(498\) 10.8248 0.485069
\(499\) 9.17525 0.410741 0.205370 0.978684i \(-0.434160\pi\)
0.205370 + 0.978684i \(0.434160\pi\)
\(500\) 2.37459 0.106195
\(501\) 0 0
\(502\) −5.72508 −0.255523
\(503\) 9.09967 0.405734 0.202867 0.979206i \(-0.434974\pi\)
0.202867 + 0.979206i \(0.434974\pi\)
\(504\) 1.00000 0.0445435
\(505\) 30.3746 1.35165
\(506\) −9.09967 −0.404530
\(507\) 0 0
\(508\) 8.00000 0.354943
\(509\) 35.8248 1.58790 0.793952 0.607980i \(-0.208020\pi\)
0.793952 + 0.607980i \(0.208020\pi\)
\(510\) −9.82475 −0.435047
\(511\) 13.2749 0.587248
\(512\) −1.00000 −0.0441942
\(513\) 8.54983 0.377484
\(514\) −15.0000 −0.661622
\(515\) −7.45017 −0.328294
\(516\) 10.8248 0.476533
\(517\) −34.1993 −1.50409
\(518\) 7.27492 0.319642
\(519\) 10.5498 0.463086
\(520\) 0 0
\(521\) 1.82475 0.0799438 0.0399719 0.999201i \(-0.487273\pi\)
0.0399719 + 0.999201i \(0.487273\pi\)
\(522\) −0.725083 −0.0317360
\(523\) 34.1993 1.49543 0.747716 0.664018i \(-0.231150\pi\)
0.747716 + 0.664018i \(0.231150\pi\)
\(524\) −10.2749 −0.448862
\(525\) −5.72508 −0.249863
\(526\) 9.09967 0.396764
\(527\) −18.8248 −0.820019
\(528\) 4.00000 0.174078
\(529\) −17.8248 −0.774989
\(530\) −37.8248 −1.64300
\(531\) −10.8248 −0.469754
\(532\) −8.54983 −0.370682
\(533\) 0 0
\(534\) 8.27492 0.358091
\(535\) −41.0997 −1.77689
\(536\) −10.2749 −0.443809
\(537\) 16.5498 0.714178
\(538\) 18.0000 0.776035
\(539\) 4.00000 0.172292
\(540\) 3.27492 0.140930
\(541\) 12.3746 0.532025 0.266013 0.963970i \(-0.414294\pi\)
0.266013 + 0.963970i \(0.414294\pi\)
\(542\) 17.7251 0.761357
\(543\) 5.82475 0.249964
\(544\) −3.00000 −0.128624
\(545\) −34.5498 −1.47995
\(546\) 0 0
\(547\) 33.0997 1.41524 0.707620 0.706593i \(-0.249769\pi\)
0.707620 + 0.706593i \(0.249769\pi\)
\(548\) −0.175248 −0.00748624
\(549\) −9.00000 −0.384111
\(550\) −22.9003 −0.976473
\(551\) 6.19934 0.264101
\(552\) −2.27492 −0.0968269
\(553\) 8.00000 0.340195
\(554\) 7.82475 0.332442
\(555\) 23.8248 1.01130
\(556\) 21.0997 0.894825
\(557\) −25.1993 −1.06773 −0.533865 0.845570i \(-0.679261\pi\)
−0.533865 + 0.845570i \(0.679261\pi\)
\(558\) 6.27492 0.265638
\(559\) 0 0
\(560\) −3.27492 −0.138391
\(561\) 12.0000 0.506640
\(562\) 1.82475 0.0769725
\(563\) 24.0000 1.01148 0.505740 0.862686i \(-0.331220\pi\)
0.505740 + 0.862686i \(0.331220\pi\)
\(564\) −8.54983 −0.360013
\(565\) −25.6254 −1.07807
\(566\) 24.5498 1.03191
\(567\) −1.00000 −0.0419961
\(568\) −2.27492 −0.0954534
\(569\) 35.0997 1.47145 0.735727 0.677278i \(-0.236840\pi\)
0.735727 + 0.677278i \(0.236840\pi\)
\(570\) −28.0000 −1.17279
\(571\) −22.2749 −0.932176 −0.466088 0.884738i \(-0.654337\pi\)
−0.466088 + 0.884738i \(0.654337\pi\)
\(572\) 0 0
\(573\) 14.2749 0.596343
\(574\) −0.725083 −0.0302644
\(575\) 13.0241 0.543142
\(576\) 1.00000 0.0416667
\(577\) 28.3746 1.18125 0.590625 0.806946i \(-0.298881\pi\)
0.590625 + 0.806946i \(0.298881\pi\)
\(578\) 8.00000 0.332756
\(579\) 2.17525 0.0904002
\(580\) 2.37459 0.0985993
\(581\) 10.8248 0.449086
\(582\) 14.5498 0.603110
\(583\) 46.1993 1.91338
\(584\) 13.2749 0.549320
\(585\) 0 0
\(586\) −10.7251 −0.443049
\(587\) 43.9244 1.81295 0.906477 0.422254i \(-0.138761\pi\)
0.906477 + 0.422254i \(0.138761\pi\)
\(588\) 1.00000 0.0412393
\(589\) −53.6495 −2.21059
\(590\) 35.4502 1.45946
\(591\) −0.824752 −0.0339257
\(592\) 7.27492 0.298997
\(593\) −19.5498 −0.802815 −0.401408 0.915899i \(-0.631479\pi\)
−0.401408 + 0.915899i \(0.631479\pi\)
\(594\) −4.00000 −0.164122
\(595\) −9.82475 −0.402776
\(596\) 1.00000 0.0409616
\(597\) −10.8248 −0.443028
\(598\) 0 0
\(599\) −18.2749 −0.746693 −0.373346 0.927692i \(-0.621790\pi\)
−0.373346 + 0.927692i \(0.621790\pi\)
\(600\) −5.72508 −0.233726
\(601\) −15.2749 −0.623077 −0.311538 0.950234i \(-0.600844\pi\)
−0.311538 + 0.950234i \(0.600844\pi\)
\(602\) 10.8248 0.441184
\(603\) 10.2749 0.418427
\(604\) 17.0997 0.695776
\(605\) 16.3746 0.665722
\(606\) −9.27492 −0.376768
\(607\) 22.2749 0.904111 0.452055 0.891990i \(-0.350691\pi\)
0.452055 + 0.891990i \(0.350691\pi\)
\(608\) −8.54983 −0.346742
\(609\) −0.725083 −0.0293818
\(610\) 29.4743 1.19338
\(611\) 0 0
\(612\) 3.00000 0.121268
\(613\) 8.37459 0.338246 0.169123 0.985595i \(-0.445906\pi\)
0.169123 + 0.985595i \(0.445906\pi\)
\(614\) −16.5498 −0.667897
\(615\) −2.37459 −0.0957526
\(616\) 4.00000 0.161165
\(617\) 12.9244 0.520318 0.260159 0.965566i \(-0.416225\pi\)
0.260159 + 0.965566i \(0.416225\pi\)
\(618\) 2.27492 0.0915106
\(619\) −29.6495 −1.19171 −0.595857 0.803090i \(-0.703188\pi\)
−0.595857 + 0.803090i \(0.703188\pi\)
\(620\) −20.5498 −0.825301
\(621\) 2.27492 0.0912893
\(622\) −12.5498 −0.503203
\(623\) 8.27492 0.331528
\(624\) 0 0
\(625\) −20.8488 −0.833954
\(626\) 27.6495 1.10510
\(627\) 34.1993 1.36579
\(628\) −11.2749 −0.449918
\(629\) 21.8248 0.870210
\(630\) 3.27492 0.130476
\(631\) −1.09967 −0.0437771 −0.0218886 0.999760i \(-0.506968\pi\)
−0.0218886 + 0.999760i \(0.506968\pi\)
\(632\) 8.00000 0.318223
\(633\) −9.09967 −0.361679
\(634\) 7.54983 0.299842
\(635\) 26.1993 1.03969
\(636\) 11.5498 0.457981
\(637\) 0 0
\(638\) −2.90033 −0.114825
\(639\) 2.27492 0.0899943
\(640\) −3.27492 −0.129452
\(641\) −3.82475 −0.151069 −0.0755343 0.997143i \(-0.524066\pi\)
−0.0755343 + 0.997143i \(0.524066\pi\)
\(642\) 12.5498 0.495302
\(643\) −42.7492 −1.68586 −0.842931 0.538021i \(-0.819172\pi\)
−0.842931 + 0.538021i \(0.819172\pi\)
\(644\) −2.27492 −0.0896443
\(645\) 35.4502 1.39585
\(646\) −25.6495 −1.00917
\(647\) 24.5498 0.965154 0.482577 0.875854i \(-0.339701\pi\)
0.482577 + 0.875854i \(0.339701\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −43.2990 −1.69963
\(650\) 0 0
\(651\) 6.27492 0.245933
\(652\) 5.72508 0.224212
\(653\) −34.4743 −1.34908 −0.674541 0.738237i \(-0.735658\pi\)
−0.674541 + 0.738237i \(0.735658\pi\)
\(654\) 10.5498 0.412531
\(655\) −33.6495 −1.31479
\(656\) −0.725083 −0.0283097
\(657\) −13.2749 −0.517904
\(658\) −8.54983 −0.333307
\(659\) −28.5498 −1.11214 −0.556072 0.831134i \(-0.687692\pi\)
−0.556072 + 0.831134i \(0.687692\pi\)
\(660\) 13.0997 0.509904
\(661\) −40.0997 −1.55970 −0.779848 0.625969i \(-0.784704\pi\)
−0.779848 + 0.625969i \(0.784704\pi\)
\(662\) 4.00000 0.155464
\(663\) 0 0
\(664\) 10.8248 0.420082
\(665\) −28.0000 −1.08579
\(666\) −7.27492 −0.281897
\(667\) 1.64950 0.0638690
\(668\) 0 0
\(669\) −18.2749 −0.706549
\(670\) −33.6495 −1.29999
\(671\) −36.0000 −1.38976
\(672\) 1.00000 0.0385758
\(673\) 12.0997 0.466408 0.233204 0.972428i \(-0.425079\pi\)
0.233204 + 0.972428i \(0.425079\pi\)
\(674\) 7.27492 0.280219
\(675\) 5.72508 0.220359
\(676\) 0 0
\(677\) 11.6495 0.447727 0.223863 0.974621i \(-0.428133\pi\)
0.223863 + 0.974621i \(0.428133\pi\)
\(678\) 7.82475 0.300508
\(679\) 14.5498 0.558371
\(680\) −9.82475 −0.376762
\(681\) −9.09967 −0.348700
\(682\) 25.0997 0.961116
\(683\) 49.6495 1.89979 0.949893 0.312576i \(-0.101192\pi\)
0.949893 + 0.312576i \(0.101192\pi\)
\(684\) 8.54983 0.326911
\(685\) −0.573924 −0.0219285
\(686\) 1.00000 0.0381802
\(687\) −20.2749 −0.773536
\(688\) 10.8248 0.412690
\(689\) 0 0
\(690\) −7.45017 −0.283623
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 10.5498 0.401045
\(693\) −4.00000 −0.151947
\(694\) −15.4502 −0.586480
\(695\) 69.0997 2.62110
\(696\) −0.725083 −0.0274842
\(697\) −2.17525 −0.0823934
\(698\) 17.9244 0.678449
\(699\) 22.5498 0.852913
\(700\) −5.72508 −0.216388
\(701\) −37.9244 −1.43239 −0.716193 0.697902i \(-0.754117\pi\)
−0.716193 + 0.697902i \(0.754117\pi\)
\(702\) 0 0
\(703\) 62.1993 2.34589
\(704\) 4.00000 0.150756
\(705\) −28.0000 −1.05454
\(706\) −4.45017 −0.167484
\(707\) −9.27492 −0.348819
\(708\) −10.8248 −0.406819
\(709\) 9.62541 0.361490 0.180745 0.983530i \(-0.442149\pi\)
0.180745 + 0.983530i \(0.442149\pi\)
\(710\) −7.45017 −0.279600
\(711\) −8.00000 −0.300023
\(712\) 8.27492 0.310116
\(713\) −14.2749 −0.534600
\(714\) 3.00000 0.112272
\(715\) 0 0
\(716\) 16.5498 0.618496
\(717\) −2.27492 −0.0849583
\(718\) 29.0997 1.08599
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 3.27492 0.122049
\(721\) 2.27492 0.0847223
\(722\) −54.0997 −2.01338
\(723\) 23.2749 0.865603
\(724\) 5.82475 0.216475
\(725\) 4.15116 0.154170
\(726\) −5.00000 −0.185567
\(727\) −2.82475 −0.104764 −0.0523821 0.998627i \(-0.516681\pi\)
−0.0523821 + 0.998627i \(0.516681\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 43.4743 1.60905
\(731\) 32.4743 1.20110
\(732\) −9.00000 −0.332650
\(733\) −12.6495 −0.467220 −0.233610 0.972330i \(-0.575054\pi\)
−0.233610 + 0.972330i \(0.575054\pi\)
\(734\) −5.72508 −0.211317
\(735\) 3.27492 0.120797
\(736\) −2.27492 −0.0838546
\(737\) 41.0997 1.51393
\(738\) 0.725083 0.0266907
\(739\) 41.7251 1.53488 0.767441 0.641120i \(-0.221530\pi\)
0.767441 + 0.641120i \(0.221530\pi\)
\(740\) 23.8248 0.875815
\(741\) 0 0
\(742\) 11.5498 0.424008
\(743\) 26.8248 0.984105 0.492052 0.870566i \(-0.336247\pi\)
0.492052 + 0.870566i \(0.336247\pi\)
\(744\) 6.27492 0.230050
\(745\) 3.27492 0.119984
\(746\) −4.17525 −0.152867
\(747\) −10.8248 −0.396057
\(748\) 12.0000 0.438763
\(749\) 12.5498 0.458561
\(750\) −2.37459 −0.0867076
\(751\) −3.45017 −0.125898 −0.0629492 0.998017i \(-0.520051\pi\)
−0.0629492 + 0.998017i \(0.520051\pi\)
\(752\) −8.54983 −0.311780
\(753\) 5.72508 0.208634
\(754\) 0 0
\(755\) 56.0000 2.03805
\(756\) −1.00000 −0.0363696
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) −20.0000 −0.726433
\(759\) 9.09967 0.330297
\(760\) −28.0000 −1.01567
\(761\) 40.1993 1.45722 0.728612 0.684926i \(-0.240166\pi\)
0.728612 + 0.684926i \(0.240166\pi\)
\(762\) −8.00000 −0.289809
\(763\) 10.5498 0.381930
\(764\) 14.2749 0.516448
\(765\) 9.82475 0.355215
\(766\) −38.1993 −1.38020
\(767\) 0 0
\(768\) 1.00000 0.0360844
\(769\) 3.64950 0.131604 0.0658022 0.997833i \(-0.479039\pi\)
0.0658022 + 0.997833i \(0.479039\pi\)
\(770\) 13.0997 0.472079
\(771\) 15.0000 0.540212
\(772\) 2.17525 0.0782889
\(773\) 51.0997 1.83793 0.918964 0.394342i \(-0.129028\pi\)
0.918964 + 0.394342i \(0.129028\pi\)
\(774\) −10.8248 −0.389088
\(775\) −35.9244 −1.29044
\(776\) 14.5498 0.522309
\(777\) −7.27492 −0.260986
\(778\) −20.6495 −0.740321
\(779\) −6.19934 −0.222114
\(780\) 0 0
\(781\) 9.09967 0.325612
\(782\) −6.82475 −0.244053
\(783\) 0.725083 0.0259123
\(784\) 1.00000 0.0357143
\(785\) −36.9244 −1.31789
\(786\) 10.2749 0.366494
\(787\) 9.09967 0.324368 0.162184 0.986761i \(-0.448146\pi\)
0.162184 + 0.986761i \(0.448146\pi\)
\(788\) −0.824752 −0.0293806
\(789\) −9.09967 −0.323957
\(790\) 26.1993 0.932131
\(791\) 7.82475 0.278216
\(792\) −4.00000 −0.142134
\(793\) 0 0
\(794\) 15.7251 0.558062
\(795\) 37.8248 1.34151
\(796\) −10.8248 −0.383673
\(797\) 1.45017 0.0513675 0.0256837 0.999670i \(-0.491824\pi\)
0.0256837 + 0.999670i \(0.491824\pi\)
\(798\) 8.54983 0.302661
\(799\) −25.6495 −0.907414
\(800\) −5.72508 −0.202412
\(801\) −8.27492 −0.292380
\(802\) 5.27492 0.186264
\(803\) −53.0997 −1.87385
\(804\) 10.2749 0.362368
\(805\) −7.45017 −0.262584
\(806\) 0 0
\(807\) −18.0000 −0.633630
\(808\) −9.27492 −0.326290
\(809\) 17.2749 0.607354 0.303677 0.952775i \(-0.401786\pi\)
0.303677 + 0.952775i \(0.401786\pi\)
\(810\) −3.27492 −0.115069
\(811\) 25.0997 0.881369 0.440684 0.897662i \(-0.354736\pi\)
0.440684 + 0.897662i \(0.354736\pi\)
\(812\) −0.725083 −0.0254454
\(813\) −17.7251 −0.621646
\(814\) −29.0997 −1.01994
\(815\) 18.7492 0.656755
\(816\) 3.00000 0.105021
\(817\) 92.5498 3.23791
\(818\) 22.9244 0.801534
\(819\) 0 0
\(820\) −2.37459 −0.0829241
\(821\) −7.72508 −0.269607 −0.134804 0.990872i \(-0.543040\pi\)
−0.134804 + 0.990872i \(0.543040\pi\)
\(822\) 0.175248 0.00611249
\(823\) −37.0997 −1.29321 −0.646607 0.762824i \(-0.723812\pi\)
−0.646607 + 0.762824i \(0.723812\pi\)
\(824\) 2.27492 0.0792505
\(825\) 22.9003 0.797287
\(826\) −10.8248 −0.376641
\(827\) 25.0997 0.872801 0.436401 0.899753i \(-0.356253\pi\)
0.436401 + 0.899753i \(0.356253\pi\)
\(828\) 2.27492 0.0790588
\(829\) −22.1752 −0.770178 −0.385089 0.922879i \(-0.625829\pi\)
−0.385089 + 0.922879i \(0.625829\pi\)
\(830\) 35.4502 1.23049
\(831\) −7.82475 −0.271438
\(832\) 0 0
\(833\) 3.00000 0.103944
\(834\) −21.0997 −0.730622
\(835\) 0 0
\(836\) 34.1993 1.18281
\(837\) −6.27492 −0.216893
\(838\) −15.3746 −0.531106
\(839\) −54.7492 −1.89015 −0.945076 0.326852i \(-0.894012\pi\)
−0.945076 + 0.326852i \(0.894012\pi\)
\(840\) 3.27492 0.112995
\(841\) −28.4743 −0.981871
\(842\) 0.725083 0.0249880
\(843\) −1.82475 −0.0628478
\(844\) −9.09967 −0.313224
\(845\) 0 0
\(846\) 8.54983 0.293949
\(847\) −5.00000 −0.171802
\(848\) 11.5498 0.396623
\(849\) −24.5498 −0.842548
\(850\) −17.1752 −0.589106
\(851\) 16.5498 0.567321
\(852\) 2.27492 0.0779374
\(853\) 29.5498 1.01177 0.505884 0.862602i \(-0.331167\pi\)
0.505884 + 0.862602i \(0.331167\pi\)
\(854\) −9.00000 −0.307974
\(855\) 28.0000 0.957580
\(856\) 12.5498 0.428945
\(857\) −14.1752 −0.484217 −0.242109 0.970249i \(-0.577839\pi\)
−0.242109 + 0.970249i \(0.577839\pi\)
\(858\) 0 0
\(859\) 17.6495 0.602193 0.301097 0.953594i \(-0.402647\pi\)
0.301097 + 0.953594i \(0.402647\pi\)
\(860\) 35.4502 1.20884
\(861\) 0.725083 0.0247108
\(862\) −5.72508 −0.194997
\(863\) 55.2990 1.88240 0.941200 0.337850i \(-0.109700\pi\)
0.941200 + 0.337850i \(0.109700\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 34.5498 1.17473
\(866\) 2.72508 0.0926021
\(867\) −8.00000 −0.271694
\(868\) 6.27492 0.212985
\(869\) −32.0000 −1.08553
\(870\) −2.37459 −0.0805060
\(871\) 0 0
\(872\) 10.5498 0.357262
\(873\) −14.5498 −0.492437
\(874\) −19.4502 −0.657912
\(875\) −2.37459 −0.0802757
\(876\) −13.2749 −0.448518
\(877\) 11.2749 0.380727 0.190363 0.981714i \(-0.439033\pi\)
0.190363 + 0.981714i \(0.439033\pi\)
\(878\) 17.0997 0.577086
\(879\) 10.7251 0.361748
\(880\) 13.0997 0.441590
\(881\) −13.5498 −0.456506 −0.228253 0.973602i \(-0.573301\pi\)
−0.228253 + 0.973602i \(0.573301\pi\)
\(882\) −1.00000 −0.0336718
\(883\) −25.0241 −0.842128 −0.421064 0.907031i \(-0.638343\pi\)
−0.421064 + 0.907031i \(0.638343\pi\)
\(884\) 0 0
\(885\) −35.4502 −1.19164
\(886\) −19.4502 −0.653441
\(887\) 31.4502 1.05599 0.527997 0.849246i \(-0.322943\pi\)
0.527997 + 0.849246i \(0.322943\pi\)
\(888\) −7.27492 −0.244130
\(889\) −8.00000 −0.268311
\(890\) 27.0997 0.908383
\(891\) 4.00000 0.134005
\(892\) −18.2749 −0.611889
\(893\) −73.0997 −2.44619
\(894\) −1.00000 −0.0334450
\(895\) 54.1993 1.81168
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) 11.0997 0.370401
\(899\) −4.54983 −0.151745
\(900\) 5.72508 0.190836
\(901\) 34.6495 1.15434
\(902\) 2.90033 0.0965705
\(903\) −10.8248 −0.360225
\(904\) 7.82475 0.260247
\(905\) 19.0756 0.634094
\(906\) −17.0997 −0.568098
\(907\) −17.1752 −0.570295 −0.285147 0.958484i \(-0.592043\pi\)
−0.285147 + 0.958484i \(0.592043\pi\)
\(908\) −9.09967 −0.301983
\(909\) 9.27492 0.307630
\(910\) 0 0
\(911\) 5.09967 0.168960 0.0844798 0.996425i \(-0.473077\pi\)
0.0844798 + 0.996425i \(0.473077\pi\)
\(912\) 8.54983 0.283113
\(913\) −43.2990 −1.43299
\(914\) −17.0000 −0.562310
\(915\) −29.4743 −0.974389
\(916\) −20.2749 −0.669902
\(917\) 10.2749 0.339308
\(918\) −3.00000 −0.0990148
\(919\) −5.64950 −0.186360 −0.0931800 0.995649i \(-0.529703\pi\)
−0.0931800 + 0.995649i \(0.529703\pi\)
\(920\) −7.45017 −0.245625
\(921\) 16.5498 0.545336
\(922\) 18.3746 0.605135
\(923\) 0 0
\(924\) −4.00000 −0.131590
\(925\) 41.6495 1.36943
\(926\) 4.54983 0.149517
\(927\) −2.27492 −0.0747181
\(928\) −0.725083 −0.0238020
\(929\) −38.4502 −1.26151 −0.630755 0.775982i \(-0.717255\pi\)
−0.630755 + 0.775982i \(0.717255\pi\)
\(930\) 20.5498 0.673856
\(931\) 8.54983 0.280210
\(932\) 22.5498 0.738644
\(933\) 12.5498 0.410863
\(934\) 30.8248 1.00862
\(935\) 39.2990 1.28521
\(936\) 0 0
\(937\) 41.8248 1.36636 0.683178 0.730252i \(-0.260598\pi\)
0.683178 + 0.730252i \(0.260598\pi\)
\(938\) 10.2749 0.335488
\(939\) −27.6495 −0.902307
\(940\) −28.0000 −0.913259
\(941\) 7.64950 0.249367 0.124683 0.992197i \(-0.460209\pi\)
0.124683 + 0.992197i \(0.460209\pi\)
\(942\) 11.2749 0.367357
\(943\) −1.64950 −0.0537152
\(944\) −10.8248 −0.352316
\(945\) −3.27492 −0.106533
\(946\) −43.2990 −1.40777
\(947\) −21.0997 −0.685647 −0.342824 0.939400i \(-0.611383\pi\)
−0.342824 + 0.939400i \(0.611383\pi\)
\(948\) −8.00000 −0.259828
\(949\) 0 0
\(950\) −48.9485 −1.58810
\(951\) −7.54983 −0.244820
\(952\) 3.00000 0.0972306
\(953\) 19.0997 0.618699 0.309349 0.950948i \(-0.399889\pi\)
0.309349 + 0.950948i \(0.399889\pi\)
\(954\) −11.5498 −0.373940
\(955\) 46.7492 1.51277
\(956\) −2.27492 −0.0735761
\(957\) 2.90033 0.0937544
\(958\) 20.0000 0.646171
\(959\) 0.175248 0.00565906
\(960\) 3.27492 0.105697
\(961\) 8.37459 0.270148
\(962\) 0 0
\(963\) −12.5498 −0.404413
\(964\) 23.2749 0.749635
\(965\) 7.12376 0.229322
\(966\) 2.27492 0.0731943
\(967\) 3.45017 0.110950 0.0554749 0.998460i \(-0.482333\pi\)
0.0554749 + 0.998460i \(0.482333\pi\)
\(968\) −5.00000 −0.160706
\(969\) 25.6495 0.823981
\(970\) 47.6495 1.52993
\(971\) −49.5739 −1.59090 −0.795451 0.606017i \(-0.792766\pi\)
−0.795451 + 0.606017i \(0.792766\pi\)
\(972\) 1.00000 0.0320750
\(973\) −21.0997 −0.676424
\(974\) 29.0997 0.932414
\(975\) 0 0
\(976\) −9.00000 −0.288083
\(977\) −62.3746 −1.99554 −0.997770 0.0667475i \(-0.978738\pi\)
−0.997770 + 0.0667475i \(0.978738\pi\)
\(978\) −5.72508 −0.183068
\(979\) −33.0997 −1.05787
\(980\) 3.27492 0.104613
\(981\) −10.5498 −0.336830
\(982\) 5.09967 0.162737
\(983\) 51.8488 1.65372 0.826861 0.562407i \(-0.190125\pi\)
0.826861 + 0.562407i \(0.190125\pi\)
\(984\) 0.725083 0.0231148
\(985\) −2.70099 −0.0860608
\(986\) −2.17525 −0.0692740
\(987\) 8.54983 0.272144
\(988\) 0 0
\(989\) 24.6254 0.783043
\(990\) −13.0997 −0.416335
\(991\) 38.7492 1.23091 0.615454 0.788173i \(-0.288973\pi\)
0.615454 + 0.788173i \(0.288973\pi\)
\(992\) 6.27492 0.199229
\(993\) −4.00000 −0.126936
\(994\) 2.27492 0.0721560
\(995\) −35.4502 −1.12385
\(996\) −10.8248 −0.342995
\(997\) −34.0997 −1.07995 −0.539974 0.841682i \(-0.681566\pi\)
−0.539974 + 0.841682i \(0.681566\pi\)
\(998\) −9.17525 −0.290437
\(999\) 7.27492 0.230168
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7098.2.a.bm.1.2 2
13.4 even 6 546.2.l.j.211.1 4
13.10 even 6 546.2.l.j.295.1 yes 4
13.12 even 2 7098.2.a.ca.1.1 2
39.17 odd 6 1638.2.r.x.757.2 4
39.23 odd 6 1638.2.r.x.1387.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.l.j.211.1 4 13.4 even 6
546.2.l.j.295.1 yes 4 13.10 even 6
1638.2.r.x.757.2 4 39.17 odd 6
1638.2.r.x.1387.2 4 39.23 odd 6
7098.2.a.bm.1.2 2 1.1 even 1 trivial
7098.2.a.ca.1.1 2 13.12 even 2