# Properties

 Label 7056.2.a.cq Level 7056 Weight 2 Character orbit 7056.a Self dual yes Analytic conductor 56.342 Analytic rank 0 Dimension 2 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$7056 = 2^{4} \cdot 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7056.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$56.3424436662$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{2})$$ Defining polynomial: $$x^{2} - 2$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 3528) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = 2\sqrt{2}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 2 \beta q^{5} +O(q^{10})$$ $$q + 2 \beta q^{5} + 2 q^{11} -4 \beta q^{13} + 2 \beta q^{17} + 4 \beta q^{19} + 6 q^{23} + 3 q^{25} + 4 q^{29} -4 \beta q^{31} -2 q^{37} -2 \beta q^{41} + 4 q^{43} + 8 \beta q^{47} -12 q^{53} + 4 \beta q^{55} + 8 \beta q^{59} -4 \beta q^{61} -16 q^{65} + 12 q^{67} -6 q^{71} -8 q^{79} -8 \beta q^{83} + 8 q^{85} + 6 \beta q^{89} + 16 q^{95} + 8 \beta q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + O(q^{10})$$ $$2q + 4q^{11} + 12q^{23} + 6q^{25} + 8q^{29} - 4q^{37} + 8q^{43} - 24q^{53} - 32q^{65} + 24q^{67} - 12q^{71} - 16q^{79} + 16q^{85} + 32q^{95} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.41421 1.41421
0 0 0 −2.82843 0 0 0 0 0
1.2 0 0 0 2.82843 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7056.2.a.cq 2
3.b odd 2 1 7056.2.a.ck 2
4.b odd 2 1 3528.2.a.bf 2
7.b odd 2 1 inner 7056.2.a.cq 2
12.b even 2 1 3528.2.a.bi yes 2
21.c even 2 1 7056.2.a.ck 2
28.d even 2 1 3528.2.a.bf 2
28.f even 6 2 3528.2.s.bi 4
28.g odd 6 2 3528.2.s.bi 4
84.h odd 2 1 3528.2.a.bi yes 2
84.j odd 6 2 3528.2.s.bf 4
84.n even 6 2 3528.2.s.bf 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3528.2.a.bf 2 4.b odd 2 1
3528.2.a.bf 2 28.d even 2 1
3528.2.a.bi yes 2 12.b even 2 1
3528.2.a.bi yes 2 84.h odd 2 1
3528.2.s.bf 4 84.j odd 6 2
3528.2.s.bf 4 84.n even 6 2
3528.2.s.bi 4 28.f even 6 2
3528.2.s.bi 4 28.g odd 6 2
7056.2.a.ck 2 3.b odd 2 1
7056.2.a.ck 2 21.c even 2 1
7056.2.a.cq 2 1.a even 1 1 trivial
7056.2.a.cq 2 7.b odd 2 1 inner

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$1$$
$$7$$ $$-1$$

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7056))$$:

 $$T_{5}^{2} - 8$$ $$T_{11} - 2$$ $$T_{13}^{2} - 32$$ $$T_{17}^{2} - 8$$ $$T_{23} - 6$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ $$1 + 2 T^{2} + 25 T^{4}$$
$7$ 1
$11$ $$( 1 - 2 T + 11 T^{2} )^{2}$$
$13$ $$1 - 6 T^{2} + 169 T^{4}$$
$17$ $$1 + 26 T^{2} + 289 T^{4}$$
$19$ $$1 + 6 T^{2} + 361 T^{4}$$
$23$ $$( 1 - 6 T + 23 T^{2} )^{2}$$
$29$ $$( 1 - 4 T + 29 T^{2} )^{2}$$
$31$ $$1 + 30 T^{2} + 961 T^{4}$$
$37$ $$( 1 + 2 T + 37 T^{2} )^{2}$$
$41$ $$1 + 74 T^{2} + 1681 T^{4}$$
$43$ $$( 1 - 4 T + 43 T^{2} )^{2}$$
$47$ $$1 - 34 T^{2} + 2209 T^{4}$$
$53$ $$( 1 + 12 T + 53 T^{2} )^{2}$$
$59$ $$1 - 10 T^{2} + 3481 T^{4}$$
$61$ $$1 + 90 T^{2} + 3721 T^{4}$$
$67$ $$( 1 - 12 T + 67 T^{2} )^{2}$$
$71$ $$( 1 + 6 T + 71 T^{2} )^{2}$$
$73$ $$( 1 + 73 T^{2} )^{2}$$
$79$ $$( 1 + 8 T + 79 T^{2} )^{2}$$
$83$ $$1 + 38 T^{2} + 6889 T^{4}$$
$89$ $$1 + 106 T^{2} + 7921 T^{4}$$
$97$ $$1 + 66 T^{2} + 9409 T^{4}$$