# Properties

 Label 7056.2.a.cr Level $7056$ Weight $2$ Character orbit 7056.a Self dual yes Analytic conductor $56.342$ Analytic rank $1$ Dimension $2$ Inner twists $2$

# Learn more

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [7056,2,Mod(1,7056)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(7056, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("7056.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$7056 = 2^{4} \cdot 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7056.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$56.3424436662$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{2})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - 2$$ x^2 - 2 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 196) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{2}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta q^{5}+O(q^{10})$$ q + b * q^5 $$q + \beta q^{5} + 4 q^{11} - 3 \beta q^{13} + \beta q^{17} + 2 \beta q^{19} - 4 q^{23} - 3 q^{25} - 8 q^{29} - 8 q^{37} - 5 \beta q^{41} + 4 q^{43} - 4 \beta q^{47} - 10 q^{53} + 4 \beta q^{55} - 10 \beta q^{59} + 5 \beta q^{61} - 6 q^{65} + 5 \beta q^{73} - 8 q^{79} + 10 \beta q^{83} + 2 q^{85} + 5 \beta q^{89} + 4 q^{95} + \beta q^{97} +O(q^{100})$$ q + b * q^5 + 4 * q^11 - 3*b * q^13 + b * q^17 + 2*b * q^19 - 4 * q^23 - 3 * q^25 - 8 * q^29 - 8 * q^37 - 5*b * q^41 + 4 * q^43 - 4*b * q^47 - 10 * q^53 + 4*b * q^55 - 10*b * q^59 + 5*b * q^61 - 6 * q^65 + 5*b * q^73 - 8 * q^79 + 10*b * q^83 + 2 * q^85 + 5*b * q^89 + 4 * q^95 + b * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q+O(q^{10})$$ 2 * q $$2 q + 8 q^{11} - 8 q^{23} - 6 q^{25} - 16 q^{29} - 16 q^{37} + 8 q^{43} - 20 q^{53} - 12 q^{65} - 16 q^{79} + 4 q^{85} + 8 q^{95}+O(q^{100})$$ 2 * q + 8 * q^11 - 8 * q^23 - 6 * q^25 - 16 * q^29 - 16 * q^37 + 8 * q^43 - 20 * q^53 - 12 * q^65 - 16 * q^79 + 4 * q^85 + 8 * q^95

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.41421 1.41421
0 0 0 −1.41421 0 0 0 0 0
1.2 0 0 0 1.41421 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$7$$ $$+1$$

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7056.2.a.cr 2
3.b odd 2 1 784.2.a.m 2
4.b odd 2 1 1764.2.a.l 2
7.b odd 2 1 inner 7056.2.a.cr 2
12.b even 2 1 196.2.a.c 2
21.c even 2 1 784.2.a.m 2
21.g even 6 2 784.2.i.l 4
21.h odd 6 2 784.2.i.l 4
24.f even 2 1 3136.2.a.br 2
24.h odd 2 1 3136.2.a.bs 2
28.d even 2 1 1764.2.a.l 2
28.f even 6 2 1764.2.k.l 4
28.g odd 6 2 1764.2.k.l 4
60.h even 2 1 4900.2.a.y 2
60.l odd 4 2 4900.2.e.p 4
84.h odd 2 1 196.2.a.c 2
84.j odd 6 2 196.2.e.b 4
84.n even 6 2 196.2.e.b 4
168.e odd 2 1 3136.2.a.br 2
168.i even 2 1 3136.2.a.bs 2
420.o odd 2 1 4900.2.a.y 2
420.w even 4 2 4900.2.e.p 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
196.2.a.c 2 12.b even 2 1
196.2.a.c 2 84.h odd 2 1
196.2.e.b 4 84.j odd 6 2
196.2.e.b 4 84.n even 6 2
784.2.a.m 2 3.b odd 2 1
784.2.a.m 2 21.c even 2 1
784.2.i.l 4 21.g even 6 2
784.2.i.l 4 21.h odd 6 2
1764.2.a.l 2 4.b odd 2 1
1764.2.a.l 2 28.d even 2 1
1764.2.k.l 4 28.f even 6 2
1764.2.k.l 4 28.g odd 6 2
3136.2.a.br 2 24.f even 2 1
3136.2.a.br 2 168.e odd 2 1
3136.2.a.bs 2 24.h odd 2 1
3136.2.a.bs 2 168.i even 2 1
4900.2.a.y 2 60.h even 2 1
4900.2.a.y 2 420.o odd 2 1
4900.2.e.p 4 60.l odd 4 2
4900.2.e.p 4 420.w even 4 2
7056.2.a.cr 2 1.a even 1 1 trivial
7056.2.a.cr 2 7.b odd 2 1 inner

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7056))$$:

 $$T_{5}^{2} - 2$$ T5^2 - 2 $$T_{11} - 4$$ T11 - 4 $$T_{13}^{2} - 18$$ T13^2 - 18 $$T_{17}^{2} - 2$$ T17^2 - 2 $$T_{23} + 4$$ T23 + 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2} - 2$$
$7$ $$T^{2}$$
$11$ $$(T - 4)^{2}$$
$13$ $$T^{2} - 18$$
$17$ $$T^{2} - 2$$
$19$ $$T^{2} - 8$$
$23$ $$(T + 4)^{2}$$
$29$ $$(T + 8)^{2}$$
$31$ $$T^{2}$$
$37$ $$(T + 8)^{2}$$
$41$ $$T^{2} - 50$$
$43$ $$(T - 4)^{2}$$
$47$ $$T^{2} - 32$$
$53$ $$(T + 10)^{2}$$
$59$ $$T^{2} - 200$$
$61$ $$T^{2} - 50$$
$67$ $$T^{2}$$
$71$ $$T^{2}$$
$73$ $$T^{2} - 50$$
$79$ $$(T + 8)^{2}$$
$83$ $$T^{2} - 200$$
$89$ $$T^{2} - 50$$
$97$ $$T^{2} - 2$$
show more
show less