Properties

Label 7056.2.k.b.881.1
Level $7056$
Weight $2$
Character 7056.881
Analytic conductor $56.342$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7056,2,Mod(881,7056)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7056, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7056.881");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7056.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.3424436662\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.1
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 7056.881
Dual form 7056.2.k.b.881.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.44949 q^{5} +O(q^{10})\) \(q-2.44949 q^{5} -1.41421i q^{11} +5.19615i q^{13} -4.89898 q^{17} +1.73205i q^{19} -5.65685i q^{23} +1.00000 q^{25} -2.82843i q^{29} -1.73205i q^{31} -1.00000 q^{37} +7.34847 q^{41} +1.00000 q^{43} -12.2474 q^{47} -2.82843i q^{53} +3.46410i q^{55} +4.89898 q^{59} +3.46410i q^{61} -12.7279i q^{65} -11.0000 q^{67} +7.07107i q^{71} +1.73205i q^{73} -5.00000 q^{79} +7.34847 q^{83} +12.0000 q^{85} +4.89898 q^{89} -4.24264i q^{95} +10.3923i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{25} - 4 q^{37} + 4 q^{43} - 44 q^{67} - 20 q^{79} + 48 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7056\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1765\) \(4609\) \(6175\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.44949 −1.09545 −0.547723 0.836660i \(-0.684505\pi\)
−0.547723 + 0.836660i \(0.684505\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 1.41421i − 0.426401i −0.977008 0.213201i \(-0.931611\pi\)
0.977008 0.213201i \(-0.0683888\pi\)
\(12\) 0 0
\(13\) 5.19615i 1.44115i 0.693375 + 0.720577i \(0.256123\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.89898 −1.18818 −0.594089 0.804400i \(-0.702487\pi\)
−0.594089 + 0.804400i \(0.702487\pi\)
\(18\) 0 0
\(19\) 1.73205i 0.397360i 0.980064 + 0.198680i \(0.0636654\pi\)
−0.980064 + 0.198680i \(0.936335\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 5.65685i − 1.17954i −0.807573 0.589768i \(-0.799219\pi\)
0.807573 0.589768i \(-0.200781\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 2.82843i − 0.525226i −0.964901 0.262613i \(-0.915416\pi\)
0.964901 0.262613i \(-0.0845842\pi\)
\(30\) 0 0
\(31\) − 1.73205i − 0.311086i −0.987829 0.155543i \(-0.950287\pi\)
0.987829 0.155543i \(-0.0497126\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 −0.164399 −0.0821995 0.996616i \(-0.526194\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.34847 1.14764 0.573819 0.818982i \(-0.305461\pi\)
0.573819 + 0.818982i \(0.305461\pi\)
\(42\) 0 0
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −12.2474 −1.78647 −0.893237 0.449586i \(-0.851571\pi\)
−0.893237 + 0.449586i \(0.851571\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 2.82843i − 0.388514i −0.980951 0.194257i \(-0.937770\pi\)
0.980951 0.194257i \(-0.0622296\pi\)
\(54\) 0 0
\(55\) 3.46410i 0.467099i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.89898 0.637793 0.318896 0.947790i \(-0.396688\pi\)
0.318896 + 0.947790i \(0.396688\pi\)
\(60\) 0 0
\(61\) 3.46410i 0.443533i 0.975100 + 0.221766i \(0.0711822\pi\)
−0.975100 + 0.221766i \(0.928818\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 12.7279i − 1.57870i
\(66\) 0 0
\(67\) −11.0000 −1.34386 −0.671932 0.740613i \(-0.734535\pi\)
−0.671932 + 0.740613i \(0.734535\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.07107i 0.839181i 0.907713 + 0.419591i \(0.137826\pi\)
−0.907713 + 0.419591i \(0.862174\pi\)
\(72\) 0 0
\(73\) 1.73205i 0.202721i 0.994850 + 0.101361i \(0.0323196\pi\)
−0.994850 + 0.101361i \(0.967680\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −5.00000 −0.562544 −0.281272 0.959628i \(-0.590756\pi\)
−0.281272 + 0.959628i \(0.590756\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.34847 0.806599 0.403300 0.915068i \(-0.367863\pi\)
0.403300 + 0.915068i \(0.367863\pi\)
\(84\) 0 0
\(85\) 12.0000 1.30158
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.89898 0.519291 0.259645 0.965704i \(-0.416394\pi\)
0.259645 + 0.965704i \(0.416394\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 4.24264i − 0.435286i
\(96\) 0 0
\(97\) 10.3923i 1.05518i 0.849500 + 0.527589i \(0.176904\pi\)
−0.849500 + 0.527589i \(0.823096\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 17.1464 1.70613 0.853067 0.521802i \(-0.174740\pi\)
0.853067 + 0.521802i \(0.174740\pi\)
\(102\) 0 0
\(103\) − 8.66025i − 0.853320i −0.904412 0.426660i \(-0.859690\pi\)
0.904412 0.426660i \(-0.140310\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.82843i 0.273434i 0.990610 + 0.136717i \(0.0436552\pi\)
−0.990610 + 0.136717i \(0.956345\pi\)
\(108\) 0 0
\(109\) −1.00000 −0.0957826 −0.0478913 0.998853i \(-0.515250\pi\)
−0.0478913 + 0.998853i \(0.515250\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.41421i 0.133038i 0.997785 + 0.0665190i \(0.0211893\pi\)
−0.997785 + 0.0665190i \(0.978811\pi\)
\(114\) 0 0
\(115\) 13.8564i 1.29212i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.79796 0.876356
\(126\) 0 0
\(127\) −11.0000 −0.976092 −0.488046 0.872818i \(-0.662290\pi\)
−0.488046 + 0.872818i \(0.662290\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.44949 0.214013 0.107006 0.994258i \(-0.465873\pi\)
0.107006 + 0.994258i \(0.465873\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 11.3137i − 0.966595i −0.875456 0.483298i \(-0.839439\pi\)
0.875456 0.483298i \(-0.160561\pi\)
\(138\) 0 0
\(139\) − 5.19615i − 0.440732i −0.975417 0.220366i \(-0.929275\pi\)
0.975417 0.220366i \(-0.0707252\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 7.34847 0.614510
\(144\) 0 0
\(145\) 6.92820i 0.575356i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.65685i 0.463428i 0.972784 + 0.231714i \(0.0744333\pi\)
−0.972784 + 0.231714i \(0.925567\pi\)
\(150\) 0 0
\(151\) 22.0000 1.79033 0.895167 0.445730i \(-0.147056\pi\)
0.895167 + 0.445730i \(0.147056\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.24264i 0.340777i
\(156\) 0 0
\(157\) 17.3205i 1.38233i 0.722698 + 0.691164i \(0.242902\pi\)
−0.722698 + 0.691164i \(0.757098\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 10.0000 0.783260 0.391630 0.920123i \(-0.371911\pi\)
0.391630 + 0.920123i \(0.371911\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.34847 −0.568642 −0.284321 0.958729i \(-0.591768\pi\)
−0.284321 + 0.958729i \(0.591768\pi\)
\(168\) 0 0
\(169\) −14.0000 −1.07692
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.79796 −0.744925 −0.372463 0.928047i \(-0.621486\pi\)
−0.372463 + 0.928047i \(0.621486\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 9.89949i − 0.739923i −0.929047 0.369961i \(-0.879371\pi\)
0.929047 0.369961i \(-0.120629\pi\)
\(180\) 0 0
\(181\) − 15.5885i − 1.15868i −0.815086 0.579340i \(-0.803310\pi\)
0.815086 0.579340i \(-0.196690\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.44949 0.180090
\(186\) 0 0
\(187\) 6.92820i 0.506640i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 1.41421i − 0.102329i −0.998690 0.0511645i \(-0.983707\pi\)
0.998690 0.0511645i \(-0.0162933\pi\)
\(192\) 0 0
\(193\) 11.0000 0.791797 0.395899 0.918294i \(-0.370433\pi\)
0.395899 + 0.918294i \(0.370433\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 19.7990i − 1.41062i −0.708899 0.705310i \(-0.750808\pi\)
0.708899 0.705310i \(-0.249192\pi\)
\(198\) 0 0
\(199\) 13.8564i 0.982255i 0.871088 + 0.491127i \(0.163415\pi\)
−0.871088 + 0.491127i \(0.836585\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −18.0000 −1.25717
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.44949 0.169435
\(210\) 0 0
\(211\) 22.0000 1.51454 0.757271 0.653101i \(-0.226532\pi\)
0.757271 + 0.653101i \(0.226532\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.44949 −0.167054
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 25.4558i − 1.71235i
\(222\) 0 0
\(223\) 20.7846i 1.39184i 0.718119 + 0.695920i \(0.245003\pi\)
−0.718119 + 0.695920i \(0.754997\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 26.9444 1.78836 0.894181 0.447706i \(-0.147759\pi\)
0.894181 + 0.447706i \(0.147759\pi\)
\(228\) 0 0
\(229\) − 22.5167i − 1.48794i −0.668211 0.743971i \(-0.732940\pi\)
0.668211 0.743971i \(-0.267060\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.89949i 0.648537i 0.945965 + 0.324269i \(0.105118\pi\)
−0.945965 + 0.324269i \(0.894882\pi\)
\(234\) 0 0
\(235\) 30.0000 1.95698
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 26.8701i − 1.73808i −0.494742 0.869040i \(-0.664738\pi\)
0.494742 0.869040i \(-0.335262\pi\)
\(240\) 0 0
\(241\) − 13.8564i − 0.892570i −0.894891 0.446285i \(-0.852747\pi\)
0.894891 0.446285i \(-0.147253\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −9.00000 −0.572656
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −8.00000 −0.502956
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.44949 −0.152795 −0.0763975 0.997077i \(-0.524342\pi\)
−0.0763975 + 0.997077i \(0.524342\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 14.1421i − 0.872041i −0.899937 0.436021i \(-0.856387\pi\)
0.899937 0.436021i \(-0.143613\pi\)
\(264\) 0 0
\(265\) 6.92820i 0.425596i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 17.1464 1.04544 0.522718 0.852506i \(-0.324918\pi\)
0.522718 + 0.852506i \(0.324918\pi\)
\(270\) 0 0
\(271\) − 13.8564i − 0.841717i −0.907126 0.420858i \(-0.861729\pi\)
0.907126 0.420858i \(-0.138271\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 1.41421i − 0.0852803i
\(276\) 0 0
\(277\) 23.0000 1.38194 0.690968 0.722885i \(-0.257185\pi\)
0.690968 + 0.722885i \(0.257185\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.6274i 1.34984i 0.737892 + 0.674919i \(0.235822\pi\)
−0.737892 + 0.674919i \(0.764178\pi\)
\(282\) 0 0
\(283\) − 1.73205i − 0.102960i −0.998674 0.0514799i \(-0.983606\pi\)
0.998674 0.0514799i \(-0.0163938\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.00000 0.411765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −14.6969 −0.858604 −0.429302 0.903161i \(-0.641240\pi\)
−0.429302 + 0.903161i \(0.641240\pi\)
\(294\) 0 0
\(295\) −12.0000 −0.698667
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 29.3939 1.69989
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 8.48528i − 0.485866i
\(306\) 0 0
\(307\) − 15.5885i − 0.889680i −0.895610 0.444840i \(-0.853260\pi\)
0.895610 0.444840i \(-0.146740\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −17.1464 −0.972285 −0.486142 0.873880i \(-0.661596\pi\)
−0.486142 + 0.873880i \(0.661596\pi\)
\(312\) 0 0
\(313\) − 12.1244i − 0.685309i −0.939461 0.342655i \(-0.888674\pi\)
0.939461 0.342655i \(-0.111326\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.1421i 0.794301i 0.917753 + 0.397151i \(0.130001\pi\)
−0.917753 + 0.397151i \(0.869999\pi\)
\(318\) 0 0
\(319\) −4.00000 −0.223957
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 8.48528i − 0.472134i
\(324\) 0 0
\(325\) 5.19615i 0.288231i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 31.0000 1.70391 0.851957 0.523612i \(-0.175416\pi\)
0.851957 + 0.523612i \(0.175416\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 26.9444 1.47213
\(336\) 0 0
\(337\) 23.0000 1.25289 0.626445 0.779466i \(-0.284509\pi\)
0.626445 + 0.779466i \(0.284509\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.44949 −0.132647
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 31.1127i − 1.67022i −0.550085 0.835109i \(-0.685405\pi\)
0.550085 0.835109i \(-0.314595\pi\)
\(348\) 0 0
\(349\) 10.3923i 0.556287i 0.960539 + 0.278144i \(0.0897191\pi\)
−0.960539 + 0.278144i \(0.910281\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.1464 0.912612 0.456306 0.889823i \(-0.349172\pi\)
0.456306 + 0.889823i \(0.349172\pi\)
\(354\) 0 0
\(355\) − 17.3205i − 0.919277i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 28.2843i 1.49279i 0.665505 + 0.746393i \(0.268216\pi\)
−0.665505 + 0.746393i \(0.731784\pi\)
\(360\) 0 0
\(361\) 16.0000 0.842105
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 4.24264i − 0.222070i
\(366\) 0 0
\(367\) − 1.73205i − 0.0904123i −0.998978 0.0452062i \(-0.985606\pi\)
0.998978 0.0452062i \(-0.0143945\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 29.0000 1.50156 0.750782 0.660551i \(-0.229677\pi\)
0.750782 + 0.660551i \(0.229677\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.6969 0.756931
\(378\) 0 0
\(379\) 7.00000 0.359566 0.179783 0.983706i \(-0.442460\pi\)
0.179783 + 0.983706i \(0.442460\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −19.5959 −1.00130 −0.500652 0.865648i \(-0.666906\pi\)
−0.500652 + 0.865648i \(0.666906\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 26.8701i 1.36237i 0.732113 + 0.681183i \(0.238534\pi\)
−0.732113 + 0.681183i \(0.761466\pi\)
\(390\) 0 0
\(391\) 27.7128i 1.40150i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.2474 0.616236
\(396\) 0 0
\(397\) − 1.73205i − 0.0869291i −0.999055 0.0434646i \(-0.986160\pi\)
0.999055 0.0434646i \(-0.0138396\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 19.7990i − 0.988714i −0.869259 0.494357i \(-0.835403\pi\)
0.869259 0.494357i \(-0.164597\pi\)
\(402\) 0 0
\(403\) 9.00000 0.448322
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.41421i 0.0701000i
\(408\) 0 0
\(409\) 32.9090i 1.62724i 0.581394 + 0.813622i \(0.302507\pi\)
−0.581394 + 0.813622i \(0.697493\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −18.0000 −0.883585
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 36.7423 1.79498 0.897491 0.441034i \(-0.145388\pi\)
0.897491 + 0.441034i \(0.145388\pi\)
\(420\) 0 0
\(421\) −1.00000 −0.0487370 −0.0243685 0.999703i \(-0.507758\pi\)
−0.0243685 + 0.999703i \(0.507758\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.89898 −0.237635
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 15.5563i 0.749323i 0.927162 + 0.374661i \(0.122241\pi\)
−0.927162 + 0.374661i \(0.877759\pi\)
\(432\) 0 0
\(433\) − 15.5885i − 0.749133i −0.927200 0.374567i \(-0.877791\pi\)
0.927200 0.374567i \(-0.122209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.79796 0.468700
\(438\) 0 0
\(439\) 27.7128i 1.32266i 0.750095 + 0.661330i \(0.230008\pi\)
−0.750095 + 0.661330i \(0.769992\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 39.5980i − 1.88136i −0.339300 0.940678i \(-0.610190\pi\)
0.339300 0.940678i \(-0.389810\pi\)
\(444\) 0 0
\(445\) −12.0000 −0.568855
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 7.07107i − 0.333704i −0.985982 0.166852i \(-0.946640\pi\)
0.985982 0.166852i \(-0.0533603\pi\)
\(450\) 0 0
\(451\) − 10.3923i − 0.489355i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5.00000 0.233890 0.116945 0.993138i \(-0.462690\pi\)
0.116945 + 0.993138i \(0.462690\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.6969 0.684505 0.342252 0.939608i \(-0.388810\pi\)
0.342252 + 0.939608i \(0.388810\pi\)
\(462\) 0 0
\(463\) 13.0000 0.604161 0.302081 0.953282i \(-0.402319\pi\)
0.302081 + 0.953282i \(0.402319\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −26.9444 −1.24684 −0.623419 0.781888i \(-0.714257\pi\)
−0.623419 + 0.781888i \(0.714257\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 1.41421i − 0.0650256i
\(474\) 0 0
\(475\) 1.73205i 0.0794719i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.89898 0.223840 0.111920 0.993717i \(-0.464300\pi\)
0.111920 + 0.993717i \(0.464300\pi\)
\(480\) 0 0
\(481\) − 5.19615i − 0.236924i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 25.4558i − 1.15589i
\(486\) 0 0
\(487\) −17.0000 −0.770344 −0.385172 0.922845i \(-0.625858\pi\)
−0.385172 + 0.922845i \(0.625858\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11.3137i 0.510581i 0.966864 + 0.255290i \(0.0821710\pi\)
−0.966864 + 0.255290i \(0.917829\pi\)
\(492\) 0 0
\(493\) 13.8564i 0.624061i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 25.0000 1.11915 0.559577 0.828778i \(-0.310964\pi\)
0.559577 + 0.828778i \(0.310964\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.0454 0.982956 0.491478 0.870890i \(-0.336457\pi\)
0.491478 + 0.870890i \(0.336457\pi\)
\(504\) 0 0
\(505\) −42.0000 −1.86898
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.44949 −0.108572 −0.0542859 0.998525i \(-0.517288\pi\)
−0.0542859 + 0.998525i \(0.517288\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 21.2132i 0.934765i
\(516\) 0 0
\(517\) 17.3205i 0.761755i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −4.89898 −0.214628 −0.107314 0.994225i \(-0.534225\pi\)
−0.107314 + 0.994225i \(0.534225\pi\)
\(522\) 0 0
\(523\) 1.73205i 0.0757373i 0.999283 + 0.0378686i \(0.0120568\pi\)
−0.999283 + 0.0378686i \(0.987943\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.48528i 0.369625i
\(528\) 0 0
\(529\) −9.00000 −0.391304
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 38.1838i 1.65392i
\(534\) 0 0
\(535\) − 6.92820i − 0.299532i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17.0000 0.730887 0.365444 0.930834i \(-0.380917\pi\)
0.365444 + 0.930834i \(0.380917\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.44949 0.104925
\(546\) 0 0
\(547\) 10.0000 0.427569 0.213785 0.976881i \(-0.431421\pi\)
0.213785 + 0.976881i \(0.431421\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.89898 0.208704
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 15.5563i − 0.659144i −0.944131 0.329572i \(-0.893096\pi\)
0.944131 0.329572i \(-0.106904\pi\)
\(558\) 0 0
\(559\) 5.19615i 0.219774i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 26.9444 1.13557 0.567785 0.823177i \(-0.307800\pi\)
0.567785 + 0.823177i \(0.307800\pi\)
\(564\) 0 0
\(565\) − 3.46410i − 0.145736i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.41421i 0.0592869i 0.999561 + 0.0296435i \(0.00943719\pi\)
−0.999561 + 0.0296435i \(0.990563\pi\)
\(570\) 0 0
\(571\) −11.0000 −0.460336 −0.230168 0.973151i \(-0.573928\pi\)
−0.230168 + 0.973151i \(0.573928\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 5.65685i − 0.235907i
\(576\) 0 0
\(577\) 1.73205i 0.0721062i 0.999350 + 0.0360531i \(0.0114785\pi\)
−0.999350 + 0.0360531i \(0.988521\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −4.00000 −0.165663
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14.6969 −0.606608 −0.303304 0.952894i \(-0.598090\pi\)
−0.303304 + 0.952894i \(0.598090\pi\)
\(588\) 0 0
\(589\) 3.00000 0.123613
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −17.1464 −0.704119 −0.352060 0.935978i \(-0.614519\pi\)
−0.352060 + 0.935978i \(0.614519\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 5.65685i − 0.231133i −0.993300 0.115566i \(-0.963132\pi\)
0.993300 0.115566i \(-0.0368683\pi\)
\(600\) 0 0
\(601\) 25.9808i 1.05978i 0.848067 + 0.529889i \(0.177766\pi\)
−0.848067 + 0.529889i \(0.822234\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −22.0454 −0.896273
\(606\) 0 0
\(607\) − 39.8372i − 1.61694i −0.588537 0.808470i \(-0.700296\pi\)
0.588537 0.808470i \(-0.299704\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 63.6396i − 2.57458i
\(612\) 0 0
\(613\) 8.00000 0.323117 0.161558 0.986863i \(-0.448348\pi\)
0.161558 + 0.986863i \(0.448348\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 24.0416i − 0.967880i −0.875101 0.483940i \(-0.839205\pi\)
0.875101 0.483940i \(-0.160795\pi\)
\(618\) 0 0
\(619\) 29.4449i 1.18349i 0.806126 + 0.591744i \(0.201561\pi\)
−0.806126 + 0.591744i \(0.798439\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.89898 0.195335
\(630\) 0 0
\(631\) −38.0000 −1.51276 −0.756378 0.654135i \(-0.773033\pi\)
−0.756378 + 0.654135i \(0.773033\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 26.9444 1.06926
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14.1421i 0.558581i 0.960207 + 0.279290i \(0.0900992\pi\)
−0.960207 + 0.279290i \(0.909901\pi\)
\(642\) 0 0
\(643\) 25.9808i 1.02458i 0.858812 + 0.512291i \(0.171203\pi\)
−0.858812 + 0.512291i \(0.828797\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −17.1464 −0.674096 −0.337048 0.941488i \(-0.609428\pi\)
−0.337048 + 0.941488i \(0.609428\pi\)
\(648\) 0 0
\(649\) − 6.92820i − 0.271956i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 7.07107i − 0.276712i −0.990383 0.138356i \(-0.955818\pi\)
0.990383 0.138356i \(-0.0441819\pi\)
\(654\) 0 0
\(655\) −6.00000 −0.234439
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 22.6274i − 0.881439i −0.897645 0.440720i \(-0.854723\pi\)
0.897645 0.440720i \(-0.145277\pi\)
\(660\) 0 0
\(661\) − 29.4449i − 1.14527i −0.819810 0.572636i \(-0.805921\pi\)
0.819810 0.572636i \(-0.194079\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −16.0000 −0.619522
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.89898 0.189123
\(672\) 0 0
\(673\) 35.0000 1.34915 0.674575 0.738206i \(-0.264327\pi\)
0.674575 + 0.738206i \(0.264327\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.79796 −0.376566 −0.188283 0.982115i \(-0.560292\pi\)
−0.188283 + 0.982115i \(0.560292\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 48.0833i − 1.83985i −0.392089 0.919927i \(-0.628247\pi\)
0.392089 0.919927i \(-0.371753\pi\)
\(684\) 0 0
\(685\) 27.7128i 1.05885i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 14.6969 0.559909
\(690\) 0 0
\(691\) 43.3013i 1.64726i 0.567129 + 0.823629i \(0.308054\pi\)
−0.567129 + 0.823629i \(0.691946\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 12.7279i 0.482798i
\(696\) 0 0
\(697\) −36.0000 −1.36360
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 5.65685i 0.213656i 0.994277 + 0.106828i \(0.0340695\pi\)
−0.994277 + 0.106828i \(0.965931\pi\)
\(702\) 0 0
\(703\) − 1.73205i − 0.0653255i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −40.0000 −1.50223 −0.751116 0.660171i \(-0.770484\pi\)
−0.751116 + 0.660171i \(0.770484\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.79796 −0.366936
\(714\) 0 0
\(715\) −18.0000 −0.673162
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −26.9444 −1.00486 −0.502428 0.864619i \(-0.667560\pi\)
−0.502428 + 0.864619i \(0.667560\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 2.82843i − 0.105045i
\(726\) 0 0
\(727\) − 25.9808i − 0.963573i −0.876289 0.481787i \(-0.839988\pi\)
0.876289 0.481787i \(-0.160012\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.89898 −0.181195
\(732\) 0 0
\(733\) 39.8372i 1.47142i 0.677297 + 0.735710i \(0.263151\pi\)
−0.677297 + 0.735710i \(0.736849\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15.5563i 0.573025i
\(738\) 0 0
\(739\) 1.00000 0.0367856 0.0183928 0.999831i \(-0.494145\pi\)
0.0183928 + 0.999831i \(0.494145\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0416i 0.882002i 0.897507 + 0.441001i \(0.145376\pi\)
−0.897507 + 0.441001i \(0.854624\pi\)
\(744\) 0 0
\(745\) − 13.8564i − 0.507659i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −29.0000 −1.05823 −0.529113 0.848552i \(-0.677475\pi\)
−0.529113 + 0.848552i \(0.677475\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −53.8888 −1.96121
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −24.4949 −0.887939 −0.443970 0.896042i \(-0.646430\pi\)
−0.443970 + 0.896042i \(0.646430\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 25.4558i 0.919157i
\(768\) 0 0
\(769\) − 25.9808i − 0.936890i −0.883493 0.468445i \(-0.844814\pi\)
0.883493 0.468445i \(-0.155186\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −26.9444 −0.969122 −0.484561 0.874757i \(-0.661021\pi\)
−0.484561 + 0.874757i \(0.661021\pi\)
\(774\) 0 0
\(775\) − 1.73205i − 0.0622171i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.7279i 0.456025i
\(780\) 0 0
\(781\) 10.0000 0.357828
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 42.4264i − 1.51426i
\(786\) 0 0
\(787\) 45.0333i 1.60526i 0.596474 + 0.802632i \(0.296568\pi\)
−0.596474 + 0.802632i \(0.703432\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −18.0000 −0.639199
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 29.3939 1.04118 0.520592 0.853805i \(-0.325711\pi\)
0.520592 + 0.853805i \(0.325711\pi\)
\(798\) 0 0
\(799\) 60.0000 2.12265
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.44949 0.0864406
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 41.0122i − 1.44191i −0.692981 0.720956i \(-0.743703\pi\)
0.692981 0.720956i \(-0.256297\pi\)
\(810\) 0 0
\(811\) − 31.1769i − 1.09477i −0.836881 0.547385i \(-0.815623\pi\)
0.836881 0.547385i \(-0.184377\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −24.4949 −0.858019
\(816\) 0 0
\(817\) 1.73205i 0.0605968i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 24.0416i − 0.839059i −0.907742 0.419529i \(-0.862195\pi\)
0.907742 0.419529i \(-0.137805\pi\)
\(822\) 0 0
\(823\) 34.0000 1.18517 0.592583 0.805510i \(-0.298108\pi\)
0.592583 + 0.805510i \(0.298108\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.07107i 0.245885i 0.992414 + 0.122943i \(0.0392331\pi\)
−0.992414 + 0.122943i \(0.960767\pi\)
\(828\) 0 0
\(829\) 1.73205i 0.0601566i 0.999548 + 0.0300783i \(0.00957567\pi\)
−0.999548 + 0.0300783i \(0.990424\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 18.0000 0.622916
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −14.6969 −0.507395 −0.253697 0.967284i \(-0.581647\pi\)
−0.253697 + 0.967284i \(0.581647\pi\)
\(840\) 0 0
\(841\) 21.0000 0.724138
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 34.2929 1.17971
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.65685i 0.193914i
\(852\) 0 0
\(853\) − 36.3731i − 1.24539i −0.782465 0.622695i \(-0.786038\pi\)
0.782465 0.622695i \(-0.213962\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 39.1918 1.33877 0.669384 0.742917i \(-0.266558\pi\)
0.669384 + 0.742917i \(0.266558\pi\)
\(858\) 0 0
\(859\) 38.1051i 1.30013i 0.759879 + 0.650065i \(0.225258\pi\)
−0.759879 + 0.650065i \(0.774742\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 41.0122i 1.39607i 0.716063 + 0.698036i \(0.245942\pi\)
−0.716063 + 0.698036i \(0.754058\pi\)
\(864\) 0 0
\(865\) 24.0000 0.816024
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7.07107i 0.239870i
\(870\) 0 0
\(871\) − 57.1577i − 1.93671i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 20.0000 0.675352 0.337676 0.941262i \(-0.390359\pi\)
0.337676 + 0.941262i \(0.390359\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −11.0000 −0.370179 −0.185090 0.982722i \(-0.559258\pi\)
−0.185090 + 0.982722i \(0.559258\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −41.6413 −1.39818 −0.699089 0.715034i \(-0.746411\pi\)
−0.699089 + 0.715034i \(0.746411\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 21.2132i − 0.709873i
\(894\) 0 0
\(895\) 24.2487i 0.810545i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.89898 −0.163390
\(900\) 0 0
\(901\) 13.8564i 0.461624i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 38.1838i 1.26927i
\(906\) 0 0
\(907\) −5.00000 −0.166022 −0.0830111 0.996549i \(-0.526454\pi\)
−0.0830111 + 0.996549i \(0.526454\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 53.7401i 1.78049i 0.455483 + 0.890245i \(0.349467\pi\)
−0.455483 + 0.890245i \(0.650533\pi\)
\(912\) 0 0
\(913\) − 10.3923i − 0.343935i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −17.0000 −0.560778 −0.280389 0.959886i \(-0.590464\pi\)
−0.280389 + 0.959886i \(0.590464\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −36.7423 −1.20939
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 56.3383 1.84840 0.924199 0.381911i \(-0.124734\pi\)
0.924199 + 0.381911i \(0.124734\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 16.9706i − 0.554997i
\(936\) 0 0
\(937\) − 46.7654i − 1.52776i −0.645359 0.763879i \(-0.723292\pi\)
0.645359 0.763879i \(-0.276708\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −48.9898 −1.59702 −0.798511 0.601980i \(-0.794379\pi\)
−0.798511 + 0.601980i \(0.794379\pi\)
\(942\) 0 0
\(943\) − 41.5692i − 1.35368i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 49.4975i 1.60845i 0.594324 + 0.804226i \(0.297420\pi\)
−0.594324 + 0.804226i \(0.702580\pi\)
\(948\) 0 0
\(949\) −9.00000 −0.292152
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 5.65685i 0.183243i 0.995794 + 0.0916217i \(0.0292051\pi\)
−0.995794 + 0.0916217i \(0.970795\pi\)
\(954\) 0 0
\(955\) 3.46410i 0.112096i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 28.0000 0.903226
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −26.9444 −0.867371
\(966\) 0 0
\(967\) 13.0000 0.418052 0.209026 0.977910i \(-0.432971\pi\)
0.209026 + 0.977910i \(0.432971\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 39.1918 1.25773 0.628863 0.777516i \(-0.283521\pi\)
0.628863 + 0.777516i \(0.283521\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 7.07107i − 0.226224i −0.993582 0.113112i \(-0.963918\pi\)
0.993582 0.113112i \(-0.0360818\pi\)
\(978\) 0 0
\(979\) − 6.92820i − 0.221426i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4.89898 0.156253 0.0781266 0.996943i \(-0.475106\pi\)
0.0781266 + 0.996943i \(0.475106\pi\)
\(984\) 0 0
\(985\) 48.4974i 1.54526i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 5.65685i − 0.179878i
\(990\) 0 0
\(991\) −35.0000 −1.11181 −0.555906 0.831245i \(-0.687628\pi\)
−0.555906 + 0.831245i \(0.687628\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 33.9411i − 1.07601i
\(996\) 0 0
\(997\) − 29.4449i − 0.932528i −0.884646 0.466264i \(-0.845600\pi\)
0.884646 0.466264i \(-0.154400\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7056.2.k.b.881.1 4
3.2 odd 2 inner 7056.2.k.b.881.4 4
4.3 odd 2 441.2.c.a.440.3 4
7.4 even 3 1008.2.bt.b.593.2 4
7.5 odd 6 1008.2.bt.b.17.1 4
7.6 odd 2 inner 7056.2.k.b.881.3 4
12.11 even 2 441.2.c.a.440.2 4
21.5 even 6 1008.2.bt.b.17.2 4
21.11 odd 6 1008.2.bt.b.593.1 4
21.20 even 2 inner 7056.2.k.b.881.2 4
28.3 even 6 441.2.p.a.215.1 4
28.11 odd 6 63.2.p.a.26.1 yes 4
28.19 even 6 63.2.p.a.17.2 yes 4
28.23 odd 6 441.2.p.a.80.2 4
28.27 even 2 441.2.c.a.440.4 4
84.11 even 6 63.2.p.a.26.2 yes 4
84.23 even 6 441.2.p.a.80.1 4
84.47 odd 6 63.2.p.a.17.1 4
84.59 odd 6 441.2.p.a.215.2 4
84.83 odd 2 441.2.c.a.440.1 4
140.19 even 6 1575.2.bk.c.1151.1 4
140.39 odd 6 1575.2.bk.c.26.2 4
140.47 odd 12 1575.2.bc.a.899.3 8
140.67 even 12 1575.2.bc.a.1349.4 8
140.103 odd 12 1575.2.bc.a.899.2 8
140.123 even 12 1575.2.bc.a.1349.1 8
252.11 even 6 567.2.i.d.215.1 4
252.47 odd 6 567.2.s.d.458.2 4
252.67 odd 6 567.2.s.d.26.2 4
252.95 even 6 567.2.s.d.26.1 4
252.103 even 6 567.2.i.d.269.2 4
252.131 odd 6 567.2.i.d.269.1 4
252.151 odd 6 567.2.i.d.215.2 4
252.187 even 6 567.2.s.d.458.1 4
420.47 even 12 1575.2.bc.a.899.1 8
420.179 even 6 1575.2.bk.c.26.1 4
420.263 odd 12 1575.2.bc.a.1349.3 8
420.299 odd 6 1575.2.bk.c.1151.2 4
420.347 odd 12 1575.2.bc.a.1349.2 8
420.383 even 12 1575.2.bc.a.899.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.p.a.17.1 4 84.47 odd 6
63.2.p.a.17.2 yes 4 28.19 even 6
63.2.p.a.26.1 yes 4 28.11 odd 6
63.2.p.a.26.2 yes 4 84.11 even 6
441.2.c.a.440.1 4 84.83 odd 2
441.2.c.a.440.2 4 12.11 even 2
441.2.c.a.440.3 4 4.3 odd 2
441.2.c.a.440.4 4 28.27 even 2
441.2.p.a.80.1 4 84.23 even 6
441.2.p.a.80.2 4 28.23 odd 6
441.2.p.a.215.1 4 28.3 even 6
441.2.p.a.215.2 4 84.59 odd 6
567.2.i.d.215.1 4 252.11 even 6
567.2.i.d.215.2 4 252.151 odd 6
567.2.i.d.269.1 4 252.131 odd 6
567.2.i.d.269.2 4 252.103 even 6
567.2.s.d.26.1 4 252.95 even 6
567.2.s.d.26.2 4 252.67 odd 6
567.2.s.d.458.1 4 252.187 even 6
567.2.s.d.458.2 4 252.47 odd 6
1008.2.bt.b.17.1 4 7.5 odd 6
1008.2.bt.b.17.2 4 21.5 even 6
1008.2.bt.b.593.1 4 21.11 odd 6
1008.2.bt.b.593.2 4 7.4 even 3
1575.2.bc.a.899.1 8 420.47 even 12
1575.2.bc.a.899.2 8 140.103 odd 12
1575.2.bc.a.899.3 8 140.47 odd 12
1575.2.bc.a.899.4 8 420.383 even 12
1575.2.bc.a.1349.1 8 140.123 even 12
1575.2.bc.a.1349.2 8 420.347 odd 12
1575.2.bc.a.1349.3 8 420.263 odd 12
1575.2.bc.a.1349.4 8 140.67 even 12
1575.2.bk.c.26.1 4 420.179 even 6
1575.2.bk.c.26.2 4 140.39 odd 6
1575.2.bk.c.1151.1 4 140.19 even 6
1575.2.bk.c.1151.2 4 420.299 odd 6
7056.2.k.b.881.1 4 1.1 even 1 trivial
7056.2.k.b.881.2 4 21.20 even 2 inner
7056.2.k.b.881.3 4 7.6 odd 2 inner
7056.2.k.b.881.4 4 3.2 odd 2 inner