# Properties

 Label 7056.2.a.s.1.1 Level $7056$ Weight $2$ Character 7056.1 Self dual yes Analytic conductor $56.342$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$7056 = 2^{4} \cdot 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7056.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$56.3424436662$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 56) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 7056.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-1.00000 q^{5} +O(q^{10})$$ $$q-1.00000 q^{5} -1.00000 q^{11} -2.00000 q^{13} +3.00000 q^{17} +5.00000 q^{19} -3.00000 q^{23} -4.00000 q^{25} +6.00000 q^{29} -1.00000 q^{31} -5.00000 q^{37} -10.0000 q^{41} +4.00000 q^{43} -1.00000 q^{47} +9.00000 q^{53} +1.00000 q^{55} -3.00000 q^{59} -3.00000 q^{61} +2.00000 q^{65} -11.0000 q^{67} +16.0000 q^{71} -7.00000 q^{73} +11.0000 q^{79} +4.00000 q^{83} -3.00000 q^{85} -9.00000 q^{89} -5.00000 q^{95} -6.00000 q^{97} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ −1.00000 −0.447214 −0.223607 0.974679i $$-0.571783\pi$$
−0.223607 + 0.974679i $$0.571783\pi$$
$$6$$ 0 0
$$7$$ 0 0
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ −1.00000 −0.301511 −0.150756 0.988571i $$-0.548171\pi$$
−0.150756 + 0.988571i $$0.548171\pi$$
$$12$$ 0 0
$$13$$ −2.00000 −0.554700 −0.277350 0.960769i $$-0.589456\pi$$
−0.277350 + 0.960769i $$0.589456\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 3.00000 0.727607 0.363803 0.931476i $$-0.381478\pi$$
0.363803 + 0.931476i $$0.381478\pi$$
$$18$$ 0 0
$$19$$ 5.00000 1.14708 0.573539 0.819178i $$-0.305570\pi$$
0.573539 + 0.819178i $$0.305570\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −3.00000 −0.625543 −0.312772 0.949828i $$-0.601257\pi$$
−0.312772 + 0.949828i $$0.601257\pi$$
$$24$$ 0 0
$$25$$ −4.00000 −0.800000
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 6.00000 1.11417 0.557086 0.830455i $$-0.311919\pi$$
0.557086 + 0.830455i $$0.311919\pi$$
$$30$$ 0 0
$$31$$ −1.00000 −0.179605 −0.0898027 0.995960i $$-0.528624\pi$$
−0.0898027 + 0.995960i $$0.528624\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ −5.00000 −0.821995 −0.410997 0.911636i $$-0.634819\pi$$
−0.410997 + 0.911636i $$0.634819\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −10.0000 −1.56174 −0.780869 0.624695i $$-0.785223\pi$$
−0.780869 + 0.624695i $$0.785223\pi$$
$$42$$ 0 0
$$43$$ 4.00000 0.609994 0.304997 0.952353i $$-0.401344\pi$$
0.304997 + 0.952353i $$0.401344\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −1.00000 −0.145865 −0.0729325 0.997337i $$-0.523236\pi$$
−0.0729325 + 0.997337i $$0.523236\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 9.00000 1.23625 0.618123 0.786082i $$-0.287894\pi$$
0.618123 + 0.786082i $$0.287894\pi$$
$$54$$ 0 0
$$55$$ 1.00000 0.134840
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ −3.00000 −0.390567 −0.195283 0.980747i $$-0.562563\pi$$
−0.195283 + 0.980747i $$0.562563\pi$$
$$60$$ 0 0
$$61$$ −3.00000 −0.384111 −0.192055 0.981384i $$-0.561515\pi$$
−0.192055 + 0.981384i $$0.561515\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 2.00000 0.248069
$$66$$ 0 0
$$67$$ −11.0000 −1.34386 −0.671932 0.740613i $$-0.734535\pi$$
−0.671932 + 0.740613i $$0.734535\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 16.0000 1.89885 0.949425 0.313993i $$-0.101667\pi$$
0.949425 + 0.313993i $$0.101667\pi$$
$$72$$ 0 0
$$73$$ −7.00000 −0.819288 −0.409644 0.912245i $$-0.634347\pi$$
−0.409644 + 0.912245i $$0.634347\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 11.0000 1.23760 0.618798 0.785550i $$-0.287620\pi$$
0.618798 + 0.785550i $$0.287620\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ 4.00000 0.439057 0.219529 0.975606i $$-0.429548\pi$$
0.219529 + 0.975606i $$0.429548\pi$$
$$84$$ 0 0
$$85$$ −3.00000 −0.325396
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ −9.00000 −0.953998 −0.476999 0.878904i $$-0.658275\pi$$
−0.476999 + 0.878904i $$0.658275\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ −5.00000 −0.512989
$$96$$ 0 0
$$97$$ −6.00000 −0.609208 −0.304604 0.952479i $$-0.598524\pi$$
−0.304604 + 0.952479i $$0.598524\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −13.0000 −1.29355 −0.646774 0.762682i $$-0.723882\pi$$
−0.646774 + 0.762682i $$0.723882\pi$$
$$102$$ 0 0
$$103$$ 5.00000 0.492665 0.246332 0.969185i $$-0.420775\pi$$
0.246332 + 0.969185i $$0.420775\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ −3.00000 −0.290021 −0.145010 0.989430i $$-0.546322\pi$$
−0.145010 + 0.989430i $$0.546322\pi$$
$$108$$ 0 0
$$109$$ 11.0000 1.05361 0.526804 0.849987i $$-0.323390\pi$$
0.526804 + 0.849987i $$0.323390\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 10.0000 0.940721 0.470360 0.882474i $$-0.344124\pi$$
0.470360 + 0.882474i $$0.344124\pi$$
$$114$$ 0 0
$$115$$ 3.00000 0.279751
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −10.0000 −0.909091
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 9.00000 0.804984
$$126$$ 0 0
$$127$$ 8.00000 0.709885 0.354943 0.934888i $$-0.384500\pi$$
0.354943 + 0.934888i $$0.384500\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −17.0000 −1.48530 −0.742648 0.669681i $$-0.766431\pi$$
−0.742648 + 0.669681i $$0.766431\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −3.00000 −0.256307 −0.128154 0.991754i $$-0.540905\pi$$
−0.128154 + 0.991754i $$0.540905\pi$$
$$138$$ 0 0
$$139$$ 4.00000 0.339276 0.169638 0.985506i $$-0.445740\pi$$
0.169638 + 0.985506i $$0.445740\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 2.00000 0.167248
$$144$$ 0 0
$$145$$ −6.00000 −0.498273
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ −15.0000 −1.22885 −0.614424 0.788976i $$-0.710612\pi$$
−0.614424 + 0.788976i $$0.710612\pi$$
$$150$$ 0 0
$$151$$ −15.0000 −1.22068 −0.610341 0.792139i $$-0.708968\pi$$
−0.610341 + 0.792139i $$0.708968\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 1.00000 0.0803219
$$156$$ 0 0
$$157$$ −15.0000 −1.19713 −0.598565 0.801074i $$-0.704262\pi$$
−0.598565 + 0.801074i $$0.704262\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ −9.00000 −0.704934 −0.352467 0.935824i $$-0.614657\pi$$
−0.352467 + 0.935824i $$0.614657\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 20.0000 1.54765 0.773823 0.633402i $$-0.218342\pi$$
0.773823 + 0.633402i $$0.218342\pi$$
$$168$$ 0 0
$$169$$ −9.00000 −0.692308
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ −21.0000 −1.59660 −0.798300 0.602260i $$-0.794267\pi$$
−0.798300 + 0.602260i $$0.794267\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ −1.00000 −0.0747435 −0.0373718 0.999301i $$-0.511899\pi$$
−0.0373718 + 0.999301i $$0.511899\pi$$
$$180$$ 0 0
$$181$$ −22.0000 −1.63525 −0.817624 0.575753i $$-0.804709\pi$$
−0.817624 + 0.575753i $$0.804709\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 5.00000 0.367607
$$186$$ 0 0
$$187$$ −3.00000 −0.219382
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 17.0000 1.23008 0.615038 0.788497i $$-0.289140\pi$$
0.615038 + 0.788497i $$0.289140\pi$$
$$192$$ 0 0
$$193$$ −5.00000 −0.359908 −0.179954 0.983675i $$-0.557595\pi$$
−0.179954 + 0.983675i $$0.557595\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −18.0000 −1.28245 −0.641223 0.767354i $$-0.721573\pi$$
−0.641223 + 0.767354i $$0.721573\pi$$
$$198$$ 0 0
$$199$$ −9.00000 −0.637993 −0.318997 0.947756i $$-0.603346\pi$$
−0.318997 + 0.947756i $$0.603346\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 10.0000 0.698430
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ −5.00000 −0.345857
$$210$$ 0 0
$$211$$ −12.0000 −0.826114 −0.413057 0.910705i $$-0.635539\pi$$
−0.413057 + 0.910705i $$0.635539\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ −4.00000 −0.272798
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ −6.00000 −0.403604
$$222$$ 0 0
$$223$$ 24.0000 1.60716 0.803579 0.595198i $$-0.202926\pi$$
0.803579 + 0.595198i $$0.202926\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −7.00000 −0.464606 −0.232303 0.972643i $$-0.574626\pi$$
−0.232303 + 0.972643i $$0.574626\pi$$
$$228$$ 0 0
$$229$$ −7.00000 −0.462573 −0.231287 0.972886i $$-0.574293\pi$$
−0.231287 + 0.972886i $$0.574293\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 13.0000 0.851658 0.425829 0.904804i $$-0.359982\pi$$
0.425829 + 0.904804i $$0.359982\pi$$
$$234$$ 0 0
$$235$$ 1.00000 0.0652328
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ −4.00000 −0.258738 −0.129369 0.991596i $$-0.541295\pi$$
−0.129369 + 0.991596i $$0.541295\pi$$
$$240$$ 0 0
$$241$$ 17.0000 1.09507 0.547533 0.836784i $$-0.315567\pi$$
0.547533 + 0.836784i $$0.315567\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ −10.0000 −0.636285
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −24.0000 −1.51487 −0.757433 0.652913i $$-0.773547\pi$$
−0.757433 + 0.652913i $$0.773547\pi$$
$$252$$ 0 0
$$253$$ 3.00000 0.188608
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −13.0000 −0.810918 −0.405459 0.914113i $$-0.632888\pi$$
−0.405459 + 0.914113i $$0.632888\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 3.00000 0.184988 0.0924940 0.995713i $$-0.470516\pi$$
0.0924940 + 0.995713i $$0.470516\pi$$
$$264$$ 0 0
$$265$$ −9.00000 −0.552866
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −17.0000 −1.03651 −0.518254 0.855227i $$-0.673418\pi$$
−0.518254 + 0.855227i $$0.673418\pi$$
$$270$$ 0 0
$$271$$ −3.00000 −0.182237 −0.0911185 0.995840i $$-0.529044\pi$$
−0.0911185 + 0.995840i $$0.529044\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 4.00000 0.241209
$$276$$ 0 0
$$277$$ 7.00000 0.420589 0.210295 0.977638i $$-0.432558\pi$$
0.210295 + 0.977638i $$0.432558\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 18.0000 1.07379 0.536895 0.843649i $$-0.319597\pi$$
0.536895 + 0.843649i $$0.319597\pi$$
$$282$$ 0 0
$$283$$ −17.0000 −1.01055 −0.505273 0.862960i $$-0.668608\pi$$
−0.505273 + 0.862960i $$0.668608\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ −8.00000 −0.470588
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 6.00000 0.350524 0.175262 0.984522i $$-0.443923\pi$$
0.175262 + 0.984522i $$0.443923\pi$$
$$294$$ 0 0
$$295$$ 3.00000 0.174667
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 6.00000 0.346989
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 3.00000 0.171780
$$306$$ 0 0
$$307$$ 4.00000 0.228292 0.114146 0.993464i $$-0.463587\pi$$
0.114146 + 0.993464i $$0.463587\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −11.0000 −0.623753 −0.311876 0.950123i $$-0.600957\pi$$
−0.311876 + 0.950123i $$0.600957\pi$$
$$312$$ 0 0
$$313$$ −31.0000 −1.75222 −0.876112 0.482108i $$-0.839871\pi$$
−0.876112 + 0.482108i $$0.839871\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −27.0000 −1.51647 −0.758236 0.651981i $$-0.773938\pi$$
−0.758236 + 0.651981i $$0.773938\pi$$
$$318$$ 0 0
$$319$$ −6.00000 −0.335936
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 15.0000 0.834622
$$324$$ 0 0
$$325$$ 8.00000 0.443760
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 7.00000 0.384755 0.192377 0.981321i $$-0.438380\pi$$
0.192377 + 0.981321i $$0.438380\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 11.0000 0.600994
$$336$$ 0 0
$$337$$ 14.0000 0.762629 0.381314 0.924445i $$-0.375472\pi$$
0.381314 + 0.924445i $$0.375472\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 1.00000 0.0541530
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 3.00000 0.161048 0.0805242 0.996753i $$-0.474341\pi$$
0.0805242 + 0.996753i $$0.474341\pi$$
$$348$$ 0 0
$$349$$ 6.00000 0.321173 0.160586 0.987022i $$-0.448662\pi$$
0.160586 + 0.987022i $$0.448662\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ −5.00000 −0.266123 −0.133062 0.991108i $$-0.542481\pi$$
−0.133062 + 0.991108i $$0.542481\pi$$
$$354$$ 0 0
$$355$$ −16.0000 −0.849192
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −15.0000 −0.791670 −0.395835 0.918322i $$-0.629545\pi$$
−0.395835 + 0.918322i $$0.629545\pi$$
$$360$$ 0 0
$$361$$ 6.00000 0.315789
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 7.00000 0.366397
$$366$$ 0 0
$$367$$ 19.0000 0.991792 0.495896 0.868382i $$-0.334840\pi$$
0.495896 + 0.868382i $$0.334840\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 19.0000 0.983783 0.491891 0.870657i $$-0.336306\pi$$
0.491891 + 0.870657i $$0.336306\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ −12.0000 −0.618031
$$378$$ 0 0
$$379$$ 16.0000 0.821865 0.410932 0.911666i $$-0.365203\pi$$
0.410932 + 0.911666i $$0.365203\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ −9.00000 −0.459879 −0.229939 0.973205i $$-0.573853\pi$$
−0.229939 + 0.973205i $$0.573853\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ −19.0000 −0.963338 −0.481669 0.876353i $$-0.659969\pi$$
−0.481669 + 0.876353i $$0.659969\pi$$
$$390$$ 0 0
$$391$$ −9.00000 −0.455150
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ −11.0000 −0.553470
$$396$$ 0 0
$$397$$ 17.0000 0.853206 0.426603 0.904439i $$-0.359710\pi$$
0.426603 + 0.904439i $$0.359710\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −3.00000 −0.149813 −0.0749064 0.997191i $$-0.523866\pi$$
−0.0749064 + 0.997191i $$0.523866\pi$$
$$402$$ 0 0
$$403$$ 2.00000 0.0996271
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 5.00000 0.247841
$$408$$ 0 0
$$409$$ −19.0000 −0.939490 −0.469745 0.882802i $$-0.655654\pi$$
−0.469745 + 0.882802i $$0.655654\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ −4.00000 −0.196352
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −20.0000 −0.977064 −0.488532 0.872546i $$-0.662467\pi$$
−0.488532 + 0.872546i $$0.662467\pi$$
$$420$$ 0 0
$$421$$ 10.0000 0.487370 0.243685 0.969854i $$-0.421644\pi$$
0.243685 + 0.969854i $$0.421644\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ −12.0000 −0.582086
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −41.0000 −1.97490 −0.987450 0.157930i $$-0.949518\pi$$
−0.987450 + 0.157930i $$0.949518\pi$$
$$432$$ 0 0
$$433$$ 26.0000 1.24948 0.624740 0.780833i $$-0.285205\pi$$
0.624740 + 0.780833i $$0.285205\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ −15.0000 −0.717547
$$438$$ 0 0
$$439$$ −15.0000 −0.715911 −0.357955 0.933739i $$-0.616526\pi$$
−0.357955 + 0.933739i $$0.616526\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ −27.0000 −1.28281 −0.641404 0.767203i $$-0.721648\pi$$
−0.641404 + 0.767203i $$0.721648\pi$$
$$444$$ 0 0
$$445$$ 9.00000 0.426641
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 2.00000 0.0943858 0.0471929 0.998886i $$-0.484972\pi$$
0.0471929 + 0.998886i $$0.484972\pi$$
$$450$$ 0 0
$$451$$ 10.0000 0.470882
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −17.0000 −0.795226 −0.397613 0.917553i $$-0.630161\pi$$
−0.397613 + 0.917553i $$0.630161\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ −6.00000 −0.279448 −0.139724 0.990190i $$-0.544622\pi$$
−0.139724 + 0.990190i $$0.544622\pi$$
$$462$$ 0 0
$$463$$ 16.0000 0.743583 0.371792 0.928316i $$-0.378744\pi$$
0.371792 + 0.928316i $$0.378744\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −25.0000 −1.15686 −0.578431 0.815731i $$-0.696335\pi$$
−0.578431 + 0.815731i $$0.696335\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ −4.00000 −0.183920
$$474$$ 0 0
$$475$$ −20.0000 −0.917663
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 21.0000 0.959514 0.479757 0.877401i $$-0.340725\pi$$
0.479757 + 0.877401i $$0.340725\pi$$
$$480$$ 0 0
$$481$$ 10.0000 0.455961
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 6.00000 0.272446
$$486$$ 0 0
$$487$$ 13.0000 0.589086 0.294543 0.955638i $$-0.404833\pi$$
0.294543 + 0.955638i $$0.404833\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$492$$ 0 0
$$493$$ 18.0000 0.810679
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 7.00000 0.313363 0.156682 0.987649i $$-0.449920\pi$$
0.156682 + 0.987649i $$0.449920\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ −16.0000 −0.713405 −0.356702 0.934218i $$-0.616099\pi$$
−0.356702 + 0.934218i $$0.616099\pi$$
$$504$$ 0 0
$$505$$ 13.0000 0.578492
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ 7.00000 0.310270 0.155135 0.987893i $$-0.450419\pi$$
0.155135 + 0.987893i $$0.450419\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ −5.00000 −0.220326
$$516$$ 0 0
$$517$$ 1.00000 0.0439799
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 15.0000 0.657162 0.328581 0.944476i $$-0.393430\pi$$
0.328581 + 0.944476i $$0.393430\pi$$
$$522$$ 0 0
$$523$$ 13.0000 0.568450 0.284225 0.958758i $$-0.408264\pi$$
0.284225 + 0.958758i $$0.408264\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −3.00000 −0.130682
$$528$$ 0 0
$$529$$ −14.0000 −0.608696
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 20.0000 0.866296
$$534$$ 0 0
$$535$$ 3.00000 0.129701
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −25.0000 −1.07483 −0.537417 0.843317i $$-0.680600\pi$$
−0.537417 + 0.843317i $$0.680600\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ −11.0000 −0.471188
$$546$$ 0 0
$$547$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 30.0000 1.27804
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −11.0000 −0.466085 −0.233042 0.972467i $$-0.574868\pi$$
−0.233042 + 0.972467i $$0.574868\pi$$
$$558$$ 0 0
$$559$$ −8.00000 −0.338364
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ −11.0000 −0.463595 −0.231797 0.972764i $$-0.574461\pi$$
−0.231797 + 0.972764i $$0.574461\pi$$
$$564$$ 0 0
$$565$$ −10.0000 −0.420703
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 1.00000 0.0419222 0.0209611 0.999780i $$-0.493327\pi$$
0.0209611 + 0.999780i $$0.493327\pi$$
$$570$$ 0 0
$$571$$ 17.0000 0.711428 0.355714 0.934595i $$-0.384238\pi$$
0.355714 + 0.934595i $$0.384238\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 12.0000 0.500435
$$576$$ 0 0
$$577$$ −31.0000 −1.29055 −0.645273 0.763952i $$-0.723257\pi$$
−0.645273 + 0.763952i $$0.723257\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ −9.00000 −0.372742
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ −12.0000 −0.495293 −0.247647 0.968850i $$-0.579657\pi$$
−0.247647 + 0.968850i $$0.579657\pi$$
$$588$$ 0 0
$$589$$ −5.00000 −0.206021
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 43.0000 1.76580 0.882899 0.469563i $$-0.155588\pi$$
0.882899 + 0.469563i $$0.155588\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ −21.0000 −0.858037 −0.429018 0.903296i $$-0.641140\pi$$
−0.429018 + 0.903296i $$0.641140\pi$$
$$600$$ 0 0
$$601$$ 34.0000 1.38689 0.693444 0.720510i $$-0.256092\pi$$
0.693444 + 0.720510i $$0.256092\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 10.0000 0.406558
$$606$$ 0 0
$$607$$ −7.00000 −0.284121 −0.142061 0.989858i $$-0.545373\pi$$
−0.142061 + 0.989858i $$0.545373\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 2.00000 0.0809113
$$612$$ 0 0
$$613$$ −21.0000 −0.848182 −0.424091 0.905620i $$-0.639406\pi$$
−0.424091 + 0.905620i $$0.639406\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −22.0000 −0.885687 −0.442843 0.896599i $$-0.646030\pi$$
−0.442843 + 0.896599i $$0.646030\pi$$
$$618$$ 0 0
$$619$$ −5.00000 −0.200967 −0.100483 0.994939i $$-0.532039\pi$$
−0.100483 + 0.994939i $$0.532039\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 11.0000 0.440000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ −15.0000 −0.598089
$$630$$ 0 0
$$631$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ −8.00000 −0.317470
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −15.0000 −0.592464 −0.296232 0.955116i $$-0.595730\pi$$
−0.296232 + 0.955116i $$0.595730\pi$$
$$642$$ 0 0
$$643$$ −44.0000 −1.73519 −0.867595 0.497271i $$-0.834335\pi$$
−0.867595 + 0.497271i $$0.834335\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −43.0000 −1.69050 −0.845252 0.534368i $$-0.820550\pi$$
−0.845252 + 0.534368i $$0.820550\pi$$
$$648$$ 0 0
$$649$$ 3.00000 0.117760
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 5.00000 0.195665 0.0978326 0.995203i $$-0.468809\pi$$
0.0978326 + 0.995203i $$0.468809\pi$$
$$654$$ 0 0
$$655$$ 17.0000 0.664245
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ −36.0000 −1.40236 −0.701180 0.712984i $$-0.747343\pi$$
−0.701180 + 0.712984i $$0.747343\pi$$
$$660$$ 0 0
$$661$$ 1.00000 0.0388955 0.0194477 0.999811i $$-0.493809\pi$$
0.0194477 + 0.999811i $$0.493809\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ −18.0000 −0.696963
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 3.00000 0.115814
$$672$$ 0 0
$$673$$ −2.00000 −0.0770943 −0.0385472 0.999257i $$-0.512273\pi$$
−0.0385472 + 0.999257i $$0.512273\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −9.00000 −0.345898 −0.172949 0.984931i $$-0.555330\pi$$
−0.172949 + 0.984931i $$0.555330\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 39.0000 1.49229 0.746147 0.665782i $$-0.231902\pi$$
0.746147 + 0.665782i $$0.231902\pi$$
$$684$$ 0 0
$$685$$ 3.00000 0.114624
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ −18.0000 −0.685745
$$690$$ 0 0
$$691$$ −47.0000 −1.78796 −0.893982 0.448103i $$-0.852100\pi$$
−0.893982 + 0.448103i $$0.852100\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ −4.00000 −0.151729
$$696$$ 0 0
$$697$$ −30.0000 −1.13633
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 18.0000 0.679851 0.339925 0.940452i $$-0.389598\pi$$
0.339925 + 0.940452i $$0.389598\pi$$
$$702$$ 0 0
$$703$$ −25.0000 −0.942893
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 27.0000 1.01401 0.507003 0.861944i $$-0.330753\pi$$
0.507003 + 0.861944i $$0.330753\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 3.00000 0.112351
$$714$$ 0 0
$$715$$ −2.00000 −0.0747958
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ −29.0000 −1.08152 −0.540759 0.841178i $$-0.681863\pi$$
−0.540759 + 0.841178i $$0.681863\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ −24.0000 −0.891338
$$726$$ 0 0
$$727$$ 16.0000 0.593407 0.296704 0.954970i $$-0.404113\pi$$
0.296704 + 0.954970i $$0.404113\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 12.0000 0.443836
$$732$$ 0 0
$$733$$ −11.0000 −0.406294 −0.203147 0.979148i $$-0.565117\pi$$
−0.203147 + 0.979148i $$0.565117\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 11.0000 0.405190
$$738$$ 0 0
$$739$$ 41.0000 1.50821 0.754105 0.656754i $$-0.228071\pi$$
0.754105 + 0.656754i $$0.228071\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 32.0000 1.17397 0.586983 0.809599i $$-0.300316\pi$$
0.586983 + 0.809599i $$0.300316\pi$$
$$744$$ 0 0
$$745$$ 15.0000 0.549557
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 47.0000 1.71505 0.857527 0.514439i $$-0.172000\pi$$
0.857527 + 0.514439i $$0.172000\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 15.0000 0.545906
$$756$$ 0 0
$$757$$ 34.0000 1.23575 0.617876 0.786276i $$-0.287994\pi$$
0.617876 + 0.786276i $$0.287994\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 27.0000 0.978749 0.489375 0.872074i $$-0.337225\pi$$
0.489375 + 0.872074i $$0.337225\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 6.00000 0.216647
$$768$$ 0 0
$$769$$ −14.0000 −0.504853 −0.252426 0.967616i $$-0.581229\pi$$
−0.252426 + 0.967616i $$0.581229\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 35.0000 1.25886 0.629431 0.777056i $$-0.283288\pi$$
0.629431 + 0.777056i $$0.283288\pi$$
$$774$$ 0 0
$$775$$ 4.00000 0.143684
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −50.0000 −1.79144
$$780$$ 0 0
$$781$$ −16.0000 −0.572525
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 15.0000 0.535373
$$786$$ 0 0
$$787$$ −13.0000 −0.463400 −0.231700 0.972787i $$-0.574429\pi$$
−0.231700 + 0.972787i $$0.574429\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 6.00000 0.213066
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 42.0000 1.48772 0.743858 0.668338i $$-0.232994\pi$$
0.743858 + 0.668338i $$0.232994\pi$$
$$798$$ 0 0
$$799$$ −3.00000 −0.106132
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 7.00000 0.247025
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ 25.0000 0.878953 0.439477 0.898254i $$-0.355164\pi$$
0.439477 + 0.898254i $$0.355164\pi$$
$$810$$ 0 0
$$811$$ −20.0000 −0.702295 −0.351147 0.936320i $$-0.614208\pi$$
−0.351147 + 0.936320i $$0.614208\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 9.00000 0.315256
$$816$$ 0 0
$$817$$ 20.0000 0.699711
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 25.0000 0.872506 0.436253 0.899824i $$-0.356305\pi$$
0.436253 + 0.899824i $$0.356305\pi$$
$$822$$ 0 0
$$823$$ 21.0000 0.732014 0.366007 0.930612i $$-0.380725\pi$$
0.366007 + 0.930612i $$0.380725\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ −4.00000 −0.139094 −0.0695468 0.997579i $$-0.522155\pi$$
−0.0695468 + 0.997579i $$0.522155\pi$$
$$828$$ 0 0
$$829$$ 37.0000 1.28506 0.642532 0.766259i $$-0.277884\pi$$
0.642532 + 0.766259i $$0.277884\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 0 0
$$834$$ 0 0
$$835$$ −20.0000 −0.692129
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 24.0000 0.828572 0.414286 0.910147i $$-0.364031\pi$$
0.414286 + 0.910147i $$0.364031\pi$$
$$840$$ 0 0
$$841$$ 7.00000 0.241379
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 9.00000 0.309609
$$846$$ 0 0
$$847$$ 0 0
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 15.0000 0.514193
$$852$$ 0 0
$$853$$ 22.0000 0.753266 0.376633 0.926363i $$-0.377082\pi$$
0.376633 + 0.926363i $$0.377082\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ −57.0000 −1.94708 −0.973541 0.228510i $$-0.926614\pi$$
−0.973541 + 0.228510i $$0.926614\pi$$
$$858$$ 0 0
$$859$$ 5.00000 0.170598 0.0852989 0.996355i $$-0.472815\pi$$
0.0852989 + 0.996355i $$0.472815\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 37.0000 1.25949 0.629747 0.776800i $$-0.283158\pi$$
0.629747 + 0.776800i $$0.283158\pi$$
$$864$$ 0 0
$$865$$ 21.0000 0.714021
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ −11.0000 −0.373149
$$870$$ 0 0
$$871$$ 22.0000 0.745442
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 39.0000 1.31694 0.658468 0.752609i $$-0.271205\pi$$
0.658468 + 0.752609i $$0.271205\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ 18.0000 0.606435 0.303218 0.952921i $$-0.401939\pi$$
0.303218 + 0.952921i $$0.401939\pi$$
$$882$$ 0 0
$$883$$ −28.0000 −0.942275 −0.471138 0.882060i $$-0.656156\pi$$
−0.471138 + 0.882060i $$0.656156\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 55.0000 1.84672 0.923360 0.383936i $$-0.125432\pi$$
0.923360 + 0.383936i $$0.125432\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ −5.00000 −0.167319
$$894$$ 0 0
$$895$$ 1.00000 0.0334263
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ −6.00000 −0.200111
$$900$$ 0 0
$$901$$ 27.0000 0.899500
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 22.0000 0.731305
$$906$$ 0 0
$$907$$ 13.0000 0.431658 0.215829 0.976431i $$-0.430755\pi$$
0.215829 + 0.976431i $$0.430755\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ −48.0000 −1.59031 −0.795155 0.606406i $$-0.792611\pi$$
−0.795155 + 0.606406i $$0.792611\pi$$
$$912$$ 0 0
$$913$$ −4.00000 −0.132381
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ −17.0000 −0.560778 −0.280389 0.959886i $$-0.590464\pi$$
−0.280389 + 0.959886i $$0.590464\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ −32.0000 −1.05329
$$924$$ 0 0
$$925$$ 20.0000 0.657596
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ −41.0000 −1.34517 −0.672583 0.740022i $$-0.734815\pi$$
−0.672583 + 0.740022i $$0.734815\pi$$
$$930$$ 0 0
$$931$$ 0 0
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 3.00000 0.0981105
$$936$$ 0 0
$$937$$ 38.0000 1.24141 0.620703 0.784046i $$-0.286847\pi$$
0.620703 + 0.784046i $$0.286847\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 39.0000 1.27136 0.635682 0.771951i $$-0.280719\pi$$
0.635682 + 0.771951i $$0.280719\pi$$
$$942$$ 0 0
$$943$$ 30.0000 0.976934
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 49.0000 1.59229 0.796143 0.605108i $$-0.206870\pi$$
0.796143 + 0.605108i $$0.206870\pi$$
$$948$$ 0 0
$$949$$ 14.0000 0.454459
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ −30.0000 −0.971795 −0.485898 0.874016i $$-0.661507\pi$$
−0.485898 + 0.874016i $$0.661507\pi$$
$$954$$ 0 0
$$955$$ −17.0000 −0.550107
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 0 0
$$960$$ 0 0
$$961$$ −30.0000 −0.967742
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 5.00000 0.160956
$$966$$ 0 0
$$967$$ −32.0000 −1.02905 −0.514525 0.857475i $$-0.672032\pi$$
−0.514525 + 0.857475i $$0.672032\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ −57.0000 −1.82922 −0.914609 0.404341i $$-0.867501\pi$$
−0.914609 + 0.404341i $$0.867501\pi$$
$$972$$ 0 0
$$973$$ 0 0
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 37.0000 1.18373 0.591867 0.806035i $$-0.298391\pi$$
0.591867 + 0.806035i $$0.298391\pi$$
$$978$$ 0 0
$$979$$ 9.00000 0.287641
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 33.0000 1.05254 0.526268 0.850319i $$-0.323591\pi$$
0.526268 + 0.850319i $$0.323591\pi$$
$$984$$ 0 0
$$985$$ 18.0000 0.573528
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ −12.0000 −0.381578
$$990$$ 0 0
$$991$$ −59.0000 −1.87420 −0.937098 0.349065i $$-0.886499\pi$$
−0.937098 + 0.349065i $$0.886499\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 9.00000 0.285319
$$996$$ 0 0
$$997$$ −31.0000 −0.981780 −0.490890 0.871222i $$-0.663328\pi$$
−0.490890 + 0.871222i $$0.663328\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7056.2.a.s.1.1 1
3.2 odd 2 784.2.a.j.1.1 1
4.3 odd 2 3528.2.a.k.1.1 1
7.3 odd 6 1008.2.s.e.289.1 2
7.5 odd 6 1008.2.s.e.865.1 2
7.6 odd 2 7056.2.a.bi.1.1 1
12.11 even 2 392.2.a.a.1.1 1
21.2 odd 6 784.2.i.a.753.1 2
21.5 even 6 112.2.i.c.81.1 2
21.11 odd 6 784.2.i.a.177.1 2
21.17 even 6 112.2.i.c.65.1 2
21.20 even 2 784.2.a.a.1.1 1
24.5 odd 2 3136.2.a.a.1.1 1
24.11 even 2 3136.2.a.bb.1.1 1
28.3 even 6 504.2.s.e.289.1 2
28.11 odd 6 3528.2.s.o.3313.1 2
28.19 even 6 504.2.s.e.361.1 2
28.23 odd 6 3528.2.s.o.361.1 2
28.27 even 2 3528.2.a.r.1.1 1
60.59 even 2 9800.2.a.bp.1.1 1
84.11 even 6 392.2.i.f.177.1 2
84.23 even 6 392.2.i.f.361.1 2
84.47 odd 6 56.2.i.a.25.1 yes 2
84.59 odd 6 56.2.i.a.9.1 2
84.83 odd 2 392.2.a.f.1.1 1
168.5 even 6 448.2.i.a.193.1 2
168.59 odd 6 448.2.i.f.65.1 2
168.83 odd 2 3136.2.a.b.1.1 1
168.101 even 6 448.2.i.a.65.1 2
168.125 even 2 3136.2.a.bc.1.1 1
168.131 odd 6 448.2.i.f.193.1 2
420.47 even 12 1400.2.bh.f.249.2 4
420.59 odd 6 1400.2.q.g.401.1 2
420.143 even 12 1400.2.bh.f.849.2 4
420.227 even 12 1400.2.bh.f.849.1 4
420.299 odd 6 1400.2.q.g.1201.1 2
420.383 even 12 1400.2.bh.f.249.1 4
420.419 odd 2 9800.2.a.b.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.i.a.9.1 2 84.59 odd 6
56.2.i.a.25.1 yes 2 84.47 odd 6
112.2.i.c.65.1 2 21.17 even 6
112.2.i.c.81.1 2 21.5 even 6
392.2.a.a.1.1 1 12.11 even 2
392.2.a.f.1.1 1 84.83 odd 2
392.2.i.f.177.1 2 84.11 even 6
392.2.i.f.361.1 2 84.23 even 6
448.2.i.a.65.1 2 168.101 even 6
448.2.i.a.193.1 2 168.5 even 6
448.2.i.f.65.1 2 168.59 odd 6
448.2.i.f.193.1 2 168.131 odd 6
504.2.s.e.289.1 2 28.3 even 6
504.2.s.e.361.1 2 28.19 even 6
784.2.a.a.1.1 1 21.20 even 2
784.2.a.j.1.1 1 3.2 odd 2
784.2.i.a.177.1 2 21.11 odd 6
784.2.i.a.753.1 2 21.2 odd 6
1008.2.s.e.289.1 2 7.3 odd 6
1008.2.s.e.865.1 2 7.5 odd 6
1400.2.q.g.401.1 2 420.59 odd 6
1400.2.q.g.1201.1 2 420.299 odd 6
1400.2.bh.f.249.1 4 420.383 even 12
1400.2.bh.f.249.2 4 420.47 even 12
1400.2.bh.f.849.1 4 420.227 even 12
1400.2.bh.f.849.2 4 420.143 even 12
3136.2.a.a.1.1 1 24.5 odd 2
3136.2.a.b.1.1 1 168.83 odd 2
3136.2.a.bb.1.1 1 24.11 even 2
3136.2.a.bc.1.1 1 168.125 even 2
3528.2.a.k.1.1 1 4.3 odd 2
3528.2.a.r.1.1 1 28.27 even 2
3528.2.s.o.361.1 2 28.23 odd 6
3528.2.s.o.3313.1 2 28.11 odd 6
7056.2.a.s.1.1 1 1.1 even 1 trivial
7056.2.a.bi.1.1 1 7.6 odd 2
9800.2.a.b.1.1 1 420.419 odd 2
9800.2.a.bp.1.1 1 60.59 even 2