Properties

Label 7056.2.b.f
Level $7056$
Weight $2$
Character orbit 7056.b
Analytic conductor $56.342$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7056.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(56.3424436662\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 336)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - 2 \zeta_{6} ) q^{5} +O(q^{10})\) \( q + ( 1 - 2 \zeta_{6} ) q^{5} + ( -3 + 6 \zeta_{6} ) q^{11} + ( -4 + 8 \zeta_{6} ) q^{13} + ( 2 - 4 \zeta_{6} ) q^{17} -2 q^{19} + ( 4 - 8 \zeta_{6} ) q^{23} + 2 q^{25} + 9 q^{29} - q^{31} -2 q^{37} + ( -2 + 4 \zeta_{6} ) q^{41} + ( -2 + 4 \zeta_{6} ) q^{43} -9 q^{53} + 9 q^{55} -3 q^{59} + ( -4 + 8 \zeta_{6} ) q^{61} + 12 q^{65} + ( 4 - 8 \zeta_{6} ) q^{71} + ( -4 + 8 \zeta_{6} ) q^{73} + ( 1 - 2 \zeta_{6} ) q^{79} -15 q^{83} -6 q^{85} + ( 6 - 12 \zeta_{6} ) q^{89} + ( -2 + 4 \zeta_{6} ) q^{95} + ( -5 + 10 \zeta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + O(q^{10}) \) \( 2q - 4q^{19} + 4q^{25} + 18q^{29} - 2q^{31} - 4q^{37} - 18q^{53} + 18q^{55} - 6q^{59} + 24q^{65} - 30q^{83} - 12q^{85} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7056\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1765\) \(4609\) \(6175\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1567.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 1.73205i 0 0 0 0 0
1567.2 0 0 0 1.73205i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7056.2.b.f 2
3.b odd 2 1 2352.2.b.f 2
4.b odd 2 1 7056.2.b.j 2
7.b odd 2 1 7056.2.b.j 2
7.c even 3 1 1008.2.cs.k 2
7.d odd 6 1 1008.2.cs.l 2
12.b even 2 1 2352.2.b.b 2
21.c even 2 1 2352.2.b.b 2
21.g even 6 1 336.2.bl.f yes 2
21.g even 6 1 2352.2.bl.k 2
21.h odd 6 1 336.2.bl.b 2
21.h odd 6 1 2352.2.bl.e 2
28.d even 2 1 inner 7056.2.b.f 2
28.f even 6 1 1008.2.cs.k 2
28.g odd 6 1 1008.2.cs.l 2
84.h odd 2 1 2352.2.b.f 2
84.j odd 6 1 336.2.bl.b 2
84.j odd 6 1 2352.2.bl.e 2
84.n even 6 1 336.2.bl.f yes 2
84.n even 6 1 2352.2.bl.k 2
168.s odd 6 1 1344.2.bl.g 2
168.v even 6 1 1344.2.bl.c 2
168.ba even 6 1 1344.2.bl.c 2
168.be odd 6 1 1344.2.bl.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.2.bl.b 2 21.h odd 6 1
336.2.bl.b 2 84.j odd 6 1
336.2.bl.f yes 2 21.g even 6 1
336.2.bl.f yes 2 84.n even 6 1
1008.2.cs.k 2 7.c even 3 1
1008.2.cs.k 2 28.f even 6 1
1008.2.cs.l 2 7.d odd 6 1
1008.2.cs.l 2 28.g odd 6 1
1344.2.bl.c 2 168.v even 6 1
1344.2.bl.c 2 168.ba even 6 1
1344.2.bl.g 2 168.s odd 6 1
1344.2.bl.g 2 168.be odd 6 1
2352.2.b.b 2 12.b even 2 1
2352.2.b.b 2 21.c even 2 1
2352.2.b.f 2 3.b odd 2 1
2352.2.b.f 2 84.h odd 2 1
2352.2.bl.e 2 21.h odd 6 1
2352.2.bl.e 2 84.j odd 6 1
2352.2.bl.k 2 21.g even 6 1
2352.2.bl.k 2 84.n even 6 1
7056.2.b.f 2 1.a even 1 1 trivial
7056.2.b.f 2 28.d even 2 1 inner
7056.2.b.j 2 4.b odd 2 1
7056.2.b.j 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(7056, [\chi])\):

\( T_{5}^{2} + 3 \)
\( T_{11}^{2} + 27 \)
\( T_{13}^{2} + 48 \)
\( T_{17}^{2} + 12 \)
\( T_{19} + 2 \)
\( T_{31} + 1 \)
\( T_{53} + 9 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 - 7 T^{2} + 25 T^{4} \)
$7$ 1
$11$ \( 1 + 5 T^{2} + 121 T^{4} \)
$13$ \( ( 1 - 2 T + 13 T^{2} )( 1 + 2 T + 13 T^{2} ) \)
$17$ \( 1 - 22 T^{2} + 289 T^{4} \)
$19$ \( ( 1 + 2 T + 19 T^{2} )^{2} \)
$23$ \( 1 + 2 T^{2} + 529 T^{4} \)
$29$ \( ( 1 - 9 T + 29 T^{2} )^{2} \)
$31$ \( ( 1 + T + 31 T^{2} )^{2} \)
$37$ \( ( 1 + 2 T + 37 T^{2} )^{2} \)
$41$ \( 1 - 70 T^{2} + 1681 T^{4} \)
$43$ \( 1 - 74 T^{2} + 1849 T^{4} \)
$47$ \( ( 1 + 47 T^{2} )^{2} \)
$53$ \( ( 1 + 9 T + 53 T^{2} )^{2} \)
$59$ \( ( 1 + 3 T + 59 T^{2} )^{2} \)
$61$ \( ( 1 - 14 T + 61 T^{2} )( 1 + 14 T + 61 T^{2} ) \)
$67$ \( ( 1 - 67 T^{2} )^{2} \)
$71$ \( 1 - 94 T^{2} + 5041 T^{4} \)
$73$ \( 1 - 98 T^{2} + 5329 T^{4} \)
$79$ \( 1 - 155 T^{2} + 6241 T^{4} \)
$83$ \( ( 1 + 15 T + 83 T^{2} )^{2} \)
$89$ \( 1 - 70 T^{2} + 7921 T^{4} \)
$97$ \( 1 - 119 T^{2} + 9409 T^{4} \)
show more
show less