# Properties

 Label 7056.2.a.s Level 7056 Weight 2 Character orbit 7056.a Self dual yes Analytic conductor 56.342 Analytic rank 1 Dimension 1 CM no Inner twists 1

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$7056 = 2^{4} \cdot 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7056.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$56.3424436662$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 56) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - q^{5} + O(q^{10})$$ $$q - q^{5} - q^{11} - 2q^{13} + 3q^{17} + 5q^{19} - 3q^{23} - 4q^{25} + 6q^{29} - q^{31} - 5q^{37} - 10q^{41} + 4q^{43} - q^{47} + 9q^{53} + q^{55} - 3q^{59} - 3q^{61} + 2q^{65} - 11q^{67} + 16q^{71} - 7q^{73} + 11q^{79} + 4q^{83} - 3q^{85} - 9q^{89} - 5q^{95} - 6q^{97} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 −1.00000 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7056.2.a.s 1
3.b odd 2 1 784.2.a.j 1
4.b odd 2 1 3528.2.a.k 1
7.b odd 2 1 7056.2.a.bi 1
7.d odd 6 2 1008.2.s.e 2
12.b even 2 1 392.2.a.a 1
21.c even 2 1 784.2.a.a 1
21.g even 6 2 112.2.i.c 2
21.h odd 6 2 784.2.i.a 2
24.f even 2 1 3136.2.a.bb 1
24.h odd 2 1 3136.2.a.a 1
28.d even 2 1 3528.2.a.r 1
28.f even 6 2 504.2.s.e 2
28.g odd 6 2 3528.2.s.o 2
60.h even 2 1 9800.2.a.bp 1
84.h odd 2 1 392.2.a.f 1
84.j odd 6 2 56.2.i.a 2
84.n even 6 2 392.2.i.f 2
168.e odd 2 1 3136.2.a.b 1
168.i even 2 1 3136.2.a.bc 1
168.ba even 6 2 448.2.i.a 2
168.be odd 6 2 448.2.i.f 2
420.o odd 2 1 9800.2.a.b 1
420.be odd 6 2 1400.2.q.g 2
420.br even 12 4 1400.2.bh.f 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.2.i.a 2 84.j odd 6 2
112.2.i.c 2 21.g even 6 2
392.2.a.a 1 12.b even 2 1
392.2.a.f 1 84.h odd 2 1
392.2.i.f 2 84.n even 6 2
448.2.i.a 2 168.ba even 6 2
448.2.i.f 2 168.be odd 6 2
504.2.s.e 2 28.f even 6 2
784.2.a.a 1 21.c even 2 1
784.2.a.j 1 3.b odd 2 1
784.2.i.a 2 21.h odd 6 2
1008.2.s.e 2 7.d odd 6 2
1400.2.q.g 2 420.be odd 6 2
1400.2.bh.f 4 420.br even 12 4
3136.2.a.a 1 24.h odd 2 1
3136.2.a.b 1 168.e odd 2 1
3136.2.a.bb 1 24.f even 2 1
3136.2.a.bc 1 168.i even 2 1
3528.2.a.k 1 4.b odd 2 1
3528.2.a.r 1 28.d even 2 1
3528.2.s.o 2 28.g odd 6 2
7056.2.a.s 1 1.a even 1 1 trivial
7056.2.a.bi 1 7.b odd 2 1
9800.2.a.b 1 420.o odd 2 1
9800.2.a.bp 1 60.h even 2 1

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$7$$ $$-1$$

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7056))$$:

 $$T_{5} + 1$$ $$T_{11} + 1$$ $$T_{13} + 2$$ $$T_{17} - 3$$ $$T_{23} + 3$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ $$1 + T + 5 T^{2}$$
$7$ 1
$11$ $$1 + T + 11 T^{2}$$
$13$ $$1 + 2 T + 13 T^{2}$$
$17$ $$1 - 3 T + 17 T^{2}$$
$19$ $$1 - 5 T + 19 T^{2}$$
$23$ $$1 + 3 T + 23 T^{2}$$
$29$ $$1 - 6 T + 29 T^{2}$$
$31$ $$1 + T + 31 T^{2}$$
$37$ $$1 + 5 T + 37 T^{2}$$
$41$ $$1 + 10 T + 41 T^{2}$$
$43$ $$1 - 4 T + 43 T^{2}$$
$47$ $$1 + T + 47 T^{2}$$
$53$ $$1 - 9 T + 53 T^{2}$$
$59$ $$1 + 3 T + 59 T^{2}$$
$61$ $$1 + 3 T + 61 T^{2}$$
$67$ $$1 + 11 T + 67 T^{2}$$
$71$ $$1 - 16 T + 71 T^{2}$$
$73$ $$1 + 7 T + 73 T^{2}$$
$79$ $$1 - 11 T + 79 T^{2}$$
$83$ $$1 - 4 T + 83 T^{2}$$
$89$ $$1 + 9 T + 89 T^{2}$$
$97$ $$1 + 6 T + 97 T^{2}$$