Properties

Label 704.6.a.m.1.2
Level $704$
Weight $6$
Character 704.1
Self dual yes
Analytic conductor $112.910$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,6,Mod(1,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 704.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.910209148\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{31}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 44)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(5.56776\) of defining polynomial
Character \(\chi\) \(=\) 704.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+19.2711 q^{3} -33.5421 q^{5} -67.1868 q^{7} +128.374 q^{9} -121.000 q^{11} -504.645 q^{13} -646.392 q^{15} +984.740 q^{17} +281.597 q^{19} -1294.76 q^{21} -359.008 q^{23} -1999.93 q^{25} -2208.97 q^{27} +5025.14 q^{29} +7013.56 q^{31} -2331.80 q^{33} +2253.59 q^{35} +5243.52 q^{37} -9725.04 q^{39} -13875.3 q^{41} +20156.6 q^{43} -4305.92 q^{45} -6782.51 q^{47} -12292.9 q^{49} +18977.0 q^{51} +27257.7 q^{53} +4058.60 q^{55} +5426.68 q^{57} +19091.6 q^{59} -24047.7 q^{61} -8625.02 q^{63} +16926.9 q^{65} +53262.7 q^{67} -6918.46 q^{69} +44240.8 q^{71} +21914.6 q^{73} -38540.7 q^{75} +8129.61 q^{77} +26364.9 q^{79} -73764.0 q^{81} -19420.6 q^{83} -33030.3 q^{85} +96839.8 q^{87} -31325.2 q^{89} +33905.5 q^{91} +135159. q^{93} -9445.37 q^{95} +134081. q^{97} -15533.2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 22 q^{5} - 268 q^{7} + 524 q^{9} - 242 q^{11} - 1232 q^{13} - 2050 q^{15} - 124 q^{17} + 1944 q^{19} + 3780 q^{21} - 3346 q^{23} - 2040 q^{25} - 6066 q^{27} + 6576 q^{29} - 2498 q^{31} + 726 q^{33}+ \cdots - 63404 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 19.2711 1.23624 0.618119 0.786084i \(-0.287895\pi\)
0.618119 + 0.786084i \(0.287895\pi\)
\(4\) 0 0
\(5\) −33.5421 −0.600020 −0.300010 0.953936i \(-0.596990\pi\)
−0.300010 + 0.953936i \(0.596990\pi\)
\(6\) 0 0
\(7\) −67.1868 −0.518250 −0.259125 0.965844i \(-0.583434\pi\)
−0.259125 + 0.965844i \(0.583434\pi\)
\(8\) 0 0
\(9\) 128.374 0.528287
\(10\) 0 0
\(11\) −121.000 −0.301511
\(12\) 0 0
\(13\) −504.645 −0.828185 −0.414092 0.910235i \(-0.635901\pi\)
−0.414092 + 0.910235i \(0.635901\pi\)
\(14\) 0 0
\(15\) −646.392 −0.741768
\(16\) 0 0
\(17\) 984.740 0.826417 0.413208 0.910636i \(-0.364408\pi\)
0.413208 + 0.910636i \(0.364408\pi\)
\(18\) 0 0
\(19\) 281.597 0.178955 0.0894776 0.995989i \(-0.471480\pi\)
0.0894776 + 0.995989i \(0.471480\pi\)
\(20\) 0 0
\(21\) −1294.76 −0.640680
\(22\) 0 0
\(23\) −359.008 −0.141509 −0.0707545 0.997494i \(-0.522541\pi\)
−0.0707545 + 0.997494i \(0.522541\pi\)
\(24\) 0 0
\(25\) −1999.93 −0.639976
\(26\) 0 0
\(27\) −2208.97 −0.583150
\(28\) 0 0
\(29\) 5025.14 1.10957 0.554783 0.831995i \(-0.312801\pi\)
0.554783 + 0.831995i \(0.312801\pi\)
\(30\) 0 0
\(31\) 7013.56 1.31079 0.655397 0.755285i \(-0.272501\pi\)
0.655397 + 0.755285i \(0.272501\pi\)
\(32\) 0 0
\(33\) −2331.80 −0.372740
\(34\) 0 0
\(35\) 2253.59 0.310960
\(36\) 0 0
\(37\) 5243.52 0.629678 0.314839 0.949145i \(-0.398049\pi\)
0.314839 + 0.949145i \(0.398049\pi\)
\(38\) 0 0
\(39\) −9725.04 −1.02383
\(40\) 0 0
\(41\) −13875.3 −1.28909 −0.644544 0.764567i \(-0.722953\pi\)
−0.644544 + 0.764567i \(0.722953\pi\)
\(42\) 0 0
\(43\) 20156.6 1.66244 0.831219 0.555946i \(-0.187644\pi\)
0.831219 + 0.555946i \(0.187644\pi\)
\(44\) 0 0
\(45\) −4305.92 −0.316982
\(46\) 0 0
\(47\) −6782.51 −0.447864 −0.223932 0.974605i \(-0.571889\pi\)
−0.223932 + 0.974605i \(0.571889\pi\)
\(48\) 0 0
\(49\) −12292.9 −0.731417
\(50\) 0 0
\(51\) 18977.0 1.02165
\(52\) 0 0
\(53\) 27257.7 1.33291 0.666453 0.745547i \(-0.267812\pi\)
0.666453 + 0.745547i \(0.267812\pi\)
\(54\) 0 0
\(55\) 4058.60 0.180913
\(56\) 0 0
\(57\) 5426.68 0.221231
\(58\) 0 0
\(59\) 19091.6 0.714022 0.357011 0.934100i \(-0.383796\pi\)
0.357011 + 0.934100i \(0.383796\pi\)
\(60\) 0 0
\(61\) −24047.7 −0.827463 −0.413731 0.910399i \(-0.635775\pi\)
−0.413731 + 0.910399i \(0.635775\pi\)
\(62\) 0 0
\(63\) −8625.02 −0.273784
\(64\) 0 0
\(65\) 16926.9 0.496927
\(66\) 0 0
\(67\) 53262.7 1.44956 0.724781 0.688980i \(-0.241941\pi\)
0.724781 + 0.688980i \(0.241941\pi\)
\(68\) 0 0
\(69\) −6918.46 −0.174939
\(70\) 0 0
\(71\) 44240.8 1.04154 0.520771 0.853696i \(-0.325645\pi\)
0.520771 + 0.853696i \(0.325645\pi\)
\(72\) 0 0
\(73\) 21914.6 0.481311 0.240656 0.970611i \(-0.422638\pi\)
0.240656 + 0.970611i \(0.422638\pi\)
\(74\) 0 0
\(75\) −38540.7 −0.791164
\(76\) 0 0
\(77\) 8129.61 0.156258
\(78\) 0 0
\(79\) 26364.9 0.475290 0.237645 0.971352i \(-0.423624\pi\)
0.237645 + 0.971352i \(0.423624\pi\)
\(80\) 0 0
\(81\) −73764.0 −1.24920
\(82\) 0 0
\(83\) −19420.6 −0.309434 −0.154717 0.987959i \(-0.549447\pi\)
−0.154717 + 0.987959i \(0.549447\pi\)
\(84\) 0 0
\(85\) −33030.3 −0.495866
\(86\) 0 0
\(87\) 96839.8 1.37169
\(88\) 0 0
\(89\) −31325.2 −0.419197 −0.209599 0.977787i \(-0.567216\pi\)
−0.209599 + 0.977787i \(0.567216\pi\)
\(90\) 0 0
\(91\) 33905.5 0.429207
\(92\) 0 0
\(93\) 135159. 1.62045
\(94\) 0 0
\(95\) −9445.37 −0.107377
\(96\) 0 0
\(97\) 134081. 1.44690 0.723450 0.690377i \(-0.242555\pi\)
0.723450 + 0.690377i \(0.242555\pi\)
\(98\) 0 0
\(99\) −15533.2 −0.159284
\(100\) 0 0
\(101\) 160519. 1.56575 0.782875 0.622179i \(-0.213752\pi\)
0.782875 + 0.622179i \(0.213752\pi\)
\(102\) 0 0
\(103\) −26257.2 −0.243868 −0.121934 0.992538i \(-0.538910\pi\)
−0.121934 + 0.992538i \(0.538910\pi\)
\(104\) 0 0
\(105\) 43429.0 0.384421
\(106\) 0 0
\(107\) 225739. 1.90611 0.953053 0.302803i \(-0.0979226\pi\)
0.953053 + 0.302803i \(0.0979226\pi\)
\(108\) 0 0
\(109\) −65776.2 −0.530277 −0.265138 0.964210i \(-0.585418\pi\)
−0.265138 + 0.964210i \(0.585418\pi\)
\(110\) 0 0
\(111\) 101048. 0.778433
\(112\) 0 0
\(113\) 219652. 1.61823 0.809115 0.587651i \(-0.199947\pi\)
0.809115 + 0.587651i \(0.199947\pi\)
\(114\) 0 0
\(115\) 12041.9 0.0849082
\(116\) 0 0
\(117\) −64783.1 −0.437519
\(118\) 0 0
\(119\) −66161.5 −0.428290
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 0 0
\(123\) −267392. −1.59362
\(124\) 0 0
\(125\) 171901. 0.984018
\(126\) 0 0
\(127\) −220271. −1.21185 −0.605924 0.795522i \(-0.707196\pi\)
−0.605924 + 0.795522i \(0.707196\pi\)
\(128\) 0 0
\(129\) 388438. 2.05517
\(130\) 0 0
\(131\) −279273. −1.42184 −0.710921 0.703272i \(-0.751722\pi\)
−0.710921 + 0.703272i \(0.751722\pi\)
\(132\) 0 0
\(133\) −18919.6 −0.0927435
\(134\) 0 0
\(135\) 74093.6 0.349902
\(136\) 0 0
\(137\) −100347. −0.456774 −0.228387 0.973570i \(-0.573345\pi\)
−0.228387 + 0.973570i \(0.573345\pi\)
\(138\) 0 0
\(139\) 242456. 1.06438 0.532189 0.846625i \(-0.321369\pi\)
0.532189 + 0.846625i \(0.321369\pi\)
\(140\) 0 0
\(141\) −130706. −0.553666
\(142\) 0 0
\(143\) 61062.0 0.249707
\(144\) 0 0
\(145\) −168554. −0.665762
\(146\) 0 0
\(147\) −236898. −0.904206
\(148\) 0 0
\(149\) −8611.73 −0.0317779 −0.0158889 0.999874i \(-0.505058\pi\)
−0.0158889 + 0.999874i \(0.505058\pi\)
\(150\) 0 0
\(151\) −433376. −1.54676 −0.773380 0.633943i \(-0.781435\pi\)
−0.773380 + 0.633943i \(0.781435\pi\)
\(152\) 0 0
\(153\) 126415. 0.436585
\(154\) 0 0
\(155\) −235250. −0.786502
\(156\) 0 0
\(157\) −335878. −1.08751 −0.543754 0.839245i \(-0.682997\pi\)
−0.543754 + 0.839245i \(0.682997\pi\)
\(158\) 0 0
\(159\) 525285. 1.64779
\(160\) 0 0
\(161\) 24120.6 0.0733370
\(162\) 0 0
\(163\) −375816. −1.10792 −0.553958 0.832545i \(-0.686883\pi\)
−0.553958 + 0.832545i \(0.686883\pi\)
\(164\) 0 0
\(165\) 78213.4 0.223651
\(166\) 0 0
\(167\) 379939. 1.05420 0.527100 0.849803i \(-0.323279\pi\)
0.527100 + 0.849803i \(0.323279\pi\)
\(168\) 0 0
\(169\) −116627. −0.314110
\(170\) 0 0
\(171\) 36149.7 0.0945397
\(172\) 0 0
\(173\) 405780. 1.03080 0.515401 0.856949i \(-0.327643\pi\)
0.515401 + 0.856949i \(0.327643\pi\)
\(174\) 0 0
\(175\) 134369. 0.331668
\(176\) 0 0
\(177\) 367915. 0.882702
\(178\) 0 0
\(179\) −131144. −0.305926 −0.152963 0.988232i \(-0.548881\pi\)
−0.152963 + 0.988232i \(0.548881\pi\)
\(180\) 0 0
\(181\) 726589. 1.64851 0.824256 0.566217i \(-0.191594\pi\)
0.824256 + 0.566217i \(0.191594\pi\)
\(182\) 0 0
\(183\) −463424. −1.02294
\(184\) 0 0
\(185\) −175879. −0.377819
\(186\) 0 0
\(187\) −119154. −0.249174
\(188\) 0 0
\(189\) 148414. 0.302218
\(190\) 0 0
\(191\) −524638. −1.04058 −0.520291 0.853989i \(-0.674177\pi\)
−0.520291 + 0.853989i \(0.674177\pi\)
\(192\) 0 0
\(193\) 524652. 1.01386 0.506930 0.861987i \(-0.330780\pi\)
0.506930 + 0.861987i \(0.330780\pi\)
\(194\) 0 0
\(195\) 326198. 0.614321
\(196\) 0 0
\(197\) −485331. −0.890988 −0.445494 0.895285i \(-0.646972\pi\)
−0.445494 + 0.895285i \(0.646972\pi\)
\(198\) 0 0
\(199\) −867363. −1.55263 −0.776315 0.630345i \(-0.782913\pi\)
−0.776315 + 0.630345i \(0.782913\pi\)
\(200\) 0 0
\(201\) 1.02643e6 1.79200
\(202\) 0 0
\(203\) −337623. −0.575033
\(204\) 0 0
\(205\) 465407. 0.773478
\(206\) 0 0
\(207\) −46087.1 −0.0747573
\(208\) 0 0
\(209\) −34073.3 −0.0539570
\(210\) 0 0
\(211\) 752734. 1.16395 0.581976 0.813206i \(-0.302280\pi\)
0.581976 + 0.813206i \(0.302280\pi\)
\(212\) 0 0
\(213\) 852567. 1.28759
\(214\) 0 0
\(215\) −676094. −0.997495
\(216\) 0 0
\(217\) −471219. −0.679319
\(218\) 0 0
\(219\) 422317. 0.595016
\(220\) 0 0
\(221\) −496944. −0.684426
\(222\) 0 0
\(223\) 533342. 0.718197 0.359099 0.933300i \(-0.383084\pi\)
0.359099 + 0.933300i \(0.383084\pi\)
\(224\) 0 0
\(225\) −256738. −0.338091
\(226\) 0 0
\(227\) 792585. 1.02089 0.510447 0.859909i \(-0.329480\pi\)
0.510447 + 0.859909i \(0.329480\pi\)
\(228\) 0 0
\(229\) 1.53926e6 1.93964 0.969822 0.243814i \(-0.0783985\pi\)
0.969822 + 0.243814i \(0.0783985\pi\)
\(230\) 0 0
\(231\) 156666. 0.193172
\(232\) 0 0
\(233\) −397433. −0.479594 −0.239797 0.970823i \(-0.577081\pi\)
−0.239797 + 0.970823i \(0.577081\pi\)
\(234\) 0 0
\(235\) 227500. 0.268727
\(236\) 0 0
\(237\) 508080. 0.587573
\(238\) 0 0
\(239\) −360080. −0.407760 −0.203880 0.978996i \(-0.565355\pi\)
−0.203880 + 0.978996i \(0.565355\pi\)
\(240\) 0 0
\(241\) 915010. 1.01481 0.507403 0.861709i \(-0.330605\pi\)
0.507403 + 0.861709i \(0.330605\pi\)
\(242\) 0 0
\(243\) −884730. −0.961159
\(244\) 0 0
\(245\) 412331. 0.438865
\(246\) 0 0
\(247\) −142107. −0.148208
\(248\) 0 0
\(249\) −374256. −0.382534
\(250\) 0 0
\(251\) 377210. 0.377919 0.188960 0.981985i \(-0.439488\pi\)
0.188960 + 0.981985i \(0.439488\pi\)
\(252\) 0 0
\(253\) 43439.9 0.0426666
\(254\) 0 0
\(255\) −636528. −0.613009
\(256\) 0 0
\(257\) 618791. 0.584402 0.292201 0.956357i \(-0.405612\pi\)
0.292201 + 0.956357i \(0.405612\pi\)
\(258\) 0 0
\(259\) −352296. −0.326331
\(260\) 0 0
\(261\) 645096. 0.586169
\(262\) 0 0
\(263\) 1.48074e6 1.32004 0.660022 0.751246i \(-0.270547\pi\)
0.660022 + 0.751246i \(0.270547\pi\)
\(264\) 0 0
\(265\) −914281. −0.799770
\(266\) 0 0
\(267\) −603669. −0.518228
\(268\) 0 0
\(269\) −620662. −0.522967 −0.261484 0.965208i \(-0.584212\pi\)
−0.261484 + 0.965208i \(0.584212\pi\)
\(270\) 0 0
\(271\) 210316. 0.173960 0.0869798 0.996210i \(-0.472278\pi\)
0.0869798 + 0.996210i \(0.472278\pi\)
\(272\) 0 0
\(273\) 653394. 0.530602
\(274\) 0 0
\(275\) 241991. 0.192960
\(276\) 0 0
\(277\) 1.24683e6 0.976354 0.488177 0.872745i \(-0.337662\pi\)
0.488177 + 0.872745i \(0.337662\pi\)
\(278\) 0 0
\(279\) 900357. 0.692475
\(280\) 0 0
\(281\) 1.50249e6 1.13513 0.567564 0.823329i \(-0.307886\pi\)
0.567564 + 0.823329i \(0.307886\pi\)
\(282\) 0 0
\(283\) −539947. −0.400761 −0.200380 0.979718i \(-0.564218\pi\)
−0.200380 + 0.979718i \(0.564218\pi\)
\(284\) 0 0
\(285\) −182022. −0.132743
\(286\) 0 0
\(287\) 932237. 0.668069
\(288\) 0 0
\(289\) −450145. −0.317035
\(290\) 0 0
\(291\) 2.58389e6 1.78871
\(292\) 0 0
\(293\) 1.43256e6 0.974861 0.487431 0.873162i \(-0.337934\pi\)
0.487431 + 0.873162i \(0.337934\pi\)
\(294\) 0 0
\(295\) −640372. −0.428427
\(296\) 0 0
\(297\) 267285. 0.175826
\(298\) 0 0
\(299\) 181171. 0.117196
\(300\) 0 0
\(301\) −1.35426e6 −0.861558
\(302\) 0 0
\(303\) 3.09337e6 1.93564
\(304\) 0 0
\(305\) 806610. 0.496494
\(306\) 0 0
\(307\) −1.41065e6 −0.854224 −0.427112 0.904199i \(-0.640469\pi\)
−0.427112 + 0.904199i \(0.640469\pi\)
\(308\) 0 0
\(309\) −506003. −0.301479
\(310\) 0 0
\(311\) −875210. −0.513111 −0.256555 0.966530i \(-0.582588\pi\)
−0.256555 + 0.966530i \(0.582588\pi\)
\(312\) 0 0
\(313\) 996513. 0.574939 0.287470 0.957790i \(-0.407186\pi\)
0.287470 + 0.957790i \(0.407186\pi\)
\(314\) 0 0
\(315\) 289301. 0.164276
\(316\) 0 0
\(317\) −2.25829e6 −1.26221 −0.631104 0.775698i \(-0.717398\pi\)
−0.631104 + 0.775698i \(0.717398\pi\)
\(318\) 0 0
\(319\) −608042. −0.334547
\(320\) 0 0
\(321\) 4.35023e6 2.35640
\(322\) 0 0
\(323\) 277300. 0.147892
\(324\) 0 0
\(325\) 1.00925e6 0.530019
\(326\) 0 0
\(327\) −1.26758e6 −0.655549
\(328\) 0 0
\(329\) 455695. 0.232105
\(330\) 0 0
\(331\) 188468. 0.0945512 0.0472756 0.998882i \(-0.484946\pi\)
0.0472756 + 0.998882i \(0.484946\pi\)
\(332\) 0 0
\(333\) 673130. 0.332651
\(334\) 0 0
\(335\) −1.78655e6 −0.869765
\(336\) 0 0
\(337\) −1.43240e6 −0.687050 −0.343525 0.939143i \(-0.611621\pi\)
−0.343525 + 0.939143i \(0.611621\pi\)
\(338\) 0 0
\(339\) 4.23294e6 2.00052
\(340\) 0 0
\(341\) −848641. −0.395219
\(342\) 0 0
\(343\) 1.95513e6 0.897306
\(344\) 0 0
\(345\) 232060. 0.104967
\(346\) 0 0
\(347\) −2.64009e6 −1.17705 −0.588526 0.808478i \(-0.700292\pi\)
−0.588526 + 0.808478i \(0.700292\pi\)
\(348\) 0 0
\(349\) 3.38705e6 1.48853 0.744267 0.667883i \(-0.232799\pi\)
0.744267 + 0.667883i \(0.232799\pi\)
\(350\) 0 0
\(351\) 1.11475e6 0.482956
\(352\) 0 0
\(353\) −54279.5 −0.0231846 −0.0115923 0.999933i \(-0.503690\pi\)
−0.0115923 + 0.999933i \(0.503690\pi\)
\(354\) 0 0
\(355\) −1.48393e6 −0.624946
\(356\) 0 0
\(357\) −1.27500e6 −0.529469
\(358\) 0 0
\(359\) 2.12836e6 0.871584 0.435792 0.900047i \(-0.356468\pi\)
0.435792 + 0.900047i \(0.356468\pi\)
\(360\) 0 0
\(361\) −2.39680e6 −0.967975
\(362\) 0 0
\(363\) 282148. 0.112385
\(364\) 0 0
\(365\) −735061. −0.288796
\(366\) 0 0
\(367\) −1.17965e6 −0.457183 −0.228591 0.973522i \(-0.573412\pi\)
−0.228591 + 0.973522i \(0.573412\pi\)
\(368\) 0 0
\(369\) −1.78122e6 −0.681008
\(370\) 0 0
\(371\) −1.83136e6 −0.690779
\(372\) 0 0
\(373\) 2.30580e6 0.858125 0.429062 0.903275i \(-0.358844\pi\)
0.429062 + 0.903275i \(0.358844\pi\)
\(374\) 0 0
\(375\) 3.31271e6 1.21648
\(376\) 0 0
\(377\) −2.53591e6 −0.918926
\(378\) 0 0
\(379\) 1.17613e6 0.420588 0.210294 0.977638i \(-0.432558\pi\)
0.210294 + 0.977638i \(0.432558\pi\)
\(380\) 0 0
\(381\) −4.24486e6 −1.49813
\(382\) 0 0
\(383\) 2.05506e6 0.715858 0.357929 0.933749i \(-0.383483\pi\)
0.357929 + 0.933749i \(0.383483\pi\)
\(384\) 0 0
\(385\) −272684. −0.0937580
\(386\) 0 0
\(387\) 2.58757e6 0.878243
\(388\) 0 0
\(389\) −2.93102e6 −0.982074 −0.491037 0.871139i \(-0.663382\pi\)
−0.491037 + 0.871139i \(0.663382\pi\)
\(390\) 0 0
\(391\) −353529. −0.116945
\(392\) 0 0
\(393\) −5.38189e6 −1.75774
\(394\) 0 0
\(395\) −884336. −0.285184
\(396\) 0 0
\(397\) −4.06241e6 −1.29362 −0.646810 0.762651i \(-0.723897\pi\)
−0.646810 + 0.762651i \(0.723897\pi\)
\(398\) 0 0
\(399\) −364601. −0.114653
\(400\) 0 0
\(401\) 3.50063e6 1.08714 0.543570 0.839364i \(-0.317072\pi\)
0.543570 + 0.839364i \(0.317072\pi\)
\(402\) 0 0
\(403\) −3.53936e6 −1.08558
\(404\) 0 0
\(405\) 2.47420e6 0.749544
\(406\) 0 0
\(407\) −634466. −0.189855
\(408\) 0 0
\(409\) 3.14103e6 0.928462 0.464231 0.885714i \(-0.346331\pi\)
0.464231 + 0.885714i \(0.346331\pi\)
\(410\) 0 0
\(411\) −1.93379e6 −0.564682
\(412\) 0 0
\(413\) −1.28270e6 −0.370042
\(414\) 0 0
\(415\) 651408. 0.185666
\(416\) 0 0
\(417\) 4.67239e6 1.31583
\(418\) 0 0
\(419\) −435980. −0.121320 −0.0606598 0.998158i \(-0.519320\pi\)
−0.0606598 + 0.998158i \(0.519320\pi\)
\(420\) 0 0
\(421\) 2.17633e6 0.598439 0.299220 0.954184i \(-0.403274\pi\)
0.299220 + 0.954184i \(0.403274\pi\)
\(422\) 0 0
\(423\) −870695. −0.236600
\(424\) 0 0
\(425\) −1.96941e6 −0.528887
\(426\) 0 0
\(427\) 1.61569e6 0.428832
\(428\) 0 0
\(429\) 1.17673e6 0.308698
\(430\) 0 0
\(431\) 787788. 0.204275 0.102138 0.994770i \(-0.467432\pi\)
0.102138 + 0.994770i \(0.467432\pi\)
\(432\) 0 0
\(433\) 956782. 0.245241 0.122620 0.992454i \(-0.460870\pi\)
0.122620 + 0.992454i \(0.460870\pi\)
\(434\) 0 0
\(435\) −3.24821e6 −0.823041
\(436\) 0 0
\(437\) −101096. −0.0253238
\(438\) 0 0
\(439\) −6.51277e6 −1.61289 −0.806445 0.591309i \(-0.798611\pi\)
−0.806445 + 0.591309i \(0.798611\pi\)
\(440\) 0 0
\(441\) −1.57809e6 −0.386398
\(442\) 0 0
\(443\) 124827. 0.0302203 0.0151102 0.999886i \(-0.495190\pi\)
0.0151102 + 0.999886i \(0.495190\pi\)
\(444\) 0 0
\(445\) 1.05071e6 0.251527
\(446\) 0 0
\(447\) −165957. −0.0392850
\(448\) 0 0
\(449\) −8.06847e6 −1.88875 −0.944377 0.328865i \(-0.893334\pi\)
−0.944377 + 0.328865i \(0.893334\pi\)
\(450\) 0 0
\(451\) 1.67891e6 0.388675
\(452\) 0 0
\(453\) −8.35162e6 −1.91216
\(454\) 0 0
\(455\) −1.13726e6 −0.257532
\(456\) 0 0
\(457\) 6.85566e6 1.53553 0.767766 0.640731i \(-0.221368\pi\)
0.767766 + 0.640731i \(0.221368\pi\)
\(458\) 0 0
\(459\) −2.17526e6 −0.481925
\(460\) 0 0
\(461\) −4.18486e6 −0.917125 −0.458562 0.888662i \(-0.651635\pi\)
−0.458562 + 0.888662i \(0.651635\pi\)
\(462\) 0 0
\(463\) −2.44902e6 −0.530934 −0.265467 0.964120i \(-0.585526\pi\)
−0.265467 + 0.964120i \(0.585526\pi\)
\(464\) 0 0
\(465\) −4.53351e6 −0.972304
\(466\) 0 0
\(467\) 2.99629e6 0.635758 0.317879 0.948131i \(-0.397029\pi\)
0.317879 + 0.948131i \(0.397029\pi\)
\(468\) 0 0
\(469\) −3.57855e6 −0.751235
\(470\) 0 0
\(471\) −6.47272e6 −1.34442
\(472\) 0 0
\(473\) −2.43894e6 −0.501244
\(474\) 0 0
\(475\) −563174. −0.114527
\(476\) 0 0
\(477\) 3.49917e6 0.704157
\(478\) 0 0
\(479\) −6.25520e6 −1.24567 −0.622834 0.782354i \(-0.714019\pi\)
−0.622834 + 0.782354i \(0.714019\pi\)
\(480\) 0 0
\(481\) −2.64611e6 −0.521490
\(482\) 0 0
\(483\) 464829. 0.0906620
\(484\) 0 0
\(485\) −4.49736e6 −0.868168
\(486\) 0 0
\(487\) −8.04889e6 −1.53785 −0.768924 0.639340i \(-0.779208\pi\)
−0.768924 + 0.639340i \(0.779208\pi\)
\(488\) 0 0
\(489\) −7.24238e6 −1.36965
\(490\) 0 0
\(491\) −1.00629e7 −1.88374 −0.941869 0.335981i \(-0.890932\pi\)
−0.941869 + 0.335981i \(0.890932\pi\)
\(492\) 0 0
\(493\) 4.94846e6 0.916965
\(494\) 0 0
\(495\) 521017. 0.0955738
\(496\) 0 0
\(497\) −2.97240e6 −0.539779
\(498\) 0 0
\(499\) 6.54572e6 1.17681 0.588405 0.808566i \(-0.299756\pi\)
0.588405 + 0.808566i \(0.299756\pi\)
\(500\) 0 0
\(501\) 7.32183e6 1.30324
\(502\) 0 0
\(503\) −1.64809e6 −0.290443 −0.145222 0.989399i \(-0.546389\pi\)
−0.145222 + 0.989399i \(0.546389\pi\)
\(504\) 0 0
\(505\) −5.38414e6 −0.939481
\(506\) 0 0
\(507\) −2.24752e6 −0.388315
\(508\) 0 0
\(509\) 2.66813e6 0.456471 0.228235 0.973606i \(-0.426704\pi\)
0.228235 + 0.973606i \(0.426704\pi\)
\(510\) 0 0
\(511\) −1.47237e6 −0.249439
\(512\) 0 0
\(513\) −622040. −0.104358
\(514\) 0 0
\(515\) 880721. 0.146326
\(516\) 0 0
\(517\) 820683. 0.135036
\(518\) 0 0
\(519\) 7.81981e6 1.27432
\(520\) 0 0
\(521\) 667289. 0.107701 0.0538505 0.998549i \(-0.482851\pi\)
0.0538505 + 0.998549i \(0.482851\pi\)
\(522\) 0 0
\(523\) 1.34478e6 0.214979 0.107490 0.994206i \(-0.465719\pi\)
0.107490 + 0.994206i \(0.465719\pi\)
\(524\) 0 0
\(525\) 2.58943e6 0.410020
\(526\) 0 0
\(527\) 6.90653e6 1.08326
\(528\) 0 0
\(529\) −6.30746e6 −0.979975
\(530\) 0 0
\(531\) 2.45085e6 0.377208
\(532\) 0 0
\(533\) 7.00209e6 1.06760
\(534\) 0 0
\(535\) −7.57176e6 −1.14370
\(536\) 0 0
\(537\) −2.52728e6 −0.378197
\(538\) 0 0
\(539\) 1.48744e6 0.220531
\(540\) 0 0
\(541\) −1.29223e6 −0.189822 −0.0949108 0.995486i \(-0.530257\pi\)
−0.0949108 + 0.995486i \(0.530257\pi\)
\(542\) 0 0
\(543\) 1.40021e7 2.03795
\(544\) 0 0
\(545\) 2.20627e6 0.318176
\(546\) 0 0
\(547\) 1.03623e7 1.48077 0.740385 0.672183i \(-0.234643\pi\)
0.740385 + 0.672183i \(0.234643\pi\)
\(548\) 0 0
\(549\) −3.08709e6 −0.437137
\(550\) 0 0
\(551\) 1.41507e6 0.198563
\(552\) 0 0
\(553\) −1.77138e6 −0.246319
\(554\) 0 0
\(555\) −3.38937e6 −0.467075
\(556\) 0 0
\(557\) −7.49816e6 −1.02404 −0.512020 0.858974i \(-0.671102\pi\)
−0.512020 + 0.858974i \(0.671102\pi\)
\(558\) 0 0
\(559\) −1.01719e7 −1.37681
\(560\) 0 0
\(561\) −2.29621e6 −0.308039
\(562\) 0 0
\(563\) −8.55298e6 −1.13723 −0.568613 0.822605i \(-0.692520\pi\)
−0.568613 + 0.822605i \(0.692520\pi\)
\(564\) 0 0
\(565\) −7.36761e6 −0.970969
\(566\) 0 0
\(567\) 4.95597e6 0.647397
\(568\) 0 0
\(569\) 1.24374e7 1.61045 0.805227 0.592967i \(-0.202044\pi\)
0.805227 + 0.592967i \(0.202044\pi\)
\(570\) 0 0
\(571\) −9.99711e6 −1.28317 −0.641585 0.767052i \(-0.721723\pi\)
−0.641585 + 0.767052i \(0.721723\pi\)
\(572\) 0 0
\(573\) −1.01103e7 −1.28641
\(574\) 0 0
\(575\) 717989. 0.0905624
\(576\) 0 0
\(577\) −1.59907e6 −0.199954 −0.0999768 0.994990i \(-0.531877\pi\)
−0.0999768 + 0.994990i \(0.531877\pi\)
\(578\) 0 0
\(579\) 1.01106e7 1.25337
\(580\) 0 0
\(581\) 1.30481e6 0.160364
\(582\) 0 0
\(583\) −3.29818e6 −0.401887
\(584\) 0 0
\(585\) 2.17296e6 0.262520
\(586\) 0 0
\(587\) −5.78685e6 −0.693181 −0.346591 0.938016i \(-0.612661\pi\)
−0.346591 + 0.938016i \(0.612661\pi\)
\(588\) 0 0
\(589\) 1.97500e6 0.234573
\(590\) 0 0
\(591\) −9.35283e6 −1.10147
\(592\) 0 0
\(593\) 7.00622e6 0.818177 0.409088 0.912495i \(-0.365847\pi\)
0.409088 + 0.912495i \(0.365847\pi\)
\(594\) 0 0
\(595\) 2.21920e6 0.256983
\(596\) 0 0
\(597\) −1.67150e7 −1.91942
\(598\) 0 0
\(599\) 5.64793e6 0.643165 0.321582 0.946882i \(-0.395785\pi\)
0.321582 + 0.946882i \(0.395785\pi\)
\(600\) 0 0
\(601\) −1.25824e6 −0.142094 −0.0710472 0.997473i \(-0.522634\pi\)
−0.0710472 + 0.997473i \(0.522634\pi\)
\(602\) 0 0
\(603\) 6.83753e6 0.765784
\(604\) 0 0
\(605\) −491090. −0.0545472
\(606\) 0 0
\(607\) 1.75185e7 1.92986 0.964928 0.262514i \(-0.0845515\pi\)
0.964928 + 0.262514i \(0.0845515\pi\)
\(608\) 0 0
\(609\) −6.50636e6 −0.710878
\(610\) 0 0
\(611\) 3.42276e6 0.370914
\(612\) 0 0
\(613\) −6.33766e6 −0.681205 −0.340603 0.940207i \(-0.610631\pi\)
−0.340603 + 0.940207i \(0.610631\pi\)
\(614\) 0 0
\(615\) 8.96888e6 0.956204
\(616\) 0 0
\(617\) −9.63352e6 −1.01876 −0.509380 0.860542i \(-0.670125\pi\)
−0.509380 + 0.860542i \(0.670125\pi\)
\(618\) 0 0
\(619\) 1.06496e7 1.11714 0.558569 0.829458i \(-0.311350\pi\)
0.558569 + 0.829458i \(0.311350\pi\)
\(620\) 0 0
\(621\) 793037. 0.0825210
\(622\) 0 0
\(623\) 2.10464e6 0.217249
\(624\) 0 0
\(625\) 483852. 0.0495464
\(626\) 0 0
\(627\) −656628. −0.0667038
\(628\) 0 0
\(629\) 5.16350e6 0.520377
\(630\) 0 0
\(631\) 4.49516e6 0.449440 0.224720 0.974423i \(-0.427853\pi\)
0.224720 + 0.974423i \(0.427853\pi\)
\(632\) 0 0
\(633\) 1.45060e7 1.43892
\(634\) 0 0
\(635\) 7.38836e6 0.727133
\(636\) 0 0
\(637\) 6.20356e6 0.605749
\(638\) 0 0
\(639\) 5.67935e6 0.550233
\(640\) 0 0
\(641\) −4.93215e6 −0.474123 −0.237062 0.971495i \(-0.576184\pi\)
−0.237062 + 0.971495i \(0.576184\pi\)
\(642\) 0 0
\(643\) 122478. 0.0116823 0.00584117 0.999983i \(-0.498141\pi\)
0.00584117 + 0.999983i \(0.498141\pi\)
\(644\) 0 0
\(645\) −1.30290e7 −1.23314
\(646\) 0 0
\(647\) −7.69881e6 −0.723041 −0.361520 0.932364i \(-0.617742\pi\)
−0.361520 + 0.932364i \(0.617742\pi\)
\(648\) 0 0
\(649\) −2.31008e6 −0.215286
\(650\) 0 0
\(651\) −9.08089e6 −0.839800
\(652\) 0 0
\(653\) −2.51171e6 −0.230509 −0.115254 0.993336i \(-0.536768\pi\)
−0.115254 + 0.993336i \(0.536768\pi\)
\(654\) 0 0
\(655\) 9.36742e6 0.853133
\(656\) 0 0
\(657\) 2.81325e6 0.254270
\(658\) 0 0
\(659\) −4.10385e6 −0.368110 −0.184055 0.982916i \(-0.558922\pi\)
−0.184055 + 0.982916i \(0.558922\pi\)
\(660\) 0 0
\(661\) −1.22236e7 −1.08817 −0.544085 0.839030i \(-0.683123\pi\)
−0.544085 + 0.839030i \(0.683123\pi\)
\(662\) 0 0
\(663\) −9.57663e6 −0.846114
\(664\) 0 0
\(665\) 634604. 0.0556479
\(666\) 0 0
\(667\) −1.80406e6 −0.157014
\(668\) 0 0
\(669\) 1.02781e7 0.887863
\(670\) 0 0
\(671\) 2.90977e6 0.249489
\(672\) 0 0
\(673\) −1.27239e7 −1.08288 −0.541442 0.840738i \(-0.682121\pi\)
−0.541442 + 0.840738i \(0.682121\pi\)
\(674\) 0 0
\(675\) 4.41778e6 0.373203
\(676\) 0 0
\(677\) −1.85518e7 −1.55566 −0.777830 0.628474i \(-0.783680\pi\)
−0.777830 + 0.628474i \(0.783680\pi\)
\(678\) 0 0
\(679\) −9.00849e6 −0.749855
\(680\) 0 0
\(681\) 1.52739e7 1.26207
\(682\) 0 0
\(683\) −1.62954e7 −1.33664 −0.668318 0.743876i \(-0.732985\pi\)
−0.668318 + 0.743876i \(0.732985\pi\)
\(684\) 0 0
\(685\) 3.36584e6 0.274074
\(686\) 0 0
\(687\) 2.96631e7 2.39786
\(688\) 0 0
\(689\) −1.37555e7 −1.10389
\(690\) 0 0
\(691\) 1.06584e6 0.0849176 0.0424588 0.999098i \(-0.486481\pi\)
0.0424588 + 0.999098i \(0.486481\pi\)
\(692\) 0 0
\(693\) 1.04363e6 0.0825491
\(694\) 0 0
\(695\) −8.13249e6 −0.638648
\(696\) 0 0
\(697\) −1.36636e7 −1.06532
\(698\) 0 0
\(699\) −7.65896e6 −0.592893
\(700\) 0 0
\(701\) 1.97109e7 1.51499 0.757496 0.652839i \(-0.226422\pi\)
0.757496 + 0.652839i \(0.226422\pi\)
\(702\) 0 0
\(703\) 1.47656e6 0.112684
\(704\) 0 0
\(705\) 4.38416e6 0.332211
\(706\) 0 0
\(707\) −1.07848e7 −0.811450
\(708\) 0 0
\(709\) 2.47096e7 1.84608 0.923039 0.384705i \(-0.125697\pi\)
0.923039 + 0.384705i \(0.125697\pi\)
\(710\) 0 0
\(711\) 3.38456e6 0.251090
\(712\) 0 0
\(713\) −2.51792e6 −0.185489
\(714\) 0 0
\(715\) −2.04815e6 −0.149829
\(716\) 0 0
\(717\) −6.93913e6 −0.504089
\(718\) 0 0
\(719\) 2.89197e6 0.208627 0.104314 0.994544i \(-0.466735\pi\)
0.104314 + 0.994544i \(0.466735\pi\)
\(720\) 0 0
\(721\) 1.76414e6 0.126384
\(722\) 0 0
\(723\) 1.76332e7 1.25454
\(724\) 0 0
\(725\) −1.00499e7 −0.710097
\(726\) 0 0
\(727\) 79481.6 0.00557739 0.00278869 0.999996i \(-0.499112\pi\)
0.00278869 + 0.999996i \(0.499112\pi\)
\(728\) 0 0
\(729\) 874962. 0.0609776
\(730\) 0 0
\(731\) 1.98490e7 1.37387
\(732\) 0 0
\(733\) −4.91934e6 −0.338179 −0.169090 0.985601i \(-0.554083\pi\)
−0.169090 + 0.985601i \(0.554083\pi\)
\(734\) 0 0
\(735\) 7.94605e6 0.542542
\(736\) 0 0
\(737\) −6.44479e6 −0.437059
\(738\) 0 0
\(739\) 3.51508e6 0.236768 0.118384 0.992968i \(-0.462229\pi\)
0.118384 + 0.992968i \(0.462229\pi\)
\(740\) 0 0
\(741\) −2.73854e6 −0.183221
\(742\) 0 0
\(743\) −1.67752e7 −1.11480 −0.557399 0.830244i \(-0.688201\pi\)
−0.557399 + 0.830244i \(0.688201\pi\)
\(744\) 0 0
\(745\) 288856. 0.0190673
\(746\) 0 0
\(747\) −2.49309e6 −0.163470
\(748\) 0 0
\(749\) −1.51667e7 −0.987839
\(750\) 0 0
\(751\) 8.77489e6 0.567730 0.283865 0.958864i \(-0.408383\pi\)
0.283865 + 0.958864i \(0.408383\pi\)
\(752\) 0 0
\(753\) 7.26924e6 0.467198
\(754\) 0 0
\(755\) 1.45364e7 0.928086
\(756\) 0 0
\(757\) 2.36081e7 1.49734 0.748672 0.662940i \(-0.230692\pi\)
0.748672 + 0.662940i \(0.230692\pi\)
\(758\) 0 0
\(759\) 837133. 0.0527461
\(760\) 0 0
\(761\) 9.08185e6 0.568477 0.284238 0.958754i \(-0.408259\pi\)
0.284238 + 0.958754i \(0.408259\pi\)
\(762\) 0 0
\(763\) 4.41929e6 0.274816
\(764\) 0 0
\(765\) −4.24021e6 −0.261960
\(766\) 0 0
\(767\) −9.63446e6 −0.591342
\(768\) 0 0
\(769\) 1.30617e7 0.796495 0.398248 0.917278i \(-0.369619\pi\)
0.398248 + 0.917278i \(0.369619\pi\)
\(770\) 0 0
\(771\) 1.19248e7 0.722460
\(772\) 0 0
\(773\) −2.62713e7 −1.58137 −0.790683 0.612226i \(-0.790274\pi\)
−0.790683 + 0.612226i \(0.790274\pi\)
\(774\) 0 0
\(775\) −1.40266e7 −0.838877
\(776\) 0 0
\(777\) −6.78911e6 −0.403422
\(778\) 0 0
\(779\) −3.90724e6 −0.230689
\(780\) 0 0
\(781\) −5.35313e6 −0.314037
\(782\) 0 0
\(783\) −1.11004e7 −0.647044
\(784\) 0 0
\(785\) 1.12661e7 0.652526
\(786\) 0 0
\(787\) −1.64871e6 −0.0948870 −0.0474435 0.998874i \(-0.515107\pi\)
−0.0474435 + 0.998874i \(0.515107\pi\)
\(788\) 0 0
\(789\) 2.85354e7 1.63189
\(790\) 0 0
\(791\) −1.47578e7 −0.838647
\(792\) 0 0
\(793\) 1.21355e7 0.685292
\(794\) 0 0
\(795\) −1.76192e7 −0.988707
\(796\) 0 0
\(797\) 2.84759e7 1.58793 0.793965 0.607964i \(-0.208013\pi\)
0.793965 + 0.607964i \(0.208013\pi\)
\(798\) 0 0
\(799\) −6.67900e6 −0.370122
\(800\) 0 0
\(801\) −4.02133e6 −0.221456
\(802\) 0 0
\(803\) −2.65166e6 −0.145121
\(804\) 0 0
\(805\) −809055. −0.0440036
\(806\) 0 0
\(807\) −1.19608e7 −0.646513
\(808\) 0 0
\(809\) 2.52803e7 1.35804 0.679018 0.734121i \(-0.262406\pi\)
0.679018 + 0.734121i \(0.262406\pi\)
\(810\) 0 0
\(811\) −3.23455e7 −1.72688 −0.863439 0.504453i \(-0.831694\pi\)
−0.863439 + 0.504453i \(0.831694\pi\)
\(812\) 0 0
\(813\) 4.05300e6 0.215056
\(814\) 0 0
\(815\) 1.26057e7 0.664771
\(816\) 0 0
\(817\) 5.67603e6 0.297502
\(818\) 0 0
\(819\) 4.35257e6 0.226744
\(820\) 0 0
\(821\) 1.65807e7 0.858511 0.429256 0.903183i \(-0.358776\pi\)
0.429256 + 0.903183i \(0.358776\pi\)
\(822\) 0 0
\(823\) −8.09835e6 −0.416770 −0.208385 0.978047i \(-0.566821\pi\)
−0.208385 + 0.978047i \(0.566821\pi\)
\(824\) 0 0
\(825\) 4.66342e6 0.238545
\(826\) 0 0
\(827\) −3.87720e6 −0.197131 −0.0985655 0.995131i \(-0.531425\pi\)
−0.0985655 + 0.995131i \(0.531425\pi\)
\(828\) 0 0
\(829\) 1.50786e7 0.762033 0.381016 0.924568i \(-0.375574\pi\)
0.381016 + 0.924568i \(0.375574\pi\)
\(830\) 0 0
\(831\) 2.40277e7 1.20701
\(832\) 0 0
\(833\) −1.21053e7 −0.604456
\(834\) 0 0
\(835\) −1.27440e7 −0.632540
\(836\) 0 0
\(837\) −1.54928e7 −0.764390
\(838\) 0 0
\(839\) −4.85698e6 −0.238211 −0.119105 0.992882i \(-0.538003\pi\)
−0.119105 + 0.992882i \(0.538003\pi\)
\(840\) 0 0
\(841\) 4.74091e6 0.231138
\(842\) 0 0
\(843\) 2.89545e7 1.40329
\(844\) 0 0
\(845\) 3.91191e6 0.188472
\(846\) 0 0
\(847\) −983682. −0.0471136
\(848\) 0 0
\(849\) −1.04054e7 −0.495436
\(850\) 0 0
\(851\) −1.88246e6 −0.0891051
\(852\) 0 0
\(853\) 4.18760e7 1.97057 0.985287 0.170910i \(-0.0546707\pi\)
0.985287 + 0.170910i \(0.0546707\pi\)
\(854\) 0 0
\(855\) −1.21254e6 −0.0567256
\(856\) 0 0
\(857\) 3.67316e7 1.70840 0.854198 0.519949i \(-0.174049\pi\)
0.854198 + 0.519949i \(0.174049\pi\)
\(858\) 0 0
\(859\) −1.14765e7 −0.530673 −0.265336 0.964156i \(-0.585483\pi\)
−0.265336 + 0.964156i \(0.585483\pi\)
\(860\) 0 0
\(861\) 1.79652e7 0.825893
\(862\) 0 0
\(863\) −3.52102e7 −1.60932 −0.804659 0.593738i \(-0.797652\pi\)
−0.804659 + 0.593738i \(0.797652\pi\)
\(864\) 0 0
\(865\) −1.36107e7 −0.618501
\(866\) 0 0
\(867\) −8.67476e6 −0.391931
\(868\) 0 0
\(869\) −3.19016e6 −0.143305
\(870\) 0 0
\(871\) −2.68788e7 −1.20050
\(872\) 0 0
\(873\) 1.72125e7 0.764378
\(874\) 0 0
\(875\) −1.15495e7 −0.509967
\(876\) 0 0
\(877\) 1.81618e7 0.797369 0.398684 0.917088i \(-0.369467\pi\)
0.398684 + 0.917088i \(0.369467\pi\)
\(878\) 0 0
\(879\) 2.76069e7 1.20516
\(880\) 0 0
\(881\) −4.48001e7 −1.94464 −0.972321 0.233650i \(-0.924933\pi\)
−0.972321 + 0.233650i \(0.924933\pi\)
\(882\) 0 0
\(883\) −3.84155e6 −0.165808 −0.0829039 0.996558i \(-0.526419\pi\)
−0.0829039 + 0.996558i \(0.526419\pi\)
\(884\) 0 0
\(885\) −1.23406e7 −0.529638
\(886\) 0 0
\(887\) 1.89020e7 0.806675 0.403337 0.915051i \(-0.367850\pi\)
0.403337 + 0.915051i \(0.367850\pi\)
\(888\) 0 0
\(889\) 1.47993e7 0.628040
\(890\) 0 0
\(891\) 8.92544e6 0.376648
\(892\) 0 0
\(893\) −1.90994e6 −0.0801475
\(894\) 0 0
\(895\) 4.39885e6 0.183561
\(896\) 0 0
\(897\) 3.49136e6 0.144882
\(898\) 0 0
\(899\) 3.52441e7 1.45441
\(900\) 0 0
\(901\) 2.68418e7 1.10154
\(902\) 0 0
\(903\) −2.60979e7 −1.06509
\(904\) 0 0
\(905\) −2.43713e7 −0.989139
\(906\) 0 0
\(907\) −1.77294e7 −0.715609 −0.357805 0.933796i \(-0.616475\pi\)
−0.357805 + 0.933796i \(0.616475\pi\)
\(908\) 0 0
\(909\) 2.06064e7 0.827165
\(910\) 0 0
\(911\) −2.41161e7 −0.962743 −0.481372 0.876517i \(-0.659861\pi\)
−0.481372 + 0.876517i \(0.659861\pi\)
\(912\) 0 0
\(913\) 2.34989e6 0.0932978
\(914\) 0 0
\(915\) 1.55442e7 0.613785
\(916\) 0 0
\(917\) 1.87635e7 0.736869
\(918\) 0 0
\(919\) 1.25701e7 0.490962 0.245481 0.969401i \(-0.421054\pi\)
0.245481 + 0.969401i \(0.421054\pi\)
\(920\) 0 0
\(921\) −2.71846e7 −1.05603
\(922\) 0 0
\(923\) −2.23259e7 −0.862590
\(924\) 0 0
\(925\) −1.04867e7 −0.402979
\(926\) 0 0
\(927\) −3.37073e6 −0.128832
\(928\) 0 0
\(929\) 4.61354e7 1.75386 0.876930 0.480618i \(-0.159588\pi\)
0.876930 + 0.480618i \(0.159588\pi\)
\(930\) 0 0
\(931\) −3.46165e6 −0.130891
\(932\) 0 0
\(933\) −1.68662e7 −0.634328
\(934\) 0 0
\(935\) 3.99666e6 0.149509
\(936\) 0 0
\(937\) 1.53113e7 0.569721 0.284860 0.958569i \(-0.408053\pi\)
0.284860 + 0.958569i \(0.408053\pi\)
\(938\) 0 0
\(939\) 1.92039e7 0.710762
\(940\) 0 0
\(941\) 4.22371e7 1.55496 0.777482 0.628905i \(-0.216497\pi\)
0.777482 + 0.628905i \(0.216497\pi\)
\(942\) 0 0
\(943\) 4.98134e6 0.182418
\(944\) 0 0
\(945\) −4.97811e6 −0.181336
\(946\) 0 0
\(947\) −2.32087e7 −0.840961 −0.420480 0.907302i \(-0.638138\pi\)
−0.420480 + 0.907302i \(0.638138\pi\)
\(948\) 0 0
\(949\) −1.10591e7 −0.398615
\(950\) 0 0
\(951\) −4.35196e7 −1.56039
\(952\) 0 0
\(953\) −2.43736e7 −0.869335 −0.434668 0.900591i \(-0.643134\pi\)
−0.434668 + 0.900591i \(0.643134\pi\)
\(954\) 0 0
\(955\) 1.75975e7 0.624370
\(956\) 0 0
\(957\) −1.17176e7 −0.413580
\(958\) 0 0
\(959\) 6.74198e6 0.236723
\(960\) 0 0
\(961\) 2.05609e7 0.718181
\(962\) 0 0
\(963\) 2.89789e7 1.00697
\(964\) 0 0
\(965\) −1.75979e7 −0.608335
\(966\) 0 0
\(967\) 1.64611e6 0.0566099 0.0283049 0.999599i \(-0.490989\pi\)
0.0283049 + 0.999599i \(0.490989\pi\)
\(968\) 0 0
\(969\) 5.34386e6 0.182829
\(970\) 0 0
\(971\) −5.05232e7 −1.71966 −0.859830 0.510581i \(-0.829431\pi\)
−0.859830 + 0.510581i \(0.829431\pi\)
\(972\) 0 0
\(973\) −1.62899e7 −0.551614
\(974\) 0 0
\(975\) 1.94494e7 0.655230
\(976\) 0 0
\(977\) 3.46101e7 1.16002 0.580012 0.814608i \(-0.303048\pi\)
0.580012 + 0.814608i \(0.303048\pi\)
\(978\) 0 0
\(979\) 3.79035e6 0.126393
\(980\) 0 0
\(981\) −8.44393e6 −0.280138
\(982\) 0 0
\(983\) −3.01142e7 −0.994003 −0.497001 0.867750i \(-0.665566\pi\)
−0.497001 + 0.867750i \(0.665566\pi\)
\(984\) 0 0
\(985\) 1.62790e7 0.534610
\(986\) 0 0
\(987\) 8.78173e6 0.286937
\(988\) 0 0
\(989\) −7.23636e6 −0.235250
\(990\) 0 0
\(991\) 2.58640e7 0.836589 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(992\) 0 0
\(993\) 3.63197e6 0.116888
\(994\) 0 0
\(995\) 2.90932e7 0.931608
\(996\) 0 0
\(997\) −5.44951e7 −1.73628 −0.868139 0.496321i \(-0.834684\pi\)
−0.868139 + 0.496321i \(0.834684\pi\)
\(998\) 0 0
\(999\) −1.15828e7 −0.367197
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.6.a.m.1.2 2
4.3 odd 2 704.6.a.n.1.1 2
8.3 odd 2 44.6.a.b.1.2 2
8.5 even 2 176.6.a.g.1.1 2
24.11 even 2 396.6.a.f.1.1 2
40.3 even 4 1100.6.b.c.749.3 4
40.19 odd 2 1100.6.a.b.1.1 2
40.27 even 4 1100.6.b.c.749.2 4
88.43 even 2 484.6.a.d.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.6.a.b.1.2 2 8.3 odd 2
176.6.a.g.1.1 2 8.5 even 2
396.6.a.f.1.1 2 24.11 even 2
484.6.a.d.1.2 2 88.43 even 2
704.6.a.m.1.2 2 1.1 even 1 trivial
704.6.a.n.1.1 2 4.3 odd 2
1100.6.a.b.1.1 2 40.19 odd 2
1100.6.b.c.749.2 4 40.27 even 4
1100.6.b.c.749.3 4 40.3 even 4