Defining parameters
| Level: | \( N \) | \(=\) | \( 704 = 2^{6} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 704.c (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(576\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(704, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 492 | 100 | 392 |
| Cusp forms | 468 | 100 | 368 |
| Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(704, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 704.6.c.a | $16$ | $112.910$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(4\beta _{8}-\beta _{11})q^{3}+\beta _{3}q^{5}+\beta _{12}q^{7}+\cdots\) |
| 704.6.c.b | $20$ | $112.910$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(3\beta _{10}-\beta _{14})q^{3}+\beta _{3}q^{5}-\beta _{11}q^{7}+\cdots\) |
| 704.6.c.c | $28$ | $112.910$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
| 704.6.c.d | $36$ | $112.910$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{6}^{\mathrm{old}}(704, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(704, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(352, [\chi])\)\(^{\oplus 2}\)