Properties

Label 704.4.a.p.1.1
Level $704$
Weight $4$
Character 704.1
Self dual yes
Analytic conductor $41.537$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,4,Mod(1,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 704.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5373446440\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 704.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.92820 q^{3} +12.8564 q^{5} +16.9282 q^{7} +8.14359 q^{9} +O(q^{10})\) \(q-5.92820 q^{3} +12.8564 q^{5} +16.9282 q^{7} +8.14359 q^{9} +11.0000 q^{11} -74.6410 q^{13} -76.2154 q^{15} -82.7846 q^{17} +67.9230 q^{19} -100.354 q^{21} +13.3538 q^{23} +40.2872 q^{25} +111.785 q^{27} -168.995 q^{29} -65.4974 q^{31} -65.2102 q^{33} +217.636 q^{35} -40.8564 q^{37} +442.487 q^{39} +274.928 q^{41} +2.28719 q^{43} +104.697 q^{45} +71.8461 q^{47} -56.4359 q^{49} +490.764 q^{51} +149.005 q^{53} +141.420 q^{55} -402.662 q^{57} -545.631 q^{59} -101.303 q^{61} +137.856 q^{63} -959.615 q^{65} -411.641 q^{67} -79.1642 q^{69} -470.636 q^{71} +610.600 q^{73} -238.831 q^{75} +186.210 q^{77} -978.225 q^{79} -882.559 q^{81} -26.1539 q^{83} -1064.31 q^{85} +1001.84 q^{87} -352.887 q^{89} -1263.54 q^{91} +388.282 q^{93} +873.246 q^{95} +847.585 q^{97} +89.5795 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 2 q^{5} + 20 q^{7} + 44 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} - 2 q^{5} + 20 q^{7} + 44 q^{9} + 22 q^{11} - 80 q^{13} - 194 q^{15} - 124 q^{17} - 72 q^{19} - 76 q^{21} - 98 q^{23} + 136 q^{25} + 182 q^{27} - 144 q^{29} - 34 q^{31} + 22 q^{33} + 172 q^{35} - 54 q^{37} + 400 q^{39} + 536 q^{41} + 60 q^{43} - 428 q^{45} - 272 q^{47} - 390 q^{49} + 164 q^{51} + 492 q^{53} - 22 q^{55} - 1512 q^{57} - 634 q^{59} - 840 q^{61} + 248 q^{63} - 880 q^{65} - 754 q^{67} - 962 q^{69} - 678 q^{71} - 400 q^{73} + 520 q^{75} + 220 q^{77} + 316 q^{79} - 1294 q^{81} - 468 q^{83} - 452 q^{85} + 1200 q^{87} - 1842 q^{89} - 1280 q^{91} + 638 q^{93} + 2952 q^{95} + 2194 q^{97} + 484 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.92820 −1.14088 −0.570442 0.821338i \(-0.693228\pi\)
−0.570442 + 0.821338i \(0.693228\pi\)
\(4\) 0 0
\(5\) 12.8564 1.14991 0.574956 0.818184i \(-0.305019\pi\)
0.574956 + 0.818184i \(0.305019\pi\)
\(6\) 0 0
\(7\) 16.9282 0.914037 0.457019 0.889457i \(-0.348917\pi\)
0.457019 + 0.889457i \(0.348917\pi\)
\(8\) 0 0
\(9\) 8.14359 0.301615
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −74.6410 −1.59244 −0.796219 0.605009i \(-0.793170\pi\)
−0.796219 + 0.605009i \(0.793170\pi\)
\(14\) 0 0
\(15\) −76.2154 −1.31192
\(16\) 0 0
\(17\) −82.7846 −1.18107 −0.590536 0.807011i \(-0.701084\pi\)
−0.590536 + 0.807011i \(0.701084\pi\)
\(18\) 0 0
\(19\) 67.9230 0.820138 0.410069 0.912055i \(-0.365505\pi\)
0.410069 + 0.912055i \(0.365505\pi\)
\(20\) 0 0
\(21\) −100.354 −1.04281
\(22\) 0 0
\(23\) 13.3538 0.121064 0.0605319 0.998166i \(-0.480720\pi\)
0.0605319 + 0.998166i \(0.480720\pi\)
\(24\) 0 0
\(25\) 40.2872 0.322297
\(26\) 0 0
\(27\) 111.785 0.796776
\(28\) 0 0
\(29\) −168.995 −1.08212 −0.541061 0.840983i \(-0.681977\pi\)
−0.541061 + 0.840983i \(0.681977\pi\)
\(30\) 0 0
\(31\) −65.4974 −0.379474 −0.189737 0.981835i \(-0.560763\pi\)
−0.189737 + 0.981835i \(0.560763\pi\)
\(32\) 0 0
\(33\) −65.2102 −0.343989
\(34\) 0 0
\(35\) 217.636 1.05106
\(36\) 0 0
\(37\) −40.8564 −0.181534 −0.0907669 0.995872i \(-0.528932\pi\)
−0.0907669 + 0.995872i \(0.528932\pi\)
\(38\) 0 0
\(39\) 442.487 1.81679
\(40\) 0 0
\(41\) 274.928 1.04723 0.523617 0.851954i \(-0.324582\pi\)
0.523617 + 0.851954i \(0.324582\pi\)
\(42\) 0 0
\(43\) 2.28719 0.00811146 0.00405573 0.999992i \(-0.498709\pi\)
0.00405573 + 0.999992i \(0.498709\pi\)
\(44\) 0 0
\(45\) 104.697 0.346830
\(46\) 0 0
\(47\) 71.8461 0.222975 0.111488 0.993766i \(-0.464438\pi\)
0.111488 + 0.993766i \(0.464438\pi\)
\(48\) 0 0
\(49\) −56.4359 −0.164536
\(50\) 0 0
\(51\) 490.764 1.34746
\(52\) 0 0
\(53\) 149.005 0.386178 0.193089 0.981181i \(-0.438149\pi\)
0.193089 + 0.981181i \(0.438149\pi\)
\(54\) 0 0
\(55\) 141.420 0.346711
\(56\) 0 0
\(57\) −402.662 −0.935681
\(58\) 0 0
\(59\) −545.631 −1.20398 −0.601992 0.798502i \(-0.705626\pi\)
−0.601992 + 0.798502i \(0.705626\pi\)
\(60\) 0 0
\(61\) −101.303 −0.212631 −0.106315 0.994332i \(-0.533905\pi\)
−0.106315 + 0.994332i \(0.533905\pi\)
\(62\) 0 0
\(63\) 137.856 0.275687
\(64\) 0 0
\(65\) −959.615 −1.83116
\(66\) 0 0
\(67\) −411.641 −0.750596 −0.375298 0.926904i \(-0.622460\pi\)
−0.375298 + 0.926904i \(0.622460\pi\)
\(68\) 0 0
\(69\) −79.1642 −0.138120
\(70\) 0 0
\(71\) −470.636 −0.786679 −0.393339 0.919393i \(-0.628680\pi\)
−0.393339 + 0.919393i \(0.628680\pi\)
\(72\) 0 0
\(73\) 610.600 0.978977 0.489488 0.872010i \(-0.337184\pi\)
0.489488 + 0.872010i \(0.337184\pi\)
\(74\) 0 0
\(75\) −238.831 −0.367704
\(76\) 0 0
\(77\) 186.210 0.275593
\(78\) 0 0
\(79\) −978.225 −1.39315 −0.696576 0.717483i \(-0.745294\pi\)
−0.696576 + 0.717483i \(0.745294\pi\)
\(80\) 0 0
\(81\) −882.559 −1.21064
\(82\) 0 0
\(83\) −26.1539 −0.0345875 −0.0172938 0.999850i \(-0.505505\pi\)
−0.0172938 + 0.999850i \(0.505505\pi\)
\(84\) 0 0
\(85\) −1064.31 −1.35813
\(86\) 0 0
\(87\) 1001.84 1.23458
\(88\) 0 0
\(89\) −352.887 −0.420292 −0.210146 0.977670i \(-0.567394\pi\)
−0.210146 + 0.977670i \(0.567394\pi\)
\(90\) 0 0
\(91\) −1263.54 −1.45555
\(92\) 0 0
\(93\) 388.282 0.432935
\(94\) 0 0
\(95\) 873.246 0.943086
\(96\) 0 0
\(97\) 847.585 0.887208 0.443604 0.896223i \(-0.353700\pi\)
0.443604 + 0.896223i \(0.353700\pi\)
\(98\) 0 0
\(99\) 89.5795 0.0909402
\(100\) 0 0
\(101\) −1293.46 −1.27430 −0.637150 0.770740i \(-0.719887\pi\)
−0.637150 + 0.770740i \(0.719887\pi\)
\(102\) 0 0
\(103\) −1725.24 −1.65042 −0.825209 0.564828i \(-0.808943\pi\)
−0.825209 + 0.564828i \(0.808943\pi\)
\(104\) 0 0
\(105\) −1290.19 −1.19914
\(106\) 0 0
\(107\) 484.179 0.437452 0.218726 0.975786i \(-0.429810\pi\)
0.218726 + 0.975786i \(0.429810\pi\)
\(108\) 0 0
\(109\) 64.2563 0.0564645 0.0282323 0.999601i \(-0.491012\pi\)
0.0282323 + 0.999601i \(0.491012\pi\)
\(110\) 0 0
\(111\) 242.205 0.207109
\(112\) 0 0
\(113\) −2005.08 −1.66922 −0.834612 0.550839i \(-0.814308\pi\)
−0.834612 + 0.550839i \(0.814308\pi\)
\(114\) 0 0
\(115\) 171.682 0.139213
\(116\) 0 0
\(117\) −607.846 −0.480302
\(118\) 0 0
\(119\) −1401.39 −1.07954
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) −1629.83 −1.19477
\(124\) 0 0
\(125\) −1089.10 −0.779298
\(126\) 0 0
\(127\) 109.605 0.0765816 0.0382908 0.999267i \(-0.487809\pi\)
0.0382908 + 0.999267i \(0.487809\pi\)
\(128\) 0 0
\(129\) −13.5589 −0.00925423
\(130\) 0 0
\(131\) −1156.71 −0.771469 −0.385734 0.922610i \(-0.626052\pi\)
−0.385734 + 0.922610i \(0.626052\pi\)
\(132\) 0 0
\(133\) 1149.82 0.749636
\(134\) 0 0
\(135\) 1437.15 0.916223
\(136\) 0 0
\(137\) 198.323 0.123678 0.0618391 0.998086i \(-0.480303\pi\)
0.0618391 + 0.998086i \(0.480303\pi\)
\(138\) 0 0
\(139\) 2900.14 1.76969 0.884844 0.465888i \(-0.154265\pi\)
0.884844 + 0.465888i \(0.154265\pi\)
\(140\) 0 0
\(141\) −425.918 −0.254389
\(142\) 0 0
\(143\) −821.051 −0.480138
\(144\) 0 0
\(145\) −2172.67 −1.24435
\(146\) 0 0
\(147\) 334.564 0.187717
\(148\) 0 0
\(149\) −3488.34 −1.91796 −0.958980 0.283472i \(-0.908514\pi\)
−0.958980 + 0.283472i \(0.908514\pi\)
\(150\) 0 0
\(151\) −1163.32 −0.626953 −0.313477 0.949596i \(-0.601494\pi\)
−0.313477 + 0.949596i \(0.601494\pi\)
\(152\) 0 0
\(153\) −674.164 −0.356228
\(154\) 0 0
\(155\) −842.061 −0.436361
\(156\) 0 0
\(157\) −342.057 −0.173880 −0.0869398 0.996214i \(-0.527709\pi\)
−0.0869398 + 0.996214i \(0.527709\pi\)
\(158\) 0 0
\(159\) −883.333 −0.440584
\(160\) 0 0
\(161\) 226.056 0.110657
\(162\) 0 0
\(163\) 1394.89 0.670285 0.335142 0.942167i \(-0.391216\pi\)
0.335142 + 0.942167i \(0.391216\pi\)
\(164\) 0 0
\(165\) −838.369 −0.395557
\(166\) 0 0
\(167\) 478.703 0.221815 0.110908 0.993831i \(-0.464624\pi\)
0.110908 + 0.993831i \(0.464624\pi\)
\(168\) 0 0
\(169\) 3374.28 1.53586
\(170\) 0 0
\(171\) 553.138 0.247365
\(172\) 0 0
\(173\) −1808.58 −0.794822 −0.397411 0.917641i \(-0.630091\pi\)
−0.397411 + 0.917641i \(0.630091\pi\)
\(174\) 0 0
\(175\) 681.990 0.294592
\(176\) 0 0
\(177\) 3234.61 1.37361
\(178\) 0 0
\(179\) 4429.85 1.84973 0.924867 0.380292i \(-0.124176\pi\)
0.924867 + 0.380292i \(0.124176\pi\)
\(180\) 0 0
\(181\) −3409.17 −1.40001 −0.700005 0.714138i \(-0.746819\pi\)
−0.700005 + 0.714138i \(0.746819\pi\)
\(182\) 0 0
\(183\) 600.543 0.242587
\(184\) 0 0
\(185\) −525.267 −0.208748
\(186\) 0 0
\(187\) −910.631 −0.356106
\(188\) 0 0
\(189\) 1892.31 0.728283
\(190\) 0 0
\(191\) 2923.75 1.10762 0.553810 0.832643i \(-0.313173\pi\)
0.553810 + 0.832643i \(0.313173\pi\)
\(192\) 0 0
\(193\) −2484.18 −0.926505 −0.463253 0.886226i \(-0.653318\pi\)
−0.463253 + 0.886226i \(0.653318\pi\)
\(194\) 0 0
\(195\) 5688.79 2.08914
\(196\) 0 0
\(197\) 5125.67 1.85375 0.926876 0.375369i \(-0.122484\pi\)
0.926876 + 0.375369i \(0.122484\pi\)
\(198\) 0 0
\(199\) −7.69219 −0.00274013 −0.00137006 0.999999i \(-0.500436\pi\)
−0.00137006 + 0.999999i \(0.500436\pi\)
\(200\) 0 0
\(201\) 2440.29 0.856343
\(202\) 0 0
\(203\) −2860.78 −0.989100
\(204\) 0 0
\(205\) 3534.59 1.20423
\(206\) 0 0
\(207\) 108.748 0.0365146
\(208\) 0 0
\(209\) 747.154 0.247281
\(210\) 0 0
\(211\) −3107.34 −1.01383 −0.506915 0.861996i \(-0.669214\pi\)
−0.506915 + 0.861996i \(0.669214\pi\)
\(212\) 0 0
\(213\) 2790.03 0.897509
\(214\) 0 0
\(215\) 29.4050 0.00932746
\(216\) 0 0
\(217\) −1108.75 −0.346853
\(218\) 0 0
\(219\) −3619.76 −1.11690
\(220\) 0 0
\(221\) 6179.13 1.88078
\(222\) 0 0
\(223\) −12.3185 −0.00369913 −0.00184957 0.999998i \(-0.500589\pi\)
−0.00184957 + 0.999998i \(0.500589\pi\)
\(224\) 0 0
\(225\) 328.082 0.0972096
\(226\) 0 0
\(227\) −4615.90 −1.34964 −0.674820 0.737983i \(-0.735779\pi\)
−0.674820 + 0.737983i \(0.735779\pi\)
\(228\) 0 0
\(229\) −5074.63 −1.46437 −0.732186 0.681105i \(-0.761500\pi\)
−0.732186 + 0.681105i \(0.761500\pi\)
\(230\) 0 0
\(231\) −1103.89 −0.314419
\(232\) 0 0
\(233\) 211.683 0.0595184 0.0297592 0.999557i \(-0.490526\pi\)
0.0297592 + 0.999557i \(0.490526\pi\)
\(234\) 0 0
\(235\) 923.683 0.256402
\(236\) 0 0
\(237\) 5799.12 1.58942
\(238\) 0 0
\(239\) 4312.49 1.16716 0.583581 0.812055i \(-0.301651\pi\)
0.583581 + 0.812055i \(0.301651\pi\)
\(240\) 0 0
\(241\) −996.584 −0.266372 −0.133186 0.991091i \(-0.542521\pi\)
−0.133186 + 0.991091i \(0.542521\pi\)
\(242\) 0 0
\(243\) 2213.80 0.584426
\(244\) 0 0
\(245\) −725.563 −0.189202
\(246\) 0 0
\(247\) −5069.85 −1.30602
\(248\) 0 0
\(249\) 155.046 0.0394603
\(250\) 0 0
\(251\) 276.892 0.0696306 0.0348153 0.999394i \(-0.488916\pi\)
0.0348153 + 0.999394i \(0.488916\pi\)
\(252\) 0 0
\(253\) 146.892 0.0365021
\(254\) 0 0
\(255\) 6309.46 1.54947
\(256\) 0 0
\(257\) −3235.18 −0.785233 −0.392617 0.919702i \(-0.628430\pi\)
−0.392617 + 0.919702i \(0.628430\pi\)
\(258\) 0 0
\(259\) −691.626 −0.165929
\(260\) 0 0
\(261\) −1376.23 −0.326384
\(262\) 0 0
\(263\) 207.944 0.0487544 0.0243772 0.999703i \(-0.492240\pi\)
0.0243772 + 0.999703i \(0.492240\pi\)
\(264\) 0 0
\(265\) 1915.67 0.444071
\(266\) 0 0
\(267\) 2091.99 0.479504
\(268\) 0 0
\(269\) −5033.04 −1.14078 −0.570390 0.821374i \(-0.693208\pi\)
−0.570390 + 0.821374i \(0.693208\pi\)
\(270\) 0 0
\(271\) 1487.01 0.333319 0.166660 0.986015i \(-0.446702\pi\)
0.166660 + 0.986015i \(0.446702\pi\)
\(272\) 0 0
\(273\) 7490.51 1.66061
\(274\) 0 0
\(275\) 443.159 0.0971764
\(276\) 0 0
\(277\) 235.836 0.0511552 0.0255776 0.999673i \(-0.491858\pi\)
0.0255776 + 0.999673i \(0.491858\pi\)
\(278\) 0 0
\(279\) −533.384 −0.114455
\(280\) 0 0
\(281\) −4915.01 −1.04343 −0.521717 0.853118i \(-0.674708\pi\)
−0.521717 + 0.853118i \(0.674708\pi\)
\(282\) 0 0
\(283\) 5199.56 1.09216 0.546081 0.837733i \(-0.316119\pi\)
0.546081 + 0.837733i \(0.316119\pi\)
\(284\) 0 0
\(285\) −5176.78 −1.07595
\(286\) 0 0
\(287\) 4654.04 0.957210
\(288\) 0 0
\(289\) 1940.29 0.394930
\(290\) 0 0
\(291\) −5024.65 −1.01220
\(292\) 0 0
\(293\) 8880.92 1.77075 0.885373 0.464881i \(-0.153903\pi\)
0.885373 + 0.464881i \(0.153903\pi\)
\(294\) 0 0
\(295\) −7014.85 −1.38448
\(296\) 0 0
\(297\) 1229.63 0.240237
\(298\) 0 0
\(299\) −996.743 −0.192786
\(300\) 0 0
\(301\) 38.7180 0.00741417
\(302\) 0 0
\(303\) 7667.90 1.45383
\(304\) 0 0
\(305\) −1302.39 −0.244507
\(306\) 0 0
\(307\) 1497.93 0.278474 0.139237 0.990259i \(-0.455535\pi\)
0.139237 + 0.990259i \(0.455535\pi\)
\(308\) 0 0
\(309\) 10227.6 1.88293
\(310\) 0 0
\(311\) −7484.71 −1.36469 −0.682345 0.731030i \(-0.739040\pi\)
−0.682345 + 0.731030i \(0.739040\pi\)
\(312\) 0 0
\(313\) −658.363 −0.118891 −0.0594455 0.998232i \(-0.518933\pi\)
−0.0594455 + 0.998232i \(0.518933\pi\)
\(314\) 0 0
\(315\) 1772.34 0.317016
\(316\) 0 0
\(317\) −233.708 −0.0414080 −0.0207040 0.999786i \(-0.506591\pi\)
−0.0207040 + 0.999786i \(0.506591\pi\)
\(318\) 0 0
\(319\) −1858.94 −0.326272
\(320\) 0 0
\(321\) −2870.31 −0.499082
\(322\) 0 0
\(323\) −5622.98 −0.968641
\(324\) 0 0
\(325\) −3007.08 −0.513239
\(326\) 0 0
\(327\) −380.924 −0.0644194
\(328\) 0 0
\(329\) 1216.23 0.203808
\(330\) 0 0
\(331\) −8532.95 −1.41696 −0.708480 0.705731i \(-0.750619\pi\)
−0.708480 + 0.705731i \(0.750619\pi\)
\(332\) 0 0
\(333\) −332.718 −0.0547533
\(334\) 0 0
\(335\) −5292.22 −0.863120
\(336\) 0 0
\(337\) 11691.2 1.88979 0.944895 0.327373i \(-0.106163\pi\)
0.944895 + 0.327373i \(0.106163\pi\)
\(338\) 0 0
\(339\) 11886.5 1.90439
\(340\) 0 0
\(341\) −720.472 −0.114416
\(342\) 0 0
\(343\) −6761.73 −1.06443
\(344\) 0 0
\(345\) −1017.77 −0.158825
\(346\) 0 0
\(347\) −4598.79 −0.711459 −0.355729 0.934589i \(-0.615768\pi\)
−0.355729 + 0.934589i \(0.615768\pi\)
\(348\) 0 0
\(349\) −6720.27 −1.03074 −0.515369 0.856968i \(-0.672345\pi\)
−0.515369 + 0.856968i \(0.672345\pi\)
\(350\) 0 0
\(351\) −8343.72 −1.26882
\(352\) 0 0
\(353\) 5738.70 0.865270 0.432635 0.901569i \(-0.357584\pi\)
0.432635 + 0.901569i \(0.357584\pi\)
\(354\) 0 0
\(355\) −6050.69 −0.904611
\(356\) 0 0
\(357\) 8307.75 1.23163
\(358\) 0 0
\(359\) −4115.27 −0.605001 −0.302501 0.953149i \(-0.597821\pi\)
−0.302501 + 0.953149i \(0.597821\pi\)
\(360\) 0 0
\(361\) −2245.46 −0.327374
\(362\) 0 0
\(363\) −717.313 −0.103717
\(364\) 0 0
\(365\) 7850.12 1.12574
\(366\) 0 0
\(367\) 9662.99 1.37440 0.687199 0.726469i \(-0.258840\pi\)
0.687199 + 0.726469i \(0.258840\pi\)
\(368\) 0 0
\(369\) 2238.90 0.315861
\(370\) 0 0
\(371\) 2522.39 0.352981
\(372\) 0 0
\(373\) 141.780 0.0196812 0.00984062 0.999952i \(-0.496868\pi\)
0.00984062 + 0.999952i \(0.496868\pi\)
\(374\) 0 0
\(375\) 6456.42 0.889088
\(376\) 0 0
\(377\) 12613.9 1.72321
\(378\) 0 0
\(379\) 2819.73 0.382163 0.191082 0.981574i \(-0.438800\pi\)
0.191082 + 0.981574i \(0.438800\pi\)
\(380\) 0 0
\(381\) −649.760 −0.0873707
\(382\) 0 0
\(383\) −6337.84 −0.845557 −0.422778 0.906233i \(-0.638945\pi\)
−0.422778 + 0.906233i \(0.638945\pi\)
\(384\) 0 0
\(385\) 2393.99 0.316907
\(386\) 0 0
\(387\) 18.6259 0.00244653
\(388\) 0 0
\(389\) 8805.25 1.14767 0.573836 0.818970i \(-0.305455\pi\)
0.573836 + 0.818970i \(0.305455\pi\)
\(390\) 0 0
\(391\) −1105.49 −0.142985
\(392\) 0 0
\(393\) 6857.23 0.880156
\(394\) 0 0
\(395\) −12576.5 −1.60200
\(396\) 0 0
\(397\) −4315.26 −0.545534 −0.272767 0.962080i \(-0.587939\pi\)
−0.272767 + 0.962080i \(0.587939\pi\)
\(398\) 0 0
\(399\) −6816.34 −0.855247
\(400\) 0 0
\(401\) 361.681 0.0450411 0.0225206 0.999746i \(-0.492831\pi\)
0.0225206 + 0.999746i \(0.492831\pi\)
\(402\) 0 0
\(403\) 4888.79 0.604288
\(404\) 0 0
\(405\) −11346.5 −1.39213
\(406\) 0 0
\(407\) −449.420 −0.0547345
\(408\) 0 0
\(409\) 9220.50 1.11473 0.557365 0.830268i \(-0.311812\pi\)
0.557365 + 0.830268i \(0.311812\pi\)
\(410\) 0 0
\(411\) −1175.70 −0.141102
\(412\) 0 0
\(413\) −9236.55 −1.10049
\(414\) 0 0
\(415\) −336.245 −0.0397726
\(416\) 0 0
\(417\) −17192.6 −2.01901
\(418\) 0 0
\(419\) 14912.9 1.73876 0.869380 0.494144i \(-0.164519\pi\)
0.869380 + 0.494144i \(0.164519\pi\)
\(420\) 0 0
\(421\) 13486.0 1.56121 0.780603 0.625027i \(-0.214912\pi\)
0.780603 + 0.625027i \(0.214912\pi\)
\(422\) 0 0
\(423\) 585.085 0.0672525
\(424\) 0 0
\(425\) −3335.16 −0.380656
\(426\) 0 0
\(427\) −1714.87 −0.194352
\(428\) 0 0
\(429\) 4867.36 0.547782
\(430\) 0 0
\(431\) 406.334 0.0454116 0.0227058 0.999742i \(-0.492772\pi\)
0.0227058 + 0.999742i \(0.492772\pi\)
\(432\) 0 0
\(433\) −1766.69 −0.196078 −0.0980391 0.995183i \(-0.531257\pi\)
−0.0980391 + 0.995183i \(0.531257\pi\)
\(434\) 0 0
\(435\) 12880.0 1.41965
\(436\) 0 0
\(437\) 907.033 0.0992889
\(438\) 0 0
\(439\) 7824.19 0.850634 0.425317 0.905044i \(-0.360163\pi\)
0.425317 + 0.905044i \(0.360163\pi\)
\(440\) 0 0
\(441\) −459.591 −0.0496265
\(442\) 0 0
\(443\) −11667.9 −1.25137 −0.625686 0.780075i \(-0.715181\pi\)
−0.625686 + 0.780075i \(0.715181\pi\)
\(444\) 0 0
\(445\) −4536.86 −0.483299
\(446\) 0 0
\(447\) 20679.6 2.18817
\(448\) 0 0
\(449\) 16975.3 1.78421 0.892107 0.451825i \(-0.149227\pi\)
0.892107 + 0.451825i \(0.149227\pi\)
\(450\) 0 0
\(451\) 3024.21 0.315753
\(452\) 0 0
\(453\) 6896.42 0.715280
\(454\) 0 0
\(455\) −16244.6 −1.67375
\(456\) 0 0
\(457\) −16192.9 −1.65748 −0.828741 0.559632i \(-0.810943\pi\)
−0.828741 + 0.559632i \(0.810943\pi\)
\(458\) 0 0
\(459\) −9254.05 −0.941050
\(460\) 0 0
\(461\) −8586.04 −0.867444 −0.433722 0.901047i \(-0.642800\pi\)
−0.433722 + 0.901047i \(0.642800\pi\)
\(462\) 0 0
\(463\) −7917.20 −0.794694 −0.397347 0.917668i \(-0.630069\pi\)
−0.397347 + 0.917668i \(0.630069\pi\)
\(464\) 0 0
\(465\) 4991.91 0.497837
\(466\) 0 0
\(467\) 15155.0 1.50169 0.750844 0.660480i \(-0.229647\pi\)
0.750844 + 0.660480i \(0.229647\pi\)
\(468\) 0 0
\(469\) −6968.34 −0.686073
\(470\) 0 0
\(471\) 2027.78 0.198376
\(472\) 0 0
\(473\) 25.1591 0.00244570
\(474\) 0 0
\(475\) 2736.43 0.264328
\(476\) 0 0
\(477\) 1213.44 0.116477
\(478\) 0 0
\(479\) 10001.1 0.953993 0.476996 0.878905i \(-0.341725\pi\)
0.476996 + 0.878905i \(0.341725\pi\)
\(480\) 0 0
\(481\) 3049.56 0.289081
\(482\) 0 0
\(483\) −1340.11 −0.126246
\(484\) 0 0
\(485\) 10896.9 1.02021
\(486\) 0 0
\(487\) 7044.54 0.655480 0.327740 0.944768i \(-0.393713\pi\)
0.327740 + 0.944768i \(0.393713\pi\)
\(488\) 0 0
\(489\) −8269.21 −0.764717
\(490\) 0 0
\(491\) 13326.4 1.22487 0.612437 0.790520i \(-0.290189\pi\)
0.612437 + 0.790520i \(0.290189\pi\)
\(492\) 0 0
\(493\) 13990.2 1.27806
\(494\) 0 0
\(495\) 1151.67 0.104573
\(496\) 0 0
\(497\) −7967.02 −0.719054
\(498\) 0 0
\(499\) 20069.1 1.80044 0.900218 0.435440i \(-0.143407\pi\)
0.900218 + 0.435440i \(0.143407\pi\)
\(500\) 0 0
\(501\) −2837.85 −0.253065
\(502\) 0 0
\(503\) 7782.35 0.689856 0.344928 0.938629i \(-0.387903\pi\)
0.344928 + 0.938629i \(0.387903\pi\)
\(504\) 0 0
\(505\) −16629.3 −1.46533
\(506\) 0 0
\(507\) −20003.4 −1.75224
\(508\) 0 0
\(509\) 1475.93 0.128526 0.0642628 0.997933i \(-0.479530\pi\)
0.0642628 + 0.997933i \(0.479530\pi\)
\(510\) 0 0
\(511\) 10336.4 0.894821
\(512\) 0 0
\(513\) 7592.75 0.653466
\(514\) 0 0
\(515\) −22180.4 −1.89784
\(516\) 0 0
\(517\) 790.307 0.0672295
\(518\) 0 0
\(519\) 10721.7 0.906799
\(520\) 0 0
\(521\) 7609.43 0.639875 0.319938 0.947439i \(-0.396338\pi\)
0.319938 + 0.947439i \(0.396338\pi\)
\(522\) 0 0
\(523\) −12452.9 −1.04116 −0.520581 0.853812i \(-0.674285\pi\)
−0.520581 + 0.853812i \(0.674285\pi\)
\(524\) 0 0
\(525\) −4042.97 −0.336095
\(526\) 0 0
\(527\) 5422.18 0.448186
\(528\) 0 0
\(529\) −11988.7 −0.985344
\(530\) 0 0
\(531\) −4443.39 −0.363139
\(532\) 0 0
\(533\) −20520.9 −1.66765
\(534\) 0 0
\(535\) 6224.81 0.503031
\(536\) 0 0
\(537\) −26261.0 −2.11033
\(538\) 0 0
\(539\) −620.795 −0.0496095
\(540\) 0 0
\(541\) −9312.17 −0.740039 −0.370020 0.929024i \(-0.620649\pi\)
−0.370020 + 0.929024i \(0.620649\pi\)
\(542\) 0 0
\(543\) 20210.3 1.59725
\(544\) 0 0
\(545\) 826.105 0.0649292
\(546\) 0 0
\(547\) 11018.6 0.861278 0.430639 0.902524i \(-0.358288\pi\)
0.430639 + 0.902524i \(0.358288\pi\)
\(548\) 0 0
\(549\) −824.968 −0.0641325
\(550\) 0 0
\(551\) −11478.6 −0.887490
\(552\) 0 0
\(553\) −16559.6 −1.27339
\(554\) 0 0
\(555\) 3113.89 0.238157
\(556\) 0 0
\(557\) 12018.4 0.914250 0.457125 0.889403i \(-0.348879\pi\)
0.457125 + 0.889403i \(0.348879\pi\)
\(558\) 0 0
\(559\) −170.718 −0.0129170
\(560\) 0 0
\(561\) 5398.40 0.406276
\(562\) 0 0
\(563\) 8763.89 0.656046 0.328023 0.944670i \(-0.393618\pi\)
0.328023 + 0.944670i \(0.393618\pi\)
\(564\) 0 0
\(565\) −25778.1 −1.91946
\(566\) 0 0
\(567\) −14940.1 −1.10657
\(568\) 0 0
\(569\) −10273.2 −0.756895 −0.378447 0.925623i \(-0.623542\pi\)
−0.378447 + 0.925623i \(0.623542\pi\)
\(570\) 0 0
\(571\) −2602.62 −0.190747 −0.0953734 0.995442i \(-0.530404\pi\)
−0.0953734 + 0.995442i \(0.530404\pi\)
\(572\) 0 0
\(573\) −17332.6 −1.26366
\(574\) 0 0
\(575\) 537.988 0.0390185
\(576\) 0 0
\(577\) −19727.0 −1.42331 −0.711653 0.702532i \(-0.752053\pi\)
−0.711653 + 0.702532i \(0.752053\pi\)
\(578\) 0 0
\(579\) 14726.7 1.05703
\(580\) 0 0
\(581\) −442.739 −0.0316143
\(582\) 0 0
\(583\) 1639.06 0.116437
\(584\) 0 0
\(585\) −7814.72 −0.552306
\(586\) 0 0
\(587\) 10116.2 0.711309 0.355654 0.934618i \(-0.384258\pi\)
0.355654 + 0.934618i \(0.384258\pi\)
\(588\) 0 0
\(589\) −4448.78 −0.311221
\(590\) 0 0
\(591\) −30386.0 −2.11491
\(592\) 0 0
\(593\) 3130.32 0.216774 0.108387 0.994109i \(-0.465431\pi\)
0.108387 + 0.994109i \(0.465431\pi\)
\(594\) 0 0
\(595\) −18016.9 −1.24138
\(596\) 0 0
\(597\) 45.6009 0.00312616
\(598\) 0 0
\(599\) 10080.1 0.687581 0.343790 0.939046i \(-0.388289\pi\)
0.343790 + 0.939046i \(0.388289\pi\)
\(600\) 0 0
\(601\) 4777.02 0.324224 0.162112 0.986772i \(-0.448169\pi\)
0.162112 + 0.986772i \(0.448169\pi\)
\(602\) 0 0
\(603\) −3352.24 −0.226391
\(604\) 0 0
\(605\) 1555.63 0.104537
\(606\) 0 0
\(607\) −2571.35 −0.171941 −0.0859703 0.996298i \(-0.527399\pi\)
−0.0859703 + 0.996298i \(0.527399\pi\)
\(608\) 0 0
\(609\) 16959.3 1.12845
\(610\) 0 0
\(611\) −5362.67 −0.355074
\(612\) 0 0
\(613\) −12711.9 −0.837564 −0.418782 0.908087i \(-0.637543\pi\)
−0.418782 + 0.908087i \(0.637543\pi\)
\(614\) 0 0
\(615\) −20953.8 −1.37388
\(616\) 0 0
\(617\) 16236.1 1.05939 0.529693 0.848189i \(-0.322307\pi\)
0.529693 + 0.848189i \(0.322307\pi\)
\(618\) 0 0
\(619\) −12657.3 −0.821874 −0.410937 0.911664i \(-0.634798\pi\)
−0.410937 + 0.911664i \(0.634798\pi\)
\(620\) 0 0
\(621\) 1492.75 0.0964607
\(622\) 0 0
\(623\) −5973.75 −0.384162
\(624\) 0 0
\(625\) −19037.8 −1.21842
\(626\) 0 0
\(627\) −4429.28 −0.282119
\(628\) 0 0
\(629\) 3382.28 0.214404
\(630\) 0 0
\(631\) −3949.97 −0.249201 −0.124600 0.992207i \(-0.539765\pi\)
−0.124600 + 0.992207i \(0.539765\pi\)
\(632\) 0 0
\(633\) 18421.0 1.15666
\(634\) 0 0
\(635\) 1409.13 0.0880621
\(636\) 0 0
\(637\) 4212.44 0.262014
\(638\) 0 0
\(639\) −3832.67 −0.237274
\(640\) 0 0
\(641\) −7398.27 −0.455872 −0.227936 0.973676i \(-0.573198\pi\)
−0.227936 + 0.973676i \(0.573198\pi\)
\(642\) 0 0
\(643\) 12491.7 0.766134 0.383067 0.923721i \(-0.374868\pi\)
0.383067 + 0.923721i \(0.374868\pi\)
\(644\) 0 0
\(645\) −174.319 −0.0106415
\(646\) 0 0
\(647\) −10472.0 −0.636315 −0.318158 0.948038i \(-0.603064\pi\)
−0.318158 + 0.948038i \(0.603064\pi\)
\(648\) 0 0
\(649\) −6001.94 −0.363015
\(650\) 0 0
\(651\) 6572.92 0.395719
\(652\) 0 0
\(653\) −6337.94 −0.379820 −0.189910 0.981801i \(-0.560820\pi\)
−0.189910 + 0.981801i \(0.560820\pi\)
\(654\) 0 0
\(655\) −14871.2 −0.887121
\(656\) 0 0
\(657\) 4972.48 0.295274
\(658\) 0 0
\(659\) −15196.7 −0.898302 −0.449151 0.893456i \(-0.648274\pi\)
−0.449151 + 0.893456i \(0.648274\pi\)
\(660\) 0 0
\(661\) −2298.17 −0.135232 −0.0676161 0.997711i \(-0.521539\pi\)
−0.0676161 + 0.997711i \(0.521539\pi\)
\(662\) 0 0
\(663\) −36631.1 −2.14575
\(664\) 0 0
\(665\) 14782.5 0.862016
\(666\) 0 0
\(667\) −2256.73 −0.131006
\(668\) 0 0
\(669\) 73.0265 0.00422028
\(670\) 0 0
\(671\) −1114.33 −0.0641106
\(672\) 0 0
\(673\) 23199.6 1.32880 0.664398 0.747379i \(-0.268688\pi\)
0.664398 + 0.747379i \(0.268688\pi\)
\(674\) 0 0
\(675\) 4503.49 0.256799
\(676\) 0 0
\(677\) 2145.38 0.121793 0.0608963 0.998144i \(-0.480604\pi\)
0.0608963 + 0.998144i \(0.480604\pi\)
\(678\) 0 0
\(679\) 14348.1 0.810941
\(680\) 0 0
\(681\) 27364.0 1.53978
\(682\) 0 0
\(683\) 29544.6 1.65519 0.827593 0.561329i \(-0.189710\pi\)
0.827593 + 0.561329i \(0.189710\pi\)
\(684\) 0 0
\(685\) 2549.72 0.142219
\(686\) 0 0
\(687\) 30083.4 1.67068
\(688\) 0 0
\(689\) −11121.9 −0.614964
\(690\) 0 0
\(691\) −27803.1 −1.53065 −0.765325 0.643644i \(-0.777422\pi\)
−0.765325 + 0.643644i \(0.777422\pi\)
\(692\) 0 0
\(693\) 1516.42 0.0831227
\(694\) 0 0
\(695\) 37285.4 2.03498
\(696\) 0 0
\(697\) −22759.8 −1.23686
\(698\) 0 0
\(699\) −1254.90 −0.0679036
\(700\) 0 0
\(701\) 19697.8 1.06130 0.530652 0.847590i \(-0.321947\pi\)
0.530652 + 0.847590i \(0.321947\pi\)
\(702\) 0 0
\(703\) −2775.09 −0.148883
\(704\) 0 0
\(705\) −5475.78 −0.292524
\(706\) 0 0
\(707\) −21896.0 −1.16476
\(708\) 0 0
\(709\) −19122.5 −1.01292 −0.506460 0.862263i \(-0.669046\pi\)
−0.506460 + 0.862263i \(0.669046\pi\)
\(710\) 0 0
\(711\) −7966.27 −0.420195
\(712\) 0 0
\(713\) −874.641 −0.0459405
\(714\) 0 0
\(715\) −10555.8 −0.552117
\(716\) 0 0
\(717\) −25565.3 −1.33160
\(718\) 0 0
\(719\) 1837.44 0.0953060 0.0476530 0.998864i \(-0.484826\pi\)
0.0476530 + 0.998864i \(0.484826\pi\)
\(720\) 0 0
\(721\) −29205.2 −1.50854
\(722\) 0 0
\(723\) 5907.95 0.303899
\(724\) 0 0
\(725\) −6808.33 −0.348765
\(726\) 0 0
\(727\) −7555.46 −0.385442 −0.192721 0.981254i \(-0.561731\pi\)
−0.192721 + 0.981254i \(0.561731\pi\)
\(728\) 0 0
\(729\) 10705.2 0.543881
\(730\) 0 0
\(731\) −189.344 −0.00958021
\(732\) 0 0
\(733\) −11984.6 −0.603905 −0.301952 0.953323i \(-0.597638\pi\)
−0.301952 + 0.953323i \(0.597638\pi\)
\(734\) 0 0
\(735\) 4301.29 0.215858
\(736\) 0 0
\(737\) −4528.05 −0.226313
\(738\) 0 0
\(739\) 27142.5 1.35109 0.675543 0.737321i \(-0.263909\pi\)
0.675543 + 0.737321i \(0.263909\pi\)
\(740\) 0 0
\(741\) 30055.1 1.49001
\(742\) 0 0
\(743\) −29222.6 −1.44290 −0.721450 0.692467i \(-0.756524\pi\)
−0.721450 + 0.692467i \(0.756524\pi\)
\(744\) 0 0
\(745\) −44847.6 −2.20549
\(746\) 0 0
\(747\) −212.987 −0.0104321
\(748\) 0 0
\(749\) 8196.29 0.399847
\(750\) 0 0
\(751\) −8859.39 −0.430471 −0.215236 0.976562i \(-0.569052\pi\)
−0.215236 + 0.976562i \(0.569052\pi\)
\(752\) 0 0
\(753\) −1641.47 −0.0794404
\(754\) 0 0
\(755\) −14956.2 −0.720941
\(756\) 0 0
\(757\) −35734.4 −1.71571 −0.857853 0.513896i \(-0.828202\pi\)
−0.857853 + 0.513896i \(0.828202\pi\)
\(758\) 0 0
\(759\) −870.806 −0.0416446
\(760\) 0 0
\(761\) 34394.7 1.63838 0.819189 0.573524i \(-0.194424\pi\)
0.819189 + 0.573524i \(0.194424\pi\)
\(762\) 0 0
\(763\) 1087.74 0.0516107
\(764\) 0 0
\(765\) −8667.33 −0.409631
\(766\) 0 0
\(767\) 40726.4 1.91727
\(768\) 0 0
\(769\) −11602.7 −0.544091 −0.272045 0.962284i \(-0.587700\pi\)
−0.272045 + 0.962284i \(0.587700\pi\)
\(770\) 0 0
\(771\) 19178.8 0.895859
\(772\) 0 0
\(773\) 12680.6 0.590026 0.295013 0.955493i \(-0.404676\pi\)
0.295013 + 0.955493i \(0.404676\pi\)
\(774\) 0 0
\(775\) −2638.71 −0.122303
\(776\) 0 0
\(777\) 4100.10 0.189305
\(778\) 0 0
\(779\) 18674.0 0.858876
\(780\) 0 0
\(781\) −5176.99 −0.237193
\(782\) 0 0
\(783\) −18891.0 −0.862210
\(784\) 0 0
\(785\) −4397.62 −0.199946
\(786\) 0 0
\(787\) 4417.61 0.200090 0.100045 0.994983i \(-0.468101\pi\)
0.100045 + 0.994983i \(0.468101\pi\)
\(788\) 0 0
\(789\) −1232.74 −0.0556231
\(790\) 0 0
\(791\) −33942.4 −1.52573
\(792\) 0 0
\(793\) 7561.33 0.338601
\(794\) 0 0
\(795\) −11356.5 −0.506633
\(796\) 0 0
\(797\) 27030.1 1.20132 0.600661 0.799504i \(-0.294904\pi\)
0.600661 + 0.799504i \(0.294904\pi\)
\(798\) 0 0
\(799\) −5947.75 −0.263350
\(800\) 0 0
\(801\) −2873.77 −0.126766
\(802\) 0 0
\(803\) 6716.60 0.295173
\(804\) 0 0
\(805\) 2906.27 0.127246
\(806\) 0 0
\(807\) 29836.9 1.30150
\(808\) 0 0
\(809\) 23647.0 1.02767 0.513835 0.857889i \(-0.328224\pi\)
0.513835 + 0.857889i \(0.328224\pi\)
\(810\) 0 0
\(811\) −33486.1 −1.44988 −0.724941 0.688811i \(-0.758133\pi\)
−0.724941 + 0.688811i \(0.758133\pi\)
\(812\) 0 0
\(813\) −8815.30 −0.380278
\(814\) 0 0
\(815\) 17933.3 0.770768
\(816\) 0 0
\(817\) 155.353 0.00665251
\(818\) 0 0
\(819\) −10289.7 −0.439014
\(820\) 0 0
\(821\) −2605.69 −0.110766 −0.0553832 0.998465i \(-0.517638\pi\)
−0.0553832 + 0.998465i \(0.517638\pi\)
\(822\) 0 0
\(823\) 31976.2 1.35434 0.677169 0.735828i \(-0.263207\pi\)
0.677169 + 0.735828i \(0.263207\pi\)
\(824\) 0 0
\(825\) −2627.14 −0.110867
\(826\) 0 0
\(827\) 37759.0 1.58768 0.793839 0.608128i \(-0.208079\pi\)
0.793839 + 0.608128i \(0.208079\pi\)
\(828\) 0 0
\(829\) 1137.55 0.0476584 0.0238292 0.999716i \(-0.492414\pi\)
0.0238292 + 0.999716i \(0.492414\pi\)
\(830\) 0 0
\(831\) −1398.08 −0.0583621
\(832\) 0 0
\(833\) 4672.03 0.194329
\(834\) 0 0
\(835\) 6154.40 0.255068
\(836\) 0 0
\(837\) −7321.60 −0.302356
\(838\) 0 0
\(839\) −37372.2 −1.53782 −0.768911 0.639356i \(-0.779201\pi\)
−0.768911 + 0.639356i \(0.779201\pi\)
\(840\) 0 0
\(841\) 4170.26 0.170989
\(842\) 0 0
\(843\) 29137.2 1.19044
\(844\) 0 0
\(845\) 43381.1 1.76610
\(846\) 0 0
\(847\) 2048.31 0.0830943
\(848\) 0 0
\(849\) −30824.0 −1.24603
\(850\) 0 0
\(851\) −545.589 −0.0219772
\(852\) 0 0
\(853\) 22490.8 0.902780 0.451390 0.892327i \(-0.350928\pi\)
0.451390 + 0.892327i \(0.350928\pi\)
\(854\) 0 0
\(855\) 7111.36 0.284449
\(856\) 0 0
\(857\) 43409.5 1.73027 0.865135 0.501539i \(-0.167233\pi\)
0.865135 + 0.501539i \(0.167233\pi\)
\(858\) 0 0
\(859\) −29533.2 −1.17306 −0.586532 0.809926i \(-0.699507\pi\)
−0.586532 + 0.809926i \(0.699507\pi\)
\(860\) 0 0
\(861\) −27590.1 −1.09207
\(862\) 0 0
\(863\) 14351.6 0.566090 0.283045 0.959107i \(-0.408655\pi\)
0.283045 + 0.959107i \(0.408655\pi\)
\(864\) 0 0
\(865\) −23251.9 −0.913975
\(866\) 0 0
\(867\) −11502.4 −0.450569
\(868\) 0 0
\(869\) −10760.5 −0.420051
\(870\) 0 0
\(871\) 30725.3 1.19528
\(872\) 0 0
\(873\) 6902.39 0.267595
\(874\) 0 0
\(875\) −18436.5 −0.712307
\(876\) 0 0
\(877\) 43248.7 1.66523 0.832614 0.553854i \(-0.186844\pi\)
0.832614 + 0.553854i \(0.186844\pi\)
\(878\) 0 0
\(879\) −52647.9 −2.02021
\(880\) 0 0
\(881\) 3816.13 0.145935 0.0729675 0.997334i \(-0.476753\pi\)
0.0729675 + 0.997334i \(0.476753\pi\)
\(882\) 0 0
\(883\) −48787.6 −1.85938 −0.929690 0.368343i \(-0.879925\pi\)
−0.929690 + 0.368343i \(0.879925\pi\)
\(884\) 0 0
\(885\) 41585.5 1.57953
\(886\) 0 0
\(887\) 41495.1 1.57077 0.785384 0.619009i \(-0.212466\pi\)
0.785384 + 0.619009i \(0.212466\pi\)
\(888\) 0 0
\(889\) 1855.41 0.0699984
\(890\) 0 0
\(891\) −9708.15 −0.365023
\(892\) 0 0
\(893\) 4880.01 0.182870
\(894\) 0 0
\(895\) 56951.9 2.12703
\(896\) 0 0
\(897\) 5908.90 0.219947
\(898\) 0 0
\(899\) 11068.7 0.410637
\(900\) 0 0
\(901\) −12335.3 −0.456104
\(902\) 0 0
\(903\) −229.528 −0.00845871
\(904\) 0 0
\(905\) −43829.7 −1.60989
\(906\) 0 0
\(907\) −21615.3 −0.791316 −0.395658 0.918398i \(-0.629483\pi\)
−0.395658 + 0.918398i \(0.629483\pi\)
\(908\) 0 0
\(909\) −10533.4 −0.384347
\(910\) 0 0
\(911\) 3646.35 0.132611 0.0663057 0.997799i \(-0.478879\pi\)
0.0663057 + 0.997799i \(0.478879\pi\)
\(912\) 0 0
\(913\) −287.693 −0.0104285
\(914\) 0 0
\(915\) 7720.82 0.278954
\(916\) 0 0
\(917\) −19581.1 −0.705151
\(918\) 0 0
\(919\) 31280.0 1.12278 0.561388 0.827553i \(-0.310267\pi\)
0.561388 + 0.827553i \(0.310267\pi\)
\(920\) 0 0
\(921\) −8880.05 −0.317707
\(922\) 0 0
\(923\) 35128.7 1.25274
\(924\) 0 0
\(925\) −1645.99 −0.0585079
\(926\) 0 0
\(927\) −14049.7 −0.497790
\(928\) 0 0
\(929\) 6557.92 0.231602 0.115801 0.993272i \(-0.463056\pi\)
0.115801 + 0.993272i \(0.463056\pi\)
\(930\) 0 0
\(931\) −3833.30 −0.134942
\(932\) 0 0
\(933\) 44370.9 1.55695
\(934\) 0 0
\(935\) −11707.4 −0.409491
\(936\) 0 0
\(937\) −24473.3 −0.853265 −0.426632 0.904425i \(-0.640300\pi\)
−0.426632 + 0.904425i \(0.640300\pi\)
\(938\) 0 0
\(939\) 3902.91 0.135641
\(940\) 0 0
\(941\) −15420.8 −0.534224 −0.267112 0.963665i \(-0.586069\pi\)
−0.267112 + 0.963665i \(0.586069\pi\)
\(942\) 0 0
\(943\) 3671.34 0.126782
\(944\) 0 0
\(945\) 24328.3 0.837461
\(946\) 0 0
\(947\) 33141.2 1.13722 0.568608 0.822609i \(-0.307482\pi\)
0.568608 + 0.822609i \(0.307482\pi\)
\(948\) 0 0
\(949\) −45575.8 −1.55896
\(950\) 0 0
\(951\) 1385.47 0.0472417
\(952\) 0 0
\(953\) −20735.4 −0.704813 −0.352406 0.935847i \(-0.614637\pi\)
−0.352406 + 0.935847i \(0.614637\pi\)
\(954\) 0 0
\(955\) 37589.0 1.27367
\(956\) 0 0
\(957\) 11020.2 0.372239
\(958\) 0 0
\(959\) 3357.26 0.113046
\(960\) 0 0
\(961\) −25501.1 −0.856000
\(962\) 0 0
\(963\) 3942.96 0.131942
\(964\) 0 0
\(965\) −31937.7 −1.06540
\(966\) 0 0
\(967\) −8178.87 −0.271990 −0.135995 0.990710i \(-0.543423\pi\)
−0.135995 + 0.990710i \(0.543423\pi\)
\(968\) 0 0
\(969\) 33334.2 1.10511
\(970\) 0 0
\(971\) 20576.1 0.680039 0.340020 0.940418i \(-0.389566\pi\)
0.340020 + 0.940418i \(0.389566\pi\)
\(972\) 0 0
\(973\) 49094.1 1.61756
\(974\) 0 0
\(975\) 17826.6 0.585546
\(976\) 0 0
\(977\) 14541.9 0.476188 0.238094 0.971242i \(-0.423477\pi\)
0.238094 + 0.971242i \(0.423477\pi\)
\(978\) 0 0
\(979\) −3881.76 −0.126723
\(980\) 0 0
\(981\) 523.277 0.0170305
\(982\) 0 0
\(983\) −29285.7 −0.950223 −0.475111 0.879926i \(-0.657592\pi\)
−0.475111 + 0.879926i \(0.657592\pi\)
\(984\) 0 0
\(985\) 65897.7 2.13165
\(986\) 0 0
\(987\) −7210.03 −0.232521
\(988\) 0 0
\(989\) 30.5427 0.000982004 0
\(990\) 0 0
\(991\) −38085.9 −1.22083 −0.610413 0.792083i \(-0.708997\pi\)
−0.610413 + 0.792083i \(0.708997\pi\)
\(992\) 0 0
\(993\) 50585.1 1.61658
\(994\) 0 0
\(995\) −98.8940 −0.00315090
\(996\) 0 0
\(997\) 26803.6 0.851434 0.425717 0.904856i \(-0.360022\pi\)
0.425717 + 0.904856i \(0.360022\pi\)
\(998\) 0 0
\(999\) −4567.12 −0.144642
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.4.a.p.1.1 2
4.3 odd 2 704.4.a.n.1.2 2
8.3 odd 2 176.4.a.i.1.1 2
8.5 even 2 11.4.a.a.1.1 2
24.5 odd 2 99.4.a.c.1.2 2
24.11 even 2 1584.4.a.bc.1.2 2
40.13 odd 4 275.4.b.c.199.3 4
40.29 even 2 275.4.a.b.1.2 2
40.37 odd 4 275.4.b.c.199.2 4
56.13 odd 2 539.4.a.e.1.1 2
88.5 even 10 121.4.c.c.3.2 8
88.13 odd 10 121.4.c.f.81.1 8
88.21 odd 2 121.4.a.c.1.2 2
88.29 odd 10 121.4.c.f.27.2 8
88.37 even 10 121.4.c.c.27.1 8
88.43 even 2 1936.4.a.w.1.1 2
88.53 even 10 121.4.c.c.81.2 8
88.61 odd 10 121.4.c.f.3.1 8
88.69 even 10 121.4.c.c.9.1 8
88.85 odd 10 121.4.c.f.9.2 8
104.77 even 2 1859.4.a.a.1.2 2
120.29 odd 2 2475.4.a.q.1.1 2
264.197 even 2 1089.4.a.v.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.4.a.a.1.1 2 8.5 even 2
99.4.a.c.1.2 2 24.5 odd 2
121.4.a.c.1.2 2 88.21 odd 2
121.4.c.c.3.2 8 88.5 even 10
121.4.c.c.9.1 8 88.69 even 10
121.4.c.c.27.1 8 88.37 even 10
121.4.c.c.81.2 8 88.53 even 10
121.4.c.f.3.1 8 88.61 odd 10
121.4.c.f.9.2 8 88.85 odd 10
121.4.c.f.27.2 8 88.29 odd 10
121.4.c.f.81.1 8 88.13 odd 10
176.4.a.i.1.1 2 8.3 odd 2
275.4.a.b.1.2 2 40.29 even 2
275.4.b.c.199.2 4 40.37 odd 4
275.4.b.c.199.3 4 40.13 odd 4
539.4.a.e.1.1 2 56.13 odd 2
704.4.a.n.1.2 2 4.3 odd 2
704.4.a.p.1.1 2 1.1 even 1 trivial
1089.4.a.v.1.1 2 264.197 even 2
1584.4.a.bc.1.2 2 24.11 even 2
1859.4.a.a.1.2 2 104.77 even 2
1936.4.a.w.1.1 2 88.43 even 2
2475.4.a.q.1.1 2 120.29 odd 2