Properties

Label 7056.2.h.k.4607.1
Level $7056$
Weight $2$
Character 7056.4607
Analytic conductor $56.342$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7056,2,Mod(4607,7056)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7056, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7056.4607"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7056.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,0,0,0,0,0,0,-24,0,0,0, 0,0,0,0,0,0,0,0,-32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,-32,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(83)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.3424436662\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4607.1
Root \(-0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 7056.4607
Dual form 7056.2.h.k.4607.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.86370i q^{5} -5.27792 q^{11} -2.00000 q^{13} -1.03528i q^{17} -5.46410i q^{19} -0.378937 q^{23} -9.92820 q^{25} +6.31319i q^{29} +9.46410i q^{31} -10.9282 q^{37} -5.93426i q^{41} -4.00000i q^{43} +8.48528 q^{47} -7.07107i q^{53} +20.3923i q^{55} -2.82843 q^{59} +3.46410 q^{61} +7.72741i q^{65} +15.4641i q^{67} +4.52004 q^{71} -0.535898 q^{73} +10.3923i q^{79} +11.8685 q^{83} -4.00000 q^{85} +3.86370i q^{89} -21.1117 q^{95} -11.4641 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{13} - 24 q^{25} - 32 q^{37} - 32 q^{73} - 32 q^{85} - 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7056\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1765\) \(4609\) \(6175\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 3.86370i − 1.72790i −0.503577 0.863950i \(-0.667983\pi\)
0.503577 0.863950i \(-0.332017\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.27792 −1.59135 −0.795676 0.605723i \(-0.792884\pi\)
−0.795676 + 0.605723i \(0.792884\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 1.03528i − 0.251091i −0.992088 0.125546i \(-0.959932\pi\)
0.992088 0.125546i \(-0.0400682\pi\)
\(18\) 0 0
\(19\) − 5.46410i − 1.25355i −0.779200 0.626775i \(-0.784374\pi\)
0.779200 0.626775i \(-0.215626\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.378937 −0.0790139 −0.0395070 0.999219i \(-0.512579\pi\)
−0.0395070 + 0.999219i \(0.512579\pi\)
\(24\) 0 0
\(25\) −9.92820 −1.98564
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.31319i 1.17233i 0.810192 + 0.586165i \(0.199363\pi\)
−0.810192 + 0.586165i \(0.800637\pi\)
\(30\) 0 0
\(31\) 9.46410i 1.69980i 0.526942 + 0.849901i \(0.323339\pi\)
−0.526942 + 0.849901i \(0.676661\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −10.9282 −1.79659 −0.898293 0.439397i \(-0.855192\pi\)
−0.898293 + 0.439397i \(0.855192\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 5.93426i − 0.926775i −0.886156 0.463388i \(-0.846634\pi\)
0.886156 0.463388i \(-0.153366\pi\)
\(42\) 0 0
\(43\) − 4.00000i − 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.48528 1.23771 0.618853 0.785507i \(-0.287598\pi\)
0.618853 + 0.785507i \(0.287598\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 7.07107i − 0.971286i −0.874157 0.485643i \(-0.838586\pi\)
0.874157 0.485643i \(-0.161414\pi\)
\(54\) 0 0
\(55\) 20.3923i 2.74970i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.82843 −0.368230 −0.184115 0.982905i \(-0.558942\pi\)
−0.184115 + 0.982905i \(0.558942\pi\)
\(60\) 0 0
\(61\) 3.46410 0.443533 0.221766 0.975100i \(-0.428818\pi\)
0.221766 + 0.975100i \(0.428818\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.72741i 0.958467i
\(66\) 0 0
\(67\) 15.4641i 1.88924i 0.328165 + 0.944620i \(0.393570\pi\)
−0.328165 + 0.944620i \(0.606430\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.52004 0.536430 0.268215 0.963359i \(-0.413566\pi\)
0.268215 + 0.963359i \(0.413566\pi\)
\(72\) 0 0
\(73\) −0.535898 −0.0627222 −0.0313611 0.999508i \(-0.509984\pi\)
−0.0313611 + 0.999508i \(0.509984\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 10.3923i 1.16923i 0.811312 + 0.584613i \(0.198754\pi\)
−0.811312 + 0.584613i \(0.801246\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.8685 1.30274 0.651369 0.758761i \(-0.274195\pi\)
0.651369 + 0.758761i \(0.274195\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.86370i 0.409552i 0.978809 + 0.204776i \(0.0656465\pi\)
−0.978809 + 0.204776i \(0.934353\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −21.1117 −2.16601
\(96\) 0 0
\(97\) −11.4641 −1.16400 −0.582002 0.813188i \(-0.697730\pi\)
−0.582002 + 0.813188i \(0.697730\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 14.4195i − 1.43480i −0.696663 0.717399i \(-0.745333\pi\)
0.696663 0.717399i \(-0.254667\pi\)
\(102\) 0 0
\(103\) − 5.46410i − 0.538394i −0.963085 0.269197i \(-0.913242\pi\)
0.963085 0.269197i \(-0.0867583\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.1769 0.983838 0.491919 0.870641i \(-0.336296\pi\)
0.491919 + 0.870641i \(0.336296\pi\)
\(108\) 0 0
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.89949i 0.931266i 0.884978 + 0.465633i \(0.154173\pi\)
−0.884978 + 0.465633i \(0.845827\pi\)
\(114\) 0 0
\(115\) 1.46410i 0.136528i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 16.8564 1.53240
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 19.0411i 1.70309i
\(126\) 0 0
\(127\) 6.39230i 0.567225i 0.958939 + 0.283613i \(0.0915330\pi\)
−0.958939 + 0.283613i \(0.908467\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −21.1117 −1.84453 −0.922267 0.386552i \(-0.873666\pi\)
−0.922267 + 0.386552i \(0.873666\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 3.48477i − 0.297724i −0.988858 0.148862i \(-0.952439\pi\)
0.988858 0.148862i \(-0.0475610\pi\)
\(138\) 0 0
\(139\) 5.85641i 0.496734i 0.968666 + 0.248367i \(0.0798939\pi\)
−0.968666 + 0.248367i \(0.920106\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 10.5558 0.882723
\(144\) 0 0
\(145\) 24.3923 2.02567
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 2.72689i − 0.223396i −0.993742 0.111698i \(-0.964371\pi\)
0.993742 0.111698i \(-0.0356289\pi\)
\(150\) 0 0
\(151\) − 10.9282i − 0.889325i −0.895698 0.444662i \(-0.853324\pi\)
0.895698 0.444662i \(-0.146676\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 36.5665 2.93709
\(156\) 0 0
\(157\) −17.3205 −1.38233 −0.691164 0.722698i \(-0.742902\pi\)
−0.691164 + 0.722698i \(0.742902\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 7.46410i 0.584634i 0.956322 + 0.292317i \(0.0944262\pi\)
−0.956322 + 0.292317i \(0.905574\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.7675 1.29751 0.648754 0.760998i \(-0.275291\pi\)
0.648754 + 0.760998i \(0.275291\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.10583i 0.236132i 0.993006 + 0.118066i \(0.0376694\pi\)
−0.993006 + 0.118066i \(0.962331\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.89469 0.141616 0.0708078 0.997490i \(-0.477442\pi\)
0.0708078 + 0.997490i \(0.477442\pi\)
\(180\) 0 0
\(181\) 0.928203 0.0689928 0.0344964 0.999405i \(-0.489017\pi\)
0.0344964 + 0.999405i \(0.489017\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 42.2233i 3.10432i
\(186\) 0 0
\(187\) 5.46410i 0.399575i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.76217 0.272221 0.136110 0.990694i \(-0.456540\pi\)
0.136110 + 0.990694i \(0.456540\pi\)
\(192\) 0 0
\(193\) 13.8564 0.997406 0.498703 0.866773i \(-0.333810\pi\)
0.498703 + 0.866773i \(0.333810\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 23.8386i − 1.69843i −0.528050 0.849213i \(-0.677077\pi\)
0.528050 0.849213i \(-0.322923\pi\)
\(198\) 0 0
\(199\) − 4.00000i − 0.283552i −0.989899 0.141776i \(-0.954719\pi\)
0.989899 0.141776i \(-0.0452813\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −22.9282 −1.60138
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 28.8391i 1.99484i
\(210\) 0 0
\(211\) 22.9282i 1.57844i 0.614109 + 0.789221i \(0.289516\pi\)
−0.614109 + 0.789221i \(0.710484\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −15.4548 −1.05401
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.07055i 0.139280i
\(222\) 0 0
\(223\) 9.85641i 0.660034i 0.943975 + 0.330017i \(0.107054\pi\)
−0.943975 + 0.330017i \(0.892946\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.34418 −0.288333 −0.144167 0.989553i \(-0.546050\pi\)
−0.144167 + 0.989553i \(0.546050\pi\)
\(228\) 0 0
\(229\) −29.7128 −1.96348 −0.981739 0.190233i \(-0.939076\pi\)
−0.981739 + 0.190233i \(0.939076\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.4553i 1.34007i 0.742328 + 0.670037i \(0.233722\pi\)
−0.742328 + 0.670037i \(0.766278\pi\)
\(234\) 0 0
\(235\) − 32.7846i − 2.13863i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −22.2485 −1.43913 −0.719567 0.694423i \(-0.755660\pi\)
−0.719567 + 0.694423i \(0.755660\pi\)
\(240\) 0 0
\(241\) 6.39230 0.411765 0.205882 0.978577i \(-0.433994\pi\)
0.205882 + 0.978577i \(0.433994\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 10.9282i 0.695345i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.4949 1.54610 0.773052 0.634343i \(-0.218729\pi\)
0.773052 + 0.634343i \(0.218729\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.277401i 0.0173038i 0.999963 + 0.00865191i \(0.00275402\pi\)
−0.999963 + 0.00865191i \(0.997246\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 22.2485 1.37190 0.685950 0.727649i \(-0.259387\pi\)
0.685950 + 0.727649i \(0.259387\pi\)
\(264\) 0 0
\(265\) −27.3205 −1.67829
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 13.1069i − 0.799139i −0.916703 0.399570i \(-0.869160\pi\)
0.916703 0.399570i \(-0.130840\pi\)
\(270\) 0 0
\(271\) − 3.32051i − 0.201707i −0.994901 0.100853i \(-0.967843\pi\)
0.994901 0.100853i \(-0.0321573\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 52.4002 3.15985
\(276\) 0 0
\(277\) 27.8564 1.67373 0.836865 0.547410i \(-0.184386\pi\)
0.836865 + 0.547410i \(0.184386\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 20.4553i 1.22026i 0.792300 + 0.610131i \(0.208883\pi\)
−0.792300 + 0.610131i \(0.791117\pi\)
\(282\) 0 0
\(283\) − 21.4641i − 1.27591i −0.770074 0.637954i \(-0.779781\pi\)
0.770074 0.637954i \(-0.220219\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 15.9282 0.936953
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 18.0058i 1.05191i 0.850512 + 0.525956i \(0.176292\pi\)
−0.850512 + 0.525956i \(0.823708\pi\)
\(294\) 0 0
\(295\) 10.9282i 0.636265i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.757875 0.0438290
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 13.3843i − 0.766381i
\(306\) 0 0
\(307\) − 14.5359i − 0.829608i −0.909911 0.414804i \(-0.863850\pi\)
0.909911 0.414804i \(-0.136150\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 18.2832 1.03675 0.518374 0.855154i \(-0.326538\pi\)
0.518374 + 0.855154i \(0.326538\pi\)
\(312\) 0 0
\(313\) −24.9282 −1.40903 −0.704513 0.709691i \(-0.748834\pi\)
−0.704513 + 0.709691i \(0.748834\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 15.3533i − 0.862326i −0.902274 0.431163i \(-0.858103\pi\)
0.902274 0.431163i \(-0.141897\pi\)
\(318\) 0 0
\(319\) − 33.3205i − 1.86559i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.65685 −0.314756
\(324\) 0 0
\(325\) 19.8564 1.10144
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 12.7846i 0.702706i 0.936243 + 0.351353i \(0.114278\pi\)
−0.936243 + 0.351353i \(0.885722\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 59.7487 3.26442
\(336\) 0 0
\(337\) 12.7846 0.696422 0.348211 0.937416i \(-0.386789\pi\)
0.348211 + 0.937416i \(0.386789\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 49.9507i − 2.70498i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.03579 0.324018 0.162009 0.986789i \(-0.448203\pi\)
0.162009 + 0.986789i \(0.448203\pi\)
\(348\) 0 0
\(349\) 13.3205 0.713030 0.356515 0.934290i \(-0.383965\pi\)
0.356515 + 0.934290i \(0.383965\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 15.9353i 0.848150i 0.905627 + 0.424075i \(0.139401\pi\)
−0.905627 + 0.424075i \(0.860599\pi\)
\(354\) 0 0
\(355\) − 17.4641i − 0.926898i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.0759 0.795674 0.397837 0.917456i \(-0.369761\pi\)
0.397837 + 0.917456i \(0.369761\pi\)
\(360\) 0 0
\(361\) −10.8564 −0.571390
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.07055i 0.108378i
\(366\) 0 0
\(367\) 10.9282i 0.570448i 0.958461 + 0.285224i \(0.0920679\pi\)
−0.958461 + 0.285224i \(0.907932\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 12.6264i − 0.650292i
\(378\) 0 0
\(379\) 20.7846i 1.06763i 0.845600 + 0.533817i \(0.179243\pi\)
−0.845600 + 0.533817i \(0.820757\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −25.2528 −1.29036 −0.645178 0.764032i \(-0.723217\pi\)
−0.645178 + 0.764032i \(0.723217\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 13.4858i − 0.683757i −0.939744 0.341879i \(-0.888937\pi\)
0.939744 0.341879i \(-0.111063\pi\)
\(390\) 0 0
\(391\) 0.392305i 0.0198397i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 40.1528 2.02031
\(396\) 0 0
\(397\) 11.4641 0.575367 0.287683 0.957726i \(-0.407115\pi\)
0.287683 + 0.957726i \(0.407115\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.79744i 0.239573i 0.992800 + 0.119786i \(0.0382210\pi\)
−0.992800 + 0.119786i \(0.961779\pi\)
\(402\) 0 0
\(403\) − 18.9282i − 0.942881i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 57.6781 2.85900
\(408\) 0 0
\(409\) 3.46410 0.171289 0.0856444 0.996326i \(-0.472705\pi\)
0.0856444 + 0.996326i \(0.472705\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) − 45.8564i − 2.25100i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.38323 0.165282 0.0826408 0.996579i \(-0.473665\pi\)
0.0826408 + 0.996579i \(0.473665\pi\)
\(420\) 0 0
\(421\) −25.7128 −1.25317 −0.626583 0.779355i \(-0.715547\pi\)
−0.626583 + 0.779355i \(0.715547\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 10.2784i 0.498577i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −21.4906 −1.03517 −0.517583 0.855633i \(-0.673168\pi\)
−0.517583 + 0.855633i \(0.673168\pi\)
\(432\) 0 0
\(433\) 22.7846 1.09496 0.547479 0.836819i \(-0.315588\pi\)
0.547479 + 0.836819i \(0.315588\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.07055i 0.0990480i
\(438\) 0 0
\(439\) 13.8564i 0.661330i 0.943748 + 0.330665i \(0.107273\pi\)
−0.943748 + 0.330665i \(0.892727\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −27.9053 −1.32582 −0.662911 0.748698i \(-0.730679\pi\)
−0.662911 + 0.748698i \(0.730679\pi\)
\(444\) 0 0
\(445\) 14.9282 0.707665
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.0112i 1.46351i 0.681569 + 0.731754i \(0.261298\pi\)
−0.681569 + 0.731754i \(0.738702\pi\)
\(450\) 0 0
\(451\) 31.3205i 1.47483i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 32.9058i 1.53258i 0.642496 + 0.766289i \(0.277899\pi\)
−0.642496 + 0.766289i \(0.722101\pi\)
\(462\) 0 0
\(463\) − 0.535898i − 0.0249053i −0.999922 0.0124527i \(-0.996036\pi\)
0.999922 0.0124527i \(-0.00396391\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.5558 −0.488466 −0.244233 0.969717i \(-0.578536\pi\)
−0.244233 + 0.969717i \(0.578536\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 21.1117i 0.970716i
\(474\) 0 0
\(475\) 54.2487i 2.48910i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −20.3538 −0.929989 −0.464994 0.885314i \(-0.653944\pi\)
−0.464994 + 0.885314i \(0.653944\pi\)
\(480\) 0 0
\(481\) 21.8564 0.996566
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 44.2939i 2.01128i
\(486\) 0 0
\(487\) − 2.92820i − 0.132690i −0.997797 0.0663448i \(-0.978866\pi\)
0.997797 0.0663448i \(-0.0211337\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −34.3201 −1.54884 −0.774421 0.632670i \(-0.781959\pi\)
−0.774421 + 0.632670i \(0.781959\pi\)
\(492\) 0 0
\(493\) 6.53590 0.294362
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 33.8564i 1.51562i 0.652475 + 0.757810i \(0.273731\pi\)
−0.652475 + 0.757810i \(0.726269\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.21166 0.276964 0.138482 0.990365i \(-0.455778\pi\)
0.138482 + 0.990365i \(0.455778\pi\)
\(504\) 0 0
\(505\) −55.7128 −2.47919
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 5.93426i − 0.263031i −0.991314 0.131516i \(-0.958016\pi\)
0.991314 0.131516i \(-0.0419844\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −21.1117 −0.930291
\(516\) 0 0
\(517\) −44.7846 −1.96962
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 3.66063i − 0.160375i −0.996780 0.0801876i \(-0.974448\pi\)
0.996780 0.0801876i \(-0.0255519\pi\)
\(522\) 0 0
\(523\) − 11.7128i − 0.512166i −0.966655 0.256083i \(-0.917568\pi\)
0.966655 0.256083i \(-0.0824320\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.79796 0.426806
\(528\) 0 0
\(529\) −22.8564 −0.993757
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.8685i 0.514082i
\(534\) 0 0
\(535\) − 39.3205i − 1.69997i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −29.7128 −1.27745 −0.638727 0.769434i \(-0.720539\pi\)
−0.638727 + 0.769434i \(0.720539\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 30.9096i − 1.32402i
\(546\) 0 0
\(547\) − 4.53590i − 0.193941i −0.995287 0.0969705i \(-0.969085\pi\)
0.995287 0.0969705i \(-0.0309153\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 34.4959 1.46958
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16.8690i 0.714764i 0.933958 + 0.357382i \(0.116331\pi\)
−0.933958 + 0.357382i \(0.883669\pi\)
\(558\) 0 0
\(559\) 8.00000i 0.338364i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −18.2832 −0.770547 −0.385273 0.922802i \(-0.625893\pi\)
−0.385273 + 0.922802i \(0.625893\pi\)
\(564\) 0 0
\(565\) 38.2487 1.60914
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.14162i 0.383237i 0.981470 + 0.191618i \(0.0613736\pi\)
−0.981470 + 0.191618i \(0.938626\pi\)
\(570\) 0 0
\(571\) 18.3923i 0.769694i 0.922980 + 0.384847i \(0.125746\pi\)
−0.922980 + 0.384847i \(0.874254\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.76217 0.156893
\(576\) 0 0
\(577\) −44.9282 −1.87039 −0.935193 0.354139i \(-0.884774\pi\)
−0.935193 + 0.354139i \(0.884774\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 37.3205i 1.54566i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19.7990 0.817192 0.408596 0.912715i \(-0.366019\pi\)
0.408596 + 0.912715i \(0.366019\pi\)
\(588\) 0 0
\(589\) 51.7128 2.13079
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.4195i 0.592139i 0.955166 + 0.296070i \(0.0956761\pi\)
−0.955166 + 0.296070i \(0.904324\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −35.4297 −1.44762 −0.723809 0.690001i \(-0.757610\pi\)
−0.723809 + 0.690001i \(0.757610\pi\)
\(600\) 0 0
\(601\) 4.92820 0.201026 0.100513 0.994936i \(-0.467952\pi\)
0.100513 + 0.994936i \(0.467952\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 65.1282i − 2.64784i
\(606\) 0 0
\(607\) 24.7846i 1.00598i 0.864293 + 0.502988i \(0.167766\pi\)
−0.864293 + 0.502988i \(0.832234\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −16.9706 −0.686555
\(612\) 0 0
\(613\) −10.7846 −0.435586 −0.217793 0.975995i \(-0.569886\pi\)
−0.217793 + 0.975995i \(0.569886\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 25.9091i − 1.04306i −0.853232 0.521531i \(-0.825361\pi\)
0.853232 0.521531i \(-0.174639\pi\)
\(618\) 0 0
\(619\) 14.1436i 0.568479i 0.958753 + 0.284240i \(0.0917411\pi\)
−0.958753 + 0.284240i \(0.908259\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 23.9282 0.957128
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 11.3137i 0.451107i
\(630\) 0 0
\(631\) − 15.4641i − 0.615616i −0.951448 0.307808i \(-0.900405\pi\)
0.951448 0.307808i \(-0.0995955\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 24.6980 0.980109
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 34.3944i 1.35850i 0.733908 + 0.679248i \(0.237694\pi\)
−0.733908 + 0.679248i \(0.762306\pi\)
\(642\) 0 0
\(643\) 38.2487i 1.50838i 0.656655 + 0.754191i \(0.271971\pi\)
−0.656655 + 0.754191i \(0.728029\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.203072 −0.00798358 −0.00399179 0.999992i \(-0.501271\pi\)
−0.00399179 + 0.999992i \(0.501271\pi\)
\(648\) 0 0
\(649\) 14.9282 0.585983
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 28.9406i 1.13253i 0.824222 + 0.566267i \(0.191613\pi\)
−0.824222 + 0.566267i \(0.808387\pi\)
\(654\) 0 0
\(655\) 81.5692i 3.18717i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 43.3601 1.68907 0.844536 0.535499i \(-0.179876\pi\)
0.844536 + 0.535499i \(0.179876\pi\)
\(660\) 0 0
\(661\) 8.53590 0.332008 0.166004 0.986125i \(-0.446914\pi\)
0.166004 + 0.986125i \(0.446914\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 2.39230i − 0.0926304i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −18.2832 −0.705817
\(672\) 0 0
\(673\) 17.8564 0.688314 0.344157 0.938912i \(-0.388165\pi\)
0.344157 + 0.938912i \(0.388165\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 22.7017i 0.872499i 0.899826 + 0.436249i \(0.143693\pi\)
−0.899826 + 0.436249i \(0.856307\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −28.6632 −1.09677 −0.548384 0.836227i \(-0.684757\pi\)
−0.548384 + 0.836227i \(0.684757\pi\)
\(684\) 0 0
\(685\) −13.4641 −0.514437
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 14.1421i 0.538772i
\(690\) 0 0
\(691\) 25.8564i 0.983624i 0.870701 + 0.491812i \(0.163665\pi\)
−0.870701 + 0.491812i \(0.836335\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 22.6274 0.858307
\(696\) 0 0
\(697\) −6.14359 −0.232705
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 12.1731i − 0.459772i −0.973218 0.229886i \(-0.926165\pi\)
0.973218 0.229886i \(-0.0738354\pi\)
\(702\) 0 0
\(703\) 59.7128i 2.25211i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 13.8564 0.520388 0.260194 0.965556i \(-0.416213\pi\)
0.260194 + 0.965556i \(0.416213\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 3.58630i − 0.134308i
\(714\) 0 0
\(715\) − 40.7846i − 1.52526i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.1117 −0.787332 −0.393666 0.919253i \(-0.628793\pi\)
−0.393666 + 0.919253i \(0.628793\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 62.6787i − 2.32783i
\(726\) 0 0
\(727\) − 29.4641i − 1.09276i −0.837536 0.546382i \(-0.816005\pi\)
0.837536 0.546382i \(-0.183995\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.14110 −0.153164
\(732\) 0 0
\(733\) 8.92820 0.329771 0.164885 0.986313i \(-0.447275\pi\)
0.164885 + 0.986313i \(0.447275\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 81.6182i − 3.00645i
\(738\) 0 0
\(739\) 2.67949i 0.0985667i 0.998785 + 0.0492834i \(0.0156937\pi\)
−0.998785 + 0.0492834i \(0.984306\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.00429 −0.110217 −0.0551084 0.998480i \(-0.517550\pi\)
−0.0551084 + 0.998480i \(0.517550\pi\)
\(744\) 0 0
\(745\) −10.5359 −0.386005
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 21.8564i 0.797552i 0.917048 + 0.398776i \(0.130565\pi\)
−0.917048 + 0.398776i \(0.869435\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −42.2233 −1.53666
\(756\) 0 0
\(757\) −37.8564 −1.37591 −0.687957 0.725751i \(-0.741492\pi\)
−0.687957 + 0.725751i \(0.741492\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 12.1459i − 0.440289i −0.975467 0.220144i \(-0.929347\pi\)
0.975467 0.220144i \(-0.0706529\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.65685 0.204257
\(768\) 0 0
\(769\) 34.0000 1.22607 0.613036 0.790055i \(-0.289948\pi\)
0.613036 + 0.790055i \(0.289948\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17.0449i 0.613062i 0.951861 + 0.306531i \(0.0991683\pi\)
−0.951861 + 0.306531i \(0.900832\pi\)
\(774\) 0 0
\(775\) − 93.9615i − 3.37520i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −32.4254 −1.16176
\(780\) 0 0
\(781\) −23.8564 −0.853649
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 66.9213i 2.38852i
\(786\) 0 0
\(787\) 20.7846i 0.740891i 0.928854 + 0.370446i \(0.120795\pi\)
−0.928854 + 0.370446i \(0.879205\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −6.92820 −0.246028
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 8.20788i − 0.290738i −0.989378 0.145369i \(-0.953563\pi\)
0.989378 0.145369i \(-0.0464369\pi\)
\(798\) 0 0
\(799\) − 8.78461i − 0.310777i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.82843 0.0998130
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 47.5756i − 1.67267i −0.548220 0.836334i \(-0.684694\pi\)
0.548220 0.836334i \(-0.315306\pi\)
\(810\) 0 0
\(811\) 22.1436i 0.777567i 0.921329 + 0.388783i \(0.127105\pi\)
−0.921329 + 0.388783i \(0.872895\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 28.8391 1.01019
\(816\) 0 0
\(817\) −21.8564 −0.764659
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.41421i 0.0493564i 0.999695 + 0.0246782i \(0.00785611\pi\)
−0.999695 + 0.0246782i \(0.992144\pi\)
\(822\) 0 0
\(823\) 34.3923i 1.19884i 0.800435 + 0.599420i \(0.204602\pi\)
−0.800435 + 0.599420i \(0.795398\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −25.6317 −0.891302 −0.445651 0.895207i \(-0.647028\pi\)
−0.445651 + 0.895207i \(0.647028\pi\)
\(828\) 0 0
\(829\) 27.0718 0.940242 0.470121 0.882602i \(-0.344210\pi\)
0.470121 + 0.882602i \(0.344210\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) − 64.7846i − 2.24196i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −37.3244 −1.28858 −0.644290 0.764781i \(-0.722847\pi\)
−0.644290 + 0.764781i \(0.722847\pi\)
\(840\) 0 0
\(841\) −10.8564 −0.374359
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 34.7733i 1.19624i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.14110 0.141955
\(852\) 0 0
\(853\) −21.3205 −0.730000 −0.365000 0.931007i \(-0.618931\pi\)
−0.365000 + 0.931007i \(0.618931\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 44.0165i 1.50357i 0.659406 + 0.751787i \(0.270808\pi\)
−0.659406 + 0.751787i \(0.729192\pi\)
\(858\) 0 0
\(859\) − 22.5359i − 0.768915i −0.923143 0.384457i \(-0.874389\pi\)
0.923143 0.384457i \(-0.125611\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 16.5916 0.564785 0.282393 0.959299i \(-0.408872\pi\)
0.282393 + 0.959299i \(0.408872\pi\)
\(864\) 0 0
\(865\) 12.0000 0.408012
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 54.8497i − 1.86065i
\(870\) 0 0
\(871\) − 30.9282i − 1.04796i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −5.21539 −0.176111 −0.0880556 0.996116i \(-0.528065\pi\)
−0.0880556 + 0.996116i \(0.528065\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 23.6627i − 0.797216i −0.917121 0.398608i \(-0.869493\pi\)
0.917121 0.398608i \(-0.130507\pi\)
\(882\) 0 0
\(883\) 25.8564i 0.870137i 0.900397 + 0.435069i \(0.143276\pi\)
−0.900397 + 0.435069i \(0.856724\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −48.0833 −1.61448 −0.807239 0.590225i \(-0.799039\pi\)
−0.807239 + 0.590225i \(0.799039\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 46.3644i − 1.55153i
\(894\) 0 0
\(895\) − 7.32051i − 0.244698i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −59.7487 −1.99273
\(900\) 0 0
\(901\) −7.32051 −0.243881
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 3.58630i − 0.119213i
\(906\) 0 0
\(907\) 7.71281i 0.256100i 0.991768 + 0.128050i \(0.0408718\pi\)
−0.991768 + 0.128050i \(0.959128\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.89469 0.0627738 0.0313869 0.999507i \(-0.490008\pi\)
0.0313869 + 0.999507i \(0.490008\pi\)
\(912\) 0 0
\(913\) −62.6410 −2.07312
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 21.0718i 0.695094i 0.937662 + 0.347547i \(0.112985\pi\)
−0.937662 + 0.347547i \(0.887015\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.04008 −0.297558
\(924\) 0 0
\(925\) 108.497 3.56737
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 11.0363i − 0.362089i −0.983475 0.181045i \(-0.942052\pi\)
0.983475 0.181045i \(-0.0579479\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 21.1117 0.690425
\(936\) 0 0
\(937\) −43.5692 −1.42334 −0.711672 0.702512i \(-0.752062\pi\)
−0.711672 + 0.702512i \(0.752062\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 58.9165i − 1.92062i −0.278930 0.960311i \(-0.589980\pi\)
0.278930 0.960311i \(-0.410020\pi\)
\(942\) 0 0
\(943\) 2.24871i 0.0732281i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −23.3581 −0.759036 −0.379518 0.925184i \(-0.623910\pi\)
−0.379518 + 0.925184i \(0.623910\pi\)
\(948\) 0 0
\(949\) 1.07180 0.0347920
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 33.6365i − 1.08959i −0.838568 0.544797i \(-0.816607\pi\)
0.838568 0.544797i \(-0.183393\pi\)
\(954\) 0 0
\(955\) − 14.5359i − 0.470371i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −58.5692 −1.88933
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 53.5370i − 1.72342i
\(966\) 0 0
\(967\) 23.4641i 0.754555i 0.926100 + 0.377277i \(0.123140\pi\)
−0.926100 + 0.377277i \(0.876860\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 36.0117 1.15567 0.577835 0.816154i \(-0.303898\pi\)
0.577835 + 0.816154i \(0.303898\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17.8300i 0.570431i 0.958463 + 0.285216i \(0.0920652\pi\)
−0.958463 + 0.285216i \(0.907935\pi\)
\(978\) 0 0
\(979\) − 20.3923i − 0.651741i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −61.2645 −1.95403 −0.977016 0.213165i \(-0.931623\pi\)
−0.977016 + 0.213165i \(0.931623\pi\)
\(984\) 0 0
\(985\) −92.1051 −2.93471
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.51575i 0.0481980i
\(990\) 0 0
\(991\) − 54.6410i − 1.73573i −0.496801 0.867865i \(-0.665492\pi\)
0.496801 0.867865i \(-0.334508\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −15.4548 −0.489951
\(996\) 0 0
\(997\) 28.5359 0.903741 0.451870 0.892084i \(-0.350757\pi\)
0.451870 + 0.892084i \(0.350757\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7056.2.h.k.4607.1 8
3.2 odd 2 inner 7056.2.h.k.4607.8 8
4.3 odd 2 inner 7056.2.h.k.4607.2 8
7.6 odd 2 1008.2.h.b.575.7 yes 8
12.11 even 2 inner 7056.2.h.k.4607.7 8
21.20 even 2 1008.2.h.b.575.1 8
28.27 even 2 1008.2.h.b.575.8 yes 8
56.13 odd 2 4032.2.h.f.575.1 8
56.27 even 2 4032.2.h.f.575.2 8
84.83 odd 2 1008.2.h.b.575.2 yes 8
168.83 odd 2 4032.2.h.f.575.8 8
168.125 even 2 4032.2.h.f.575.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.h.b.575.1 8 21.20 even 2
1008.2.h.b.575.2 yes 8 84.83 odd 2
1008.2.h.b.575.7 yes 8 7.6 odd 2
1008.2.h.b.575.8 yes 8 28.27 even 2
4032.2.h.f.575.1 8 56.13 odd 2
4032.2.h.f.575.2 8 56.27 even 2
4032.2.h.f.575.7 8 168.125 even 2
4032.2.h.f.575.8 8 168.83 odd 2
7056.2.h.k.4607.1 8 1.1 even 1 trivial
7056.2.h.k.4607.2 8 4.3 odd 2 inner
7056.2.h.k.4607.7 8 12.11 even 2 inner
7056.2.h.k.4607.8 8 3.2 odd 2 inner