Properties

Label 704.6.c
Level $704$
Weight $6$
Character orbit 704.c
Rep. character $\chi_{704}(353,\cdot)$
Character field $\Q$
Dimension $100$
Newform subspaces $4$
Sturm bound $576$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 704.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(576\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(704, [\chi])\).

Total New Old
Modular forms 492 100 392
Cusp forms 468 100 368
Eisenstein series 24 0 24

Trace form

\( 100 q - 8100 q^{9} + 2424 q^{17} - 43804 q^{25} + 14856 q^{41} + 298628 q^{49} + 51552 q^{57} + 23040 q^{65} + 180056 q^{73} + 1194180 q^{81} - 172776 q^{89} + 187672 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(704, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
704.6.c.a 704.c 8.b $16$ $112.910$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 704.6.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(4\beta _{8}-\beta _{11})q^{3}+\beta _{3}q^{5}+\beta _{12}q^{7}+\cdots\)
704.6.c.b 704.c 8.b $20$ $112.910$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 704.6.c.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(3\beta _{10}-\beta _{14})q^{3}+\beta _{3}q^{5}-\beta _{11}q^{7}+\cdots\)
704.6.c.c 704.c 8.b $28$ $112.910$ None 704.6.c.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
704.6.c.d 704.c 8.b $36$ $112.910$ None 704.6.c.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{6}^{\mathrm{old}}(704, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(704, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(352, [\chi])\)\(^{\oplus 2}\)