# Properties

 Label 7056.2.a.cm Level $7056$ Weight $2$ Character orbit 7056.a Self dual yes Analytic conductor $56.342$ Analytic rank $1$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$7056 = 2^{4} \cdot 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7056.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$56.3424436662$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{3})$$ Defining polynomial: $$x^{2} - 3$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 63) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = 2\sqrt{3}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta q^{5} +O(q^{10})$$ $$q + \beta q^{5} -\beta q^{11} -2 q^{13} -\beta q^{17} -4 q^{19} + \beta q^{23} + 7 q^{25} -4 q^{31} + 2 q^{37} -3 \beta q^{41} + 4 q^{43} + 2 \beta q^{47} -2 \beta q^{53} -12 q^{55} -2 \beta q^{59} + 10 q^{61} -2 \beta q^{65} + 4 q^{67} + 3 \beta q^{71} -14 q^{73} -8 q^{79} -12 q^{85} + \beta q^{89} -4 \beta q^{95} -14 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + O(q^{10})$$ $$2q - 4q^{13} - 8q^{19} + 14q^{25} - 8q^{31} + 4q^{37} + 8q^{43} - 24q^{55} + 20q^{61} + 8q^{67} - 28q^{73} - 16q^{79} - 24q^{85} - 28q^{97} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.73205 1.73205
0 0 0 −3.46410 0 0 0 0 0
1.2 0 0 0 3.46410 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$1$$
$$7$$ $$-1$$

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7056.2.a.cm 2
3.b odd 2 1 inner 7056.2.a.cm 2
4.b odd 2 1 441.2.a.g 2
7.b odd 2 1 1008.2.a.n 2
12.b even 2 1 441.2.a.g 2
21.c even 2 1 1008.2.a.n 2
28.d even 2 1 63.2.a.b 2
28.f even 6 2 441.2.e.j 4
28.g odd 6 2 441.2.e.i 4
56.e even 2 1 4032.2.a.bt 2
56.h odd 2 1 4032.2.a.bq 2
84.h odd 2 1 63.2.a.b 2
84.j odd 6 2 441.2.e.j 4
84.n even 6 2 441.2.e.i 4
140.c even 2 1 1575.2.a.q 2
140.j odd 4 2 1575.2.d.i 4
168.e odd 2 1 4032.2.a.bt 2
168.i even 2 1 4032.2.a.bq 2
252.s odd 6 2 567.2.f.j 4
252.bi even 6 2 567.2.f.j 4
308.g odd 2 1 7623.2.a.bi 2
420.o odd 2 1 1575.2.a.q 2
420.w even 4 2 1575.2.d.i 4
924.n even 2 1 7623.2.a.bi 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.a.b 2 28.d even 2 1
63.2.a.b 2 84.h odd 2 1
441.2.a.g 2 4.b odd 2 1
441.2.a.g 2 12.b even 2 1
441.2.e.i 4 28.g odd 6 2
441.2.e.i 4 84.n even 6 2
441.2.e.j 4 28.f even 6 2
441.2.e.j 4 84.j odd 6 2
567.2.f.j 4 252.s odd 6 2
567.2.f.j 4 252.bi even 6 2
1008.2.a.n 2 7.b odd 2 1
1008.2.a.n 2 21.c even 2 1
1575.2.a.q 2 140.c even 2 1
1575.2.a.q 2 420.o odd 2 1
1575.2.d.i 4 140.j odd 4 2
1575.2.d.i 4 420.w even 4 2
4032.2.a.bq 2 56.h odd 2 1
4032.2.a.bq 2 168.i even 2 1
4032.2.a.bt 2 56.e even 2 1
4032.2.a.bt 2 168.e odd 2 1
7056.2.a.cm 2 1.a even 1 1 trivial
7056.2.a.cm 2 3.b odd 2 1 inner
7623.2.a.bi 2 308.g odd 2 1
7623.2.a.bi 2 924.n even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7056))$$:

 $$T_{5}^{2} - 12$$ $$T_{11}^{2} - 12$$ $$T_{13} + 2$$ $$T_{17}^{2} - 12$$ $$T_{23}^{2} - 12$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$-12 + T^{2}$$
$7$ $$T^{2}$$
$11$ $$-12 + T^{2}$$
$13$ $$( 2 + T )^{2}$$
$17$ $$-12 + T^{2}$$
$19$ $$( 4 + T )^{2}$$
$23$ $$-12 + T^{2}$$
$29$ $$T^{2}$$
$31$ $$( 4 + T )^{2}$$
$37$ $$( -2 + T )^{2}$$
$41$ $$-108 + T^{2}$$
$43$ $$( -4 + T )^{2}$$
$47$ $$-48 + T^{2}$$
$53$ $$-48 + T^{2}$$
$59$ $$-48 + T^{2}$$
$61$ $$( -10 + T )^{2}$$
$67$ $$( -4 + T )^{2}$$
$71$ $$-108 + T^{2}$$
$73$ $$( 14 + T )^{2}$$
$79$ $$( 8 + T )^{2}$$
$83$ $$T^{2}$$
$89$ $$-12 + T^{2}$$
$97$ $$( 14 + T )^{2}$$