Properties

Label 7056.2.a.cf.1.1
Level $7056$
Weight $2$
Character 7056.1
Self dual yes
Analytic conductor $56.342$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7056.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(56.3424436662\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 147)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 7056.1

$q$-expansion

\(f(q)\) \(=\) \(q-3.41421 q^{5} +O(q^{10})\) \(q-3.41421 q^{5} -2.00000 q^{11} +2.58579 q^{13} +2.24264 q^{17} +2.82843 q^{19} -7.65685 q^{23} +6.65685 q^{25} +6.82843 q^{29} +1.17157 q^{31} -4.00000 q^{37} -6.24264 q^{41} -5.65685 q^{43} -2.82843 q^{47} +2.00000 q^{53} +6.82843 q^{55} -1.17157 q^{59} +12.2426 q^{61} -8.82843 q^{65} +5.65685 q^{67} +9.31371 q^{71} +13.8995 q^{73} -13.6569 q^{79} +7.31371 q^{83} -7.65685 q^{85} +14.2426 q^{89} -9.65685 q^{95} +2.58579 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4q^{5} + O(q^{10}) \) \( 2q - 4q^{5} - 4q^{11} + 8q^{13} - 4q^{17} - 4q^{23} + 2q^{25} + 8q^{29} + 8q^{31} - 8q^{37} - 4q^{41} + 4q^{53} + 8q^{55} - 8q^{59} + 16q^{61} - 12q^{65} - 4q^{71} + 8q^{73} - 16q^{79} - 8q^{83} - 4q^{85} + 20q^{89} - 8q^{95} + 8q^{97} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.41421 −1.52688 −0.763441 0.645877i \(-0.776492\pi\)
−0.763441 + 0.645877i \(0.776492\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 2.58579 0.717168 0.358584 0.933497i \(-0.383260\pi\)
0.358584 + 0.933497i \(0.383260\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.24264 0.543920 0.271960 0.962309i \(-0.412328\pi\)
0.271960 + 0.962309i \(0.412328\pi\)
\(18\) 0 0
\(19\) 2.82843 0.648886 0.324443 0.945905i \(-0.394823\pi\)
0.324443 + 0.945905i \(0.394823\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.65685 −1.59656 −0.798282 0.602284i \(-0.794258\pi\)
−0.798282 + 0.602284i \(0.794258\pi\)
\(24\) 0 0
\(25\) 6.65685 1.33137
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.82843 1.26801 0.634004 0.773330i \(-0.281410\pi\)
0.634004 + 0.773330i \(0.281410\pi\)
\(30\) 0 0
\(31\) 1.17157 0.210421 0.105210 0.994450i \(-0.466448\pi\)
0.105210 + 0.994450i \(0.466448\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.24264 −0.974937 −0.487468 0.873141i \(-0.662080\pi\)
−0.487468 + 0.873141i \(0.662080\pi\)
\(42\) 0 0
\(43\) −5.65685 −0.862662 −0.431331 0.902194i \(-0.641956\pi\)
−0.431331 + 0.902194i \(0.641956\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.82843 −0.412568 −0.206284 0.978492i \(-0.566137\pi\)
−0.206284 + 0.978492i \(0.566137\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) 6.82843 0.920745
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.17157 −0.152526 −0.0762629 0.997088i \(-0.524299\pi\)
−0.0762629 + 0.997088i \(0.524299\pi\)
\(60\) 0 0
\(61\) 12.2426 1.56751 0.783755 0.621070i \(-0.213302\pi\)
0.783755 + 0.621070i \(0.213302\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.82843 −1.09503
\(66\) 0 0
\(67\) 5.65685 0.691095 0.345547 0.938401i \(-0.387693\pi\)
0.345547 + 0.938401i \(0.387693\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.31371 1.10533 0.552667 0.833402i \(-0.313610\pi\)
0.552667 + 0.833402i \(0.313610\pi\)
\(72\) 0 0
\(73\) 13.8995 1.62681 0.813406 0.581696i \(-0.197611\pi\)
0.813406 + 0.581696i \(0.197611\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −13.6569 −1.53652 −0.768258 0.640140i \(-0.778876\pi\)
−0.768258 + 0.640140i \(0.778876\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.31371 0.802784 0.401392 0.915906i \(-0.368527\pi\)
0.401392 + 0.915906i \(0.368527\pi\)
\(84\) 0 0
\(85\) −7.65685 −0.830502
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.2426 1.50972 0.754858 0.655888i \(-0.227706\pi\)
0.754858 + 0.655888i \(0.227706\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −9.65685 −0.990772
\(96\) 0 0
\(97\) 2.58579 0.262547 0.131273 0.991346i \(-0.458093\pi\)
0.131273 + 0.991346i \(0.458093\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.92893 −0.291440 −0.145720 0.989326i \(-0.546550\pi\)
−0.145720 + 0.989326i \(0.546550\pi\)
\(102\) 0 0
\(103\) −4.48528 −0.441948 −0.220974 0.975280i \(-0.570924\pi\)
−0.220974 + 0.975280i \(0.570924\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.343146 −0.0331732 −0.0165866 0.999862i \(-0.505280\pi\)
−0.0165866 + 0.999862i \(0.505280\pi\)
\(108\) 0 0
\(109\) −5.65685 −0.541828 −0.270914 0.962604i \(-0.587326\pi\)
−0.270914 + 0.962604i \(0.587326\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.31371 0.499872 0.249936 0.968262i \(-0.419590\pi\)
0.249936 + 0.968262i \(0.419590\pi\)
\(114\) 0 0
\(115\) 26.1421 2.43777
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −5.65685 −0.505964
\(126\) 0 0
\(127\) 1.65685 0.147022 0.0735110 0.997294i \(-0.476580\pi\)
0.0735110 + 0.997294i \(0.476580\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −15.3137 −1.33796 −0.668982 0.743278i \(-0.733270\pi\)
−0.668982 + 0.743278i \(0.733270\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.1421 −1.20824 −0.604122 0.796892i \(-0.706476\pi\)
−0.604122 + 0.796892i \(0.706476\pi\)
\(138\) 0 0
\(139\) 17.6569 1.49763 0.748817 0.662776i \(-0.230622\pi\)
0.748817 + 0.662776i \(0.230622\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.17157 −0.432469
\(144\) 0 0
\(145\) −23.3137 −1.93610
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −17.3137 −1.41839 −0.709197 0.705010i \(-0.750942\pi\)
−0.709197 + 0.705010i \(0.750942\pi\)
\(150\) 0 0
\(151\) −12.0000 −0.976546 −0.488273 0.872691i \(-0.662373\pi\)
−0.488273 + 0.872691i \(0.662373\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 11.7574 0.938339 0.469170 0.883108i \(-0.344553\pi\)
0.469170 + 0.883108i \(0.344553\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 11.3137 0.886158 0.443079 0.896483i \(-0.353886\pi\)
0.443079 + 0.896483i \(0.353886\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −19.7990 −1.53209 −0.766046 0.642786i \(-0.777779\pi\)
−0.766046 + 0.642786i \(0.777779\pi\)
\(168\) 0 0
\(169\) −6.31371 −0.485670
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −21.0711 −1.60200 −0.801002 0.598662i \(-0.795699\pi\)
−0.801002 + 0.598662i \(0.795699\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −19.6569 −1.46922 −0.734611 0.678488i \(-0.762635\pi\)
−0.734611 + 0.678488i \(0.762635\pi\)
\(180\) 0 0
\(181\) −2.58579 −0.192200 −0.0961000 0.995372i \(-0.530637\pi\)
−0.0961000 + 0.995372i \(0.530637\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 13.6569 1.00407
\(186\) 0 0
\(187\) −4.48528 −0.327996
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) 5.31371 0.382489 0.191245 0.981542i \(-0.438748\pi\)
0.191245 + 0.981542i \(0.438748\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) −21.6569 −1.53521 −0.767607 0.640921i \(-0.778553\pi\)
−0.767607 + 0.640921i \(0.778553\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 21.3137 1.48861
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.65685 −0.391293
\(210\) 0 0
\(211\) −12.9706 −0.892930 −0.446465 0.894801i \(-0.647317\pi\)
−0.446465 + 0.894801i \(0.647317\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 19.3137 1.31718
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.79899 0.390082
\(222\) 0 0
\(223\) −24.9706 −1.67215 −0.836076 0.548613i \(-0.815156\pi\)
−0.836076 + 0.548613i \(0.815156\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 23.7990 1.57959 0.789797 0.613368i \(-0.210186\pi\)
0.789797 + 0.613368i \(0.210186\pi\)
\(228\) 0 0
\(229\) −0.242641 −0.0160341 −0.00801707 0.999968i \(-0.502552\pi\)
−0.00801707 + 0.999968i \(0.502552\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.14214 0.402385 0.201192 0.979552i \(-0.435518\pi\)
0.201192 + 0.979552i \(0.435518\pi\)
\(234\) 0 0
\(235\) 9.65685 0.629944
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −15.6569 −1.01276 −0.506379 0.862311i \(-0.669016\pi\)
−0.506379 + 0.862311i \(0.669016\pi\)
\(240\) 0 0
\(241\) −16.2426 −1.04628 −0.523140 0.852247i \(-0.675240\pi\)
−0.523140 + 0.852247i \(0.675240\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 7.31371 0.465360
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −12.4853 −0.788064 −0.394032 0.919097i \(-0.628920\pi\)
−0.394032 + 0.919097i \(0.628920\pi\)
\(252\) 0 0
\(253\) 15.3137 0.962765
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −23.2132 −1.44800 −0.724000 0.689800i \(-0.757698\pi\)
−0.724000 + 0.689800i \(0.757698\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.31371 0.327657 0.163829 0.986489i \(-0.447616\pi\)
0.163829 + 0.986489i \(0.447616\pi\)
\(264\) 0 0
\(265\) −6.82843 −0.419467
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.7279 0.897977 0.448989 0.893537i \(-0.351784\pi\)
0.448989 + 0.893537i \(0.351784\pi\)
\(270\) 0 0
\(271\) 10.1421 0.616091 0.308045 0.951372i \(-0.400325\pi\)
0.308045 + 0.951372i \(0.400325\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −13.3137 −0.802847
\(276\) 0 0
\(277\) −9.31371 −0.559607 −0.279803 0.960057i \(-0.590269\pi\)
−0.279803 + 0.960057i \(0.590269\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.485281 −0.0289495 −0.0144747 0.999895i \(-0.504608\pi\)
−0.0144747 + 0.999895i \(0.504608\pi\)
\(282\) 0 0
\(283\) 8.48528 0.504398 0.252199 0.967675i \(-0.418846\pi\)
0.252199 + 0.967675i \(0.418846\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −11.9706 −0.704151
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −16.5858 −0.968952 −0.484476 0.874805i \(-0.660990\pi\)
−0.484476 + 0.874805i \(0.660990\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −19.7990 −1.14501
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −41.7990 −2.39340
\(306\) 0 0
\(307\) −30.1421 −1.72030 −0.860151 0.510039i \(-0.829631\pi\)
−0.860151 + 0.510039i \(0.829631\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.14214 0.348289 0.174144 0.984720i \(-0.444284\pi\)
0.174144 + 0.984720i \(0.444284\pi\)
\(312\) 0 0
\(313\) 1.89949 0.107366 0.0536829 0.998558i \(-0.482904\pi\)
0.0536829 + 0.998558i \(0.482904\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.0000 −0.561656 −0.280828 0.959758i \(-0.590609\pi\)
−0.280828 + 0.959758i \(0.590609\pi\)
\(318\) 0 0
\(319\) −13.6569 −0.764637
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.34315 0.352942
\(324\) 0 0
\(325\) 17.2132 0.954817
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −19.3137 −1.05522
\(336\) 0 0
\(337\) −29.6569 −1.61551 −0.807756 0.589517i \(-0.799318\pi\)
−0.807756 + 0.589517i \(0.799318\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.34315 −0.126888
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 33.3137 1.78837 0.894187 0.447694i \(-0.147755\pi\)
0.894187 + 0.447694i \(0.147755\pi\)
\(348\) 0 0
\(349\) −9.89949 −0.529908 −0.264954 0.964261i \(-0.585357\pi\)
−0.264954 + 0.964261i \(0.585357\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.7279 0.783888 0.391944 0.919989i \(-0.371803\pi\)
0.391944 + 0.919989i \(0.371803\pi\)
\(354\) 0 0
\(355\) −31.7990 −1.68772
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.343146 −0.0181105 −0.00905527 0.999959i \(-0.502882\pi\)
−0.00905527 + 0.999959i \(0.502882\pi\)
\(360\) 0 0
\(361\) −11.0000 −0.578947
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −47.4558 −2.48395
\(366\) 0 0
\(367\) 3.31371 0.172974 0.0864871 0.996253i \(-0.472436\pi\)
0.0864871 + 0.996253i \(0.472436\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −10.6863 −0.553315 −0.276658 0.960969i \(-0.589227\pi\)
−0.276658 + 0.960969i \(0.589227\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 17.6569 0.909374
\(378\) 0 0
\(379\) −8.68629 −0.446185 −0.223092 0.974797i \(-0.571615\pi\)
−0.223092 + 0.974797i \(0.571615\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.3431 −0.937291 −0.468645 0.883386i \(-0.655258\pi\)
−0.468645 + 0.883386i \(0.655258\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.1421 0.919843 0.459921 0.887960i \(-0.347878\pi\)
0.459921 + 0.887960i \(0.347878\pi\)
\(390\) 0 0
\(391\) −17.1716 −0.868404
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 46.6274 2.34608
\(396\) 0 0
\(397\) −2.38478 −0.119688 −0.0598442 0.998208i \(-0.519060\pi\)
−0.0598442 + 0.998208i \(0.519060\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.14214 0.306724 0.153362 0.988170i \(-0.450990\pi\)
0.153362 + 0.988170i \(0.450990\pi\)
\(402\) 0 0
\(403\) 3.02944 0.150907
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) −21.4142 −1.05886 −0.529432 0.848352i \(-0.677595\pi\)
−0.529432 + 0.848352i \(0.677595\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −24.9706 −1.22576
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 33.1716 1.62054 0.810269 0.586059i \(-0.199321\pi\)
0.810269 + 0.586059i \(0.199321\pi\)
\(420\) 0 0
\(421\) 16.6274 0.810371 0.405185 0.914235i \(-0.367207\pi\)
0.405185 + 0.914235i \(0.367207\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 14.9289 0.724160
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −26.9706 −1.29913 −0.649563 0.760308i \(-0.725048\pi\)
−0.649563 + 0.760308i \(0.725048\pi\)
\(432\) 0 0
\(433\) −20.2426 −0.972799 −0.486400 0.873736i \(-0.661690\pi\)
−0.486400 + 0.873736i \(0.661690\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −21.6569 −1.03599
\(438\) 0 0
\(439\) −12.6863 −0.605484 −0.302742 0.953073i \(-0.597902\pi\)
−0.302742 + 0.953073i \(0.597902\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 34.9706 1.66150 0.830751 0.556645i \(-0.187911\pi\)
0.830751 + 0.556645i \(0.187911\pi\)
\(444\) 0 0
\(445\) −48.6274 −2.30516
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.31371 0.250769 0.125385 0.992108i \(-0.459983\pi\)
0.125385 + 0.992108i \(0.459983\pi\)
\(450\) 0 0
\(451\) 12.4853 0.587909
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16.5858 0.772477 0.386239 0.922399i \(-0.373774\pi\)
0.386239 + 0.922399i \(0.373774\pi\)
\(462\) 0 0
\(463\) 26.6274 1.23748 0.618741 0.785595i \(-0.287643\pi\)
0.618741 + 0.785595i \(0.287643\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.201010 0.00930164 0.00465082 0.999989i \(-0.498520\pi\)
0.00465082 + 0.999989i \(0.498520\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.3137 0.520205
\(474\) 0 0
\(475\) 18.8284 0.863907
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.85786 0.0848880 0.0424440 0.999099i \(-0.486486\pi\)
0.0424440 + 0.999099i \(0.486486\pi\)
\(480\) 0 0
\(481\) −10.3431 −0.471607
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.82843 −0.400878
\(486\) 0 0
\(487\) −26.6274 −1.20660 −0.603302 0.797513i \(-0.706149\pi\)
−0.603302 + 0.797513i \(0.706149\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5.02944 0.226975 0.113488 0.993539i \(-0.463798\pi\)
0.113488 + 0.993539i \(0.463798\pi\)
\(492\) 0 0
\(493\) 15.3137 0.689695
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −3.31371 −0.148342 −0.0741710 0.997246i \(-0.523631\pi\)
−0.0741710 + 0.997246i \(0.523631\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5.55635 −0.246281 −0.123140 0.992389i \(-0.539297\pi\)
−0.123140 + 0.992389i \(0.539297\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.3137 0.674803
\(516\) 0 0
\(517\) 5.65685 0.248788
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 35.4142 1.55152 0.775762 0.631025i \(-0.217366\pi\)
0.775762 + 0.631025i \(0.217366\pi\)
\(522\) 0 0
\(523\) 25.6569 1.12190 0.560948 0.827851i \(-0.310437\pi\)
0.560948 + 0.827851i \(0.310437\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.62742 0.114452
\(528\) 0 0
\(529\) 35.6274 1.54902
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −16.1421 −0.699194
\(534\) 0 0
\(535\) 1.17157 0.0506515
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17.3137 0.744374 0.372187 0.928158i \(-0.378608\pi\)
0.372187 + 0.928158i \(0.378608\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 19.3137 0.827308
\(546\) 0 0
\(547\) 36.9706 1.58075 0.790374 0.612625i \(-0.209886\pi\)
0.790374 + 0.612625i \(0.209886\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 19.3137 0.822792
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −26.0000 −1.10166 −0.550828 0.834619i \(-0.685688\pi\)
−0.550828 + 0.834619i \(0.685688\pi\)
\(558\) 0 0
\(559\) −14.6274 −0.618674
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.17157 −0.0493759 −0.0246880 0.999695i \(-0.507859\pi\)
−0.0246880 + 0.999695i \(0.507859\pi\)
\(564\) 0 0
\(565\) −18.1421 −0.763245
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16.4853 0.691099 0.345549 0.938401i \(-0.387693\pi\)
0.345549 + 0.938401i \(0.387693\pi\)
\(570\) 0 0
\(571\) −22.3431 −0.935032 −0.467516 0.883985i \(-0.654851\pi\)
−0.467516 + 0.883985i \(0.654851\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −50.9706 −2.12562
\(576\) 0 0
\(577\) −33.8995 −1.41125 −0.705627 0.708583i \(-0.749335\pi\)
−0.705627 + 0.708583i \(0.749335\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −4.00000 −0.165663
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −22.8284 −0.942230 −0.471115 0.882072i \(-0.656148\pi\)
−0.471115 + 0.882072i \(0.656148\pi\)
\(588\) 0 0
\(589\) 3.31371 0.136539
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.92893 0.284537 0.142269 0.989828i \(-0.454560\pi\)
0.142269 + 0.989828i \(0.454560\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.00000 −0.0817178 −0.0408589 0.999165i \(-0.513009\pi\)
−0.0408589 + 0.999165i \(0.513009\pi\)
\(600\) 0 0
\(601\) −15.0711 −0.614762 −0.307381 0.951587i \(-0.599453\pi\)
−0.307381 + 0.951587i \(0.599453\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 23.8995 0.971653
\(606\) 0 0
\(607\) 18.3431 0.744525 0.372263 0.928127i \(-0.378582\pi\)
0.372263 + 0.928127i \(0.378582\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7.31371 −0.295881
\(612\) 0 0
\(613\) 4.68629 0.189278 0.0946388 0.995512i \(-0.469830\pi\)
0.0946388 + 0.995512i \(0.469830\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.4853 0.985740 0.492870 0.870103i \(-0.335948\pi\)
0.492870 + 0.870103i \(0.335948\pi\)
\(618\) 0 0
\(619\) −28.9706 −1.16443 −0.582213 0.813037i \(-0.697813\pi\)
−0.582213 + 0.813037i \(0.697813\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −13.9706 −0.558823
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −8.97056 −0.357680
\(630\) 0 0
\(631\) −23.3137 −0.928104 −0.464052 0.885808i \(-0.653605\pi\)
−0.464052 + 0.885808i \(0.653605\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5.65685 −0.224485
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 10.8284 0.427697 0.213849 0.976867i \(-0.431400\pi\)
0.213849 + 0.976867i \(0.431400\pi\)
\(642\) 0 0
\(643\) 34.4264 1.35764 0.678822 0.734302i \(-0.262491\pi\)
0.678822 + 0.734302i \(0.262491\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26.8284 1.05473 0.527367 0.849638i \(-0.323179\pi\)
0.527367 + 0.849638i \(0.323179\pi\)
\(648\) 0 0
\(649\) 2.34315 0.0919765
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −36.4853 −1.42778 −0.713890 0.700258i \(-0.753068\pi\)
−0.713890 + 0.700258i \(0.753068\pi\)
\(654\) 0 0
\(655\) 52.2843 2.04292
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.31371 0.362811 0.181405 0.983408i \(-0.441935\pi\)
0.181405 + 0.983408i \(0.441935\pi\)
\(660\) 0 0
\(661\) −23.5563 −0.916236 −0.458118 0.888891i \(-0.651476\pi\)
−0.458118 + 0.888891i \(0.651476\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −52.2843 −2.02446
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −24.4853 −0.945244
\(672\) 0 0
\(673\) 23.3137 0.898677 0.449339 0.893361i \(-0.351660\pi\)
0.449339 + 0.893361i \(0.351660\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −31.4142 −1.20735 −0.603673 0.797232i \(-0.706297\pi\)
−0.603673 + 0.797232i \(0.706297\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −19.6569 −0.752149 −0.376074 0.926590i \(-0.622726\pi\)
−0.376074 + 0.926590i \(0.622726\pi\)
\(684\) 0 0
\(685\) 48.2843 1.84485
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5.17157 0.197021
\(690\) 0 0
\(691\) 0.686292 0.0261078 0.0130539 0.999915i \(-0.495845\pi\)
0.0130539 + 0.999915i \(0.495845\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −60.2843 −2.28671
\(696\) 0 0
\(697\) −14.0000 −0.530288
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 17.1716 0.648561 0.324281 0.945961i \(-0.394878\pi\)
0.324281 + 0.945961i \(0.394878\pi\)
\(702\) 0 0
\(703\) −11.3137 −0.426705
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −36.2843 −1.36268 −0.681342 0.731965i \(-0.738603\pi\)
−0.681342 + 0.731965i \(0.738603\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.97056 −0.335950
\(714\) 0 0
\(715\) 17.6569 0.660329
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 41.9411 1.56414 0.782070 0.623191i \(-0.214164\pi\)
0.782070 + 0.623191i \(0.214164\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 45.4558 1.68819
\(726\) 0 0
\(727\) −12.4853 −0.463053 −0.231527 0.972829i \(-0.574372\pi\)
−0.231527 + 0.972829i \(0.574372\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.6863 −0.469219
\(732\) 0 0
\(733\) 49.6985 1.83566 0.917828 0.396979i \(-0.129941\pi\)
0.917828 + 0.396979i \(0.129941\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.3137 −0.416746
\(738\) 0 0
\(739\) −4.68629 −0.172388 −0.0861940 0.996278i \(-0.527470\pi\)
−0.0861940 + 0.996278i \(0.527470\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −50.9706 −1.86993 −0.934964 0.354742i \(-0.884569\pi\)
−0.934964 + 0.354742i \(0.884569\pi\)
\(744\) 0 0
\(745\) 59.1127 2.16572
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −13.6569 −0.498346 −0.249173 0.968459i \(-0.580159\pi\)
−0.249173 + 0.968459i \(0.580159\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 40.9706 1.49107
\(756\) 0 0
\(757\) 26.3431 0.957458 0.478729 0.877963i \(-0.341098\pi\)
0.478729 + 0.877963i \(0.341098\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.5269 0.671600 0.335800 0.941933i \(-0.390993\pi\)
0.335800 + 0.941933i \(0.390993\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.02944 −0.109387
\(768\) 0 0
\(769\) 29.6985 1.07095 0.535477 0.844550i \(-0.320132\pi\)
0.535477 + 0.844550i \(0.320132\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9.55635 0.343718 0.171859 0.985122i \(-0.445023\pi\)
0.171859 + 0.985122i \(0.445023\pi\)
\(774\) 0 0
\(775\) 7.79899 0.280148
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −17.6569 −0.632622
\(780\) 0 0
\(781\) −18.6274 −0.666541
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −40.1421 −1.43273
\(786\) 0 0
\(787\) −24.6863 −0.879971 −0.439986 0.898005i \(-0.645016\pi\)
−0.439986 + 0.898005i \(0.645016\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 31.6569 1.12417
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.38478 0.297004 0.148502 0.988912i \(-0.452555\pi\)
0.148502 + 0.988912i \(0.452555\pi\)
\(798\) 0 0
\(799\) −6.34315 −0.224404
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −27.7990 −0.981005
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −19.9411 −0.701093 −0.350546 0.936545i \(-0.614004\pi\)
−0.350546 + 0.936545i \(0.614004\pi\)
\(810\) 0 0
\(811\) 17.6569 0.620016 0.310008 0.950734i \(-0.399668\pi\)
0.310008 + 0.950734i \(0.399668\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −38.6274 −1.35306
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.6863 0.372954 0.186477 0.982459i \(-0.440293\pi\)
0.186477 + 0.982459i \(0.440293\pi\)
\(822\) 0 0
\(823\) −8.97056 −0.312694 −0.156347 0.987702i \(-0.549972\pi\)
−0.156347 + 0.987702i \(0.549972\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 47.6569 1.65719 0.828596 0.559848i \(-0.189140\pi\)
0.828596 + 0.559848i \(0.189140\pi\)
\(828\) 0 0
\(829\) −0.727922 −0.0252818 −0.0126409 0.999920i \(-0.504024\pi\)
−0.0126409 + 0.999920i \(0.504024\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 67.5980 2.33932
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 50.8284 1.75479 0.877396 0.479767i \(-0.159279\pi\)
0.877396 + 0.479767i \(0.159279\pi\)
\(840\) 0 0
\(841\) 17.6274 0.607842
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 21.5563 0.741561
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 30.6274 1.04989
\(852\) 0 0
\(853\) −49.4975 −1.69476 −0.847381 0.530986i \(-0.821822\pi\)
−0.847381 + 0.530986i \(0.821822\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −15.4142 −0.526540 −0.263270 0.964722i \(-0.584801\pi\)
−0.263270 + 0.964722i \(0.584801\pi\)
\(858\) 0 0
\(859\) −57.4558 −1.96037 −0.980184 0.198089i \(-0.936527\pi\)
−0.980184 + 0.198089i \(0.936527\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 17.3137 0.589365 0.294683 0.955595i \(-0.404786\pi\)
0.294683 + 0.955595i \(0.404786\pi\)
\(864\) 0 0
\(865\) 71.9411 2.44607
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 27.3137 0.926554
\(870\) 0 0
\(871\) 14.6274 0.495631
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −11.3137 −0.382037 −0.191018 0.981586i \(-0.561179\pi\)
−0.191018 + 0.981586i \(0.561179\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −21.7574 −0.733024 −0.366512 0.930413i \(-0.619448\pi\)
−0.366512 + 0.930413i \(0.619448\pi\)
\(882\) 0 0
\(883\) 4.68629 0.157706 0.0788531 0.996886i \(-0.474874\pi\)
0.0788531 + 0.996886i \(0.474874\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.82843 −0.0949693 −0.0474846 0.998872i \(-0.515121\pi\)
−0.0474846 + 0.998872i \(0.515121\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −8.00000 −0.267710
\(894\) 0 0
\(895\) 67.1127 2.24333
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) 4.48528 0.149426
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8.82843 0.293467
\(906\) 0 0
\(907\) 16.0000 0.531271 0.265636 0.964073i \(-0.414418\pi\)
0.265636 + 0.964073i \(0.414418\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.02944 −0.0341068 −0.0170534 0.999855i \(-0.505429\pi\)
−0.0170534 + 0.999855i \(0.505429\pi\)
\(912\) 0 0
\(913\) −14.6274 −0.484097
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 8.28427 0.273273 0.136636 0.990621i \(-0.456371\pi\)
0.136636 + 0.990621i \(0.456371\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 24.0833 0.792710
\(924\) 0 0
\(925\) −26.6274 −0.875504
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 39.2132 1.28654 0.643272 0.765638i \(-0.277577\pi\)
0.643272 + 0.765638i \(0.277577\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 15.3137 0.500812
\(936\) 0 0
\(937\) 30.5858 0.999194 0.499597 0.866258i \(-0.333481\pi\)
0.499597 + 0.866258i \(0.333481\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −35.2132 −1.14792 −0.573959 0.818884i \(-0.694593\pi\)
−0.573959 + 0.818884i \(0.694593\pi\)
\(942\) 0 0
\(943\) 47.7990 1.55655
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.6863 0.997170 0.498585 0.866841i \(-0.333853\pi\)
0.498585 + 0.866841i \(0.333853\pi\)
\(948\) 0 0
\(949\) 35.9411 1.16670
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −2.00000 −0.0647864 −0.0323932 0.999475i \(-0.510313\pi\)
−0.0323932 + 0.999475i \(0.510313\pi\)
\(954\) 0 0
\(955\) 61.4558 1.98866
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29.6274 −0.955723
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −18.1421 −0.584016
\(966\) 0 0
\(967\) −33.6569 −1.08233 −0.541166 0.840916i \(-0.682017\pi\)
−0.541166 + 0.840916i \(0.682017\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −50.6274 −1.62471 −0.812356 0.583162i \(-0.801815\pi\)
−0.812356 + 0.583162i \(0.801815\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21.1716 0.677339 0.338669 0.940905i \(-0.390023\pi\)
0.338669 + 0.940905i \(0.390023\pi\)
\(978\) 0 0
\(979\) −28.4853 −0.910394
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −53.2548 −1.69857 −0.849283 0.527938i \(-0.822965\pi\)
−0.849283 + 0.527938i \(0.822965\pi\)
\(984\) 0 0
\(985\) 6.82843 0.217572
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 43.3137 1.37730
\(990\) 0 0
\(991\) 12.9706 0.412024 0.206012 0.978550i \(-0.433951\pi\)
0.206012 + 0.978550i \(0.433951\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 73.9411 2.34409
\(996\) 0 0
\(997\) 26.3848 0.835614 0.417807 0.908536i \(-0.362799\pi\)
0.417807 + 0.908536i \(0.362799\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7056.2.a.cf.1.1 2
3.2 odd 2 2352.2.a.bc.1.2 2
4.3 odd 2 441.2.a.i.1.1 2
7.6 odd 2 7056.2.a.cv.1.2 2
12.11 even 2 147.2.a.e.1.2 yes 2
21.2 odd 6 2352.2.q.bd.1537.1 4
21.5 even 6 2352.2.q.bb.1537.2 4
21.11 odd 6 2352.2.q.bd.961.1 4
21.17 even 6 2352.2.q.bb.961.2 4
21.20 even 2 2352.2.a.be.1.1 2
24.5 odd 2 9408.2.a.dt.1.1 2
24.11 even 2 9408.2.a.di.1.1 2
28.3 even 6 441.2.e.f.226.2 4
28.11 odd 6 441.2.e.g.226.2 4
28.19 even 6 441.2.e.f.361.2 4
28.23 odd 6 441.2.e.g.361.2 4
28.27 even 2 441.2.a.j.1.1 2
60.59 even 2 3675.2.a.bd.1.1 2
84.11 even 6 147.2.e.d.79.1 4
84.23 even 6 147.2.e.d.67.1 4
84.47 odd 6 147.2.e.e.67.1 4
84.59 odd 6 147.2.e.e.79.1 4
84.83 odd 2 147.2.a.d.1.2 2
168.83 odd 2 9408.2.a.ef.1.2 2
168.125 even 2 9408.2.a.dq.1.2 2
420.419 odd 2 3675.2.a.bf.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
147.2.a.d.1.2 2 84.83 odd 2
147.2.a.e.1.2 yes 2 12.11 even 2
147.2.e.d.67.1 4 84.23 even 6
147.2.e.d.79.1 4 84.11 even 6
147.2.e.e.67.1 4 84.47 odd 6
147.2.e.e.79.1 4 84.59 odd 6
441.2.a.i.1.1 2 4.3 odd 2
441.2.a.j.1.1 2 28.27 even 2
441.2.e.f.226.2 4 28.3 even 6
441.2.e.f.361.2 4 28.19 even 6
441.2.e.g.226.2 4 28.11 odd 6
441.2.e.g.361.2 4 28.23 odd 6
2352.2.a.bc.1.2 2 3.2 odd 2
2352.2.a.be.1.1 2 21.20 even 2
2352.2.q.bb.961.2 4 21.17 even 6
2352.2.q.bb.1537.2 4 21.5 even 6
2352.2.q.bd.961.1 4 21.11 odd 6
2352.2.q.bd.1537.1 4 21.2 odd 6
3675.2.a.bd.1.1 2 60.59 even 2
3675.2.a.bf.1.1 2 420.419 odd 2
7056.2.a.cf.1.1 2 1.1 even 1 trivial
7056.2.a.cv.1.2 2 7.6 odd 2
9408.2.a.di.1.1 2 24.11 even 2
9408.2.a.dq.1.2 2 168.125 even 2
9408.2.a.dt.1.1 2 24.5 odd 2
9408.2.a.ef.1.2 2 168.83 odd 2