Properties

Label 704.4.a.n.1.2
Level $704$
Weight $4$
Character 704.1
Self dual yes
Analytic conductor $41.537$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,4,Mod(1,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 704.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5373446440\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 704.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.92820 q^{3} +12.8564 q^{5} -16.9282 q^{7} +8.14359 q^{9} +O(q^{10})\) \(q+5.92820 q^{3} +12.8564 q^{5} -16.9282 q^{7} +8.14359 q^{9} -11.0000 q^{11} -74.6410 q^{13} +76.2154 q^{15} -82.7846 q^{17} -67.9230 q^{19} -100.354 q^{21} -13.3538 q^{23} +40.2872 q^{25} -111.785 q^{27} -168.995 q^{29} +65.4974 q^{31} -65.2102 q^{33} -217.636 q^{35} -40.8564 q^{37} -442.487 q^{39} +274.928 q^{41} -2.28719 q^{43} +104.697 q^{45} -71.8461 q^{47} -56.4359 q^{49} -490.764 q^{51} +149.005 q^{53} -141.420 q^{55} -402.662 q^{57} +545.631 q^{59} -101.303 q^{61} -137.856 q^{63} -959.615 q^{65} +411.641 q^{67} -79.1642 q^{69} +470.636 q^{71} +610.600 q^{73} +238.831 q^{75} +186.210 q^{77} +978.225 q^{79} -882.559 q^{81} +26.1539 q^{83} -1064.31 q^{85} -1001.84 q^{87} -352.887 q^{89} +1263.54 q^{91} +388.282 q^{93} -873.246 q^{95} +847.585 q^{97} -89.5795 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{5} - 20 q^{7} + 44 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} - 2 q^{5} - 20 q^{7} + 44 q^{9} - 22 q^{11} - 80 q^{13} + 194 q^{15} - 124 q^{17} + 72 q^{19} - 76 q^{21} + 98 q^{23} + 136 q^{25} - 182 q^{27} - 144 q^{29} + 34 q^{31} + 22 q^{33} - 172 q^{35} - 54 q^{37} - 400 q^{39} + 536 q^{41} - 60 q^{43} - 428 q^{45} + 272 q^{47} - 390 q^{49} - 164 q^{51} + 492 q^{53} + 22 q^{55} - 1512 q^{57} + 634 q^{59} - 840 q^{61} - 248 q^{63} - 880 q^{65} + 754 q^{67} - 962 q^{69} + 678 q^{71} - 400 q^{73} - 520 q^{75} + 220 q^{77} - 316 q^{79} - 1294 q^{81} + 468 q^{83} - 452 q^{85} - 1200 q^{87} - 1842 q^{89} + 1280 q^{91} + 638 q^{93} - 2952 q^{95} + 2194 q^{97} - 484 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.92820 1.14088 0.570442 0.821338i \(-0.306772\pi\)
0.570442 + 0.821338i \(0.306772\pi\)
\(4\) 0 0
\(5\) 12.8564 1.14991 0.574956 0.818184i \(-0.305019\pi\)
0.574956 + 0.818184i \(0.305019\pi\)
\(6\) 0 0
\(7\) −16.9282 −0.914037 −0.457019 0.889457i \(-0.651083\pi\)
−0.457019 + 0.889457i \(0.651083\pi\)
\(8\) 0 0
\(9\) 8.14359 0.301615
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −74.6410 −1.59244 −0.796219 0.605009i \(-0.793170\pi\)
−0.796219 + 0.605009i \(0.793170\pi\)
\(14\) 0 0
\(15\) 76.2154 1.31192
\(16\) 0 0
\(17\) −82.7846 −1.18107 −0.590536 0.807011i \(-0.701084\pi\)
−0.590536 + 0.807011i \(0.701084\pi\)
\(18\) 0 0
\(19\) −67.9230 −0.820138 −0.410069 0.912055i \(-0.634495\pi\)
−0.410069 + 0.912055i \(0.634495\pi\)
\(20\) 0 0
\(21\) −100.354 −1.04281
\(22\) 0 0
\(23\) −13.3538 −0.121064 −0.0605319 0.998166i \(-0.519280\pi\)
−0.0605319 + 0.998166i \(0.519280\pi\)
\(24\) 0 0
\(25\) 40.2872 0.322297
\(26\) 0 0
\(27\) −111.785 −0.796776
\(28\) 0 0
\(29\) −168.995 −1.08212 −0.541061 0.840983i \(-0.681977\pi\)
−0.541061 + 0.840983i \(0.681977\pi\)
\(30\) 0 0
\(31\) 65.4974 0.379474 0.189737 0.981835i \(-0.439237\pi\)
0.189737 + 0.981835i \(0.439237\pi\)
\(32\) 0 0
\(33\) −65.2102 −0.343989
\(34\) 0 0
\(35\) −217.636 −1.05106
\(36\) 0 0
\(37\) −40.8564 −0.181534 −0.0907669 0.995872i \(-0.528932\pi\)
−0.0907669 + 0.995872i \(0.528932\pi\)
\(38\) 0 0
\(39\) −442.487 −1.81679
\(40\) 0 0
\(41\) 274.928 1.04723 0.523617 0.851954i \(-0.324582\pi\)
0.523617 + 0.851954i \(0.324582\pi\)
\(42\) 0 0
\(43\) −2.28719 −0.00811146 −0.00405573 0.999992i \(-0.501291\pi\)
−0.00405573 + 0.999992i \(0.501291\pi\)
\(44\) 0 0
\(45\) 104.697 0.346830
\(46\) 0 0
\(47\) −71.8461 −0.222975 −0.111488 0.993766i \(-0.535562\pi\)
−0.111488 + 0.993766i \(0.535562\pi\)
\(48\) 0 0
\(49\) −56.4359 −0.164536
\(50\) 0 0
\(51\) −490.764 −1.34746
\(52\) 0 0
\(53\) 149.005 0.386178 0.193089 0.981181i \(-0.438149\pi\)
0.193089 + 0.981181i \(0.438149\pi\)
\(54\) 0 0
\(55\) −141.420 −0.346711
\(56\) 0 0
\(57\) −402.662 −0.935681
\(58\) 0 0
\(59\) 545.631 1.20398 0.601992 0.798502i \(-0.294374\pi\)
0.601992 + 0.798502i \(0.294374\pi\)
\(60\) 0 0
\(61\) −101.303 −0.212631 −0.106315 0.994332i \(-0.533905\pi\)
−0.106315 + 0.994332i \(0.533905\pi\)
\(62\) 0 0
\(63\) −137.856 −0.275687
\(64\) 0 0
\(65\) −959.615 −1.83116
\(66\) 0 0
\(67\) 411.641 0.750596 0.375298 0.926904i \(-0.377540\pi\)
0.375298 + 0.926904i \(0.377540\pi\)
\(68\) 0 0
\(69\) −79.1642 −0.138120
\(70\) 0 0
\(71\) 470.636 0.786679 0.393339 0.919393i \(-0.371320\pi\)
0.393339 + 0.919393i \(0.371320\pi\)
\(72\) 0 0
\(73\) 610.600 0.978977 0.489488 0.872010i \(-0.337184\pi\)
0.489488 + 0.872010i \(0.337184\pi\)
\(74\) 0 0
\(75\) 238.831 0.367704
\(76\) 0 0
\(77\) 186.210 0.275593
\(78\) 0 0
\(79\) 978.225 1.39315 0.696576 0.717483i \(-0.254706\pi\)
0.696576 + 0.717483i \(0.254706\pi\)
\(80\) 0 0
\(81\) −882.559 −1.21064
\(82\) 0 0
\(83\) 26.1539 0.0345875 0.0172938 0.999850i \(-0.494495\pi\)
0.0172938 + 0.999850i \(0.494495\pi\)
\(84\) 0 0
\(85\) −1064.31 −1.35813
\(86\) 0 0
\(87\) −1001.84 −1.23458
\(88\) 0 0
\(89\) −352.887 −0.420292 −0.210146 0.977670i \(-0.567394\pi\)
−0.210146 + 0.977670i \(0.567394\pi\)
\(90\) 0 0
\(91\) 1263.54 1.45555
\(92\) 0 0
\(93\) 388.282 0.432935
\(94\) 0 0
\(95\) −873.246 −0.943086
\(96\) 0 0
\(97\) 847.585 0.887208 0.443604 0.896223i \(-0.353700\pi\)
0.443604 + 0.896223i \(0.353700\pi\)
\(98\) 0 0
\(99\) −89.5795 −0.0909402
\(100\) 0 0
\(101\) −1293.46 −1.27430 −0.637150 0.770740i \(-0.719887\pi\)
−0.637150 + 0.770740i \(0.719887\pi\)
\(102\) 0 0
\(103\) 1725.24 1.65042 0.825209 0.564828i \(-0.191057\pi\)
0.825209 + 0.564828i \(0.191057\pi\)
\(104\) 0 0
\(105\) −1290.19 −1.19914
\(106\) 0 0
\(107\) −484.179 −0.437452 −0.218726 0.975786i \(-0.570190\pi\)
−0.218726 + 0.975786i \(0.570190\pi\)
\(108\) 0 0
\(109\) 64.2563 0.0564645 0.0282323 0.999601i \(-0.491012\pi\)
0.0282323 + 0.999601i \(0.491012\pi\)
\(110\) 0 0
\(111\) −242.205 −0.207109
\(112\) 0 0
\(113\) −2005.08 −1.66922 −0.834612 0.550839i \(-0.814308\pi\)
−0.834612 + 0.550839i \(0.814308\pi\)
\(114\) 0 0
\(115\) −171.682 −0.139213
\(116\) 0 0
\(117\) −607.846 −0.480302
\(118\) 0 0
\(119\) 1401.39 1.07954
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 1629.83 1.19477
\(124\) 0 0
\(125\) −1089.10 −0.779298
\(126\) 0 0
\(127\) −109.605 −0.0765816 −0.0382908 0.999267i \(-0.512191\pi\)
−0.0382908 + 0.999267i \(0.512191\pi\)
\(128\) 0 0
\(129\) −13.5589 −0.00925423
\(130\) 0 0
\(131\) 1156.71 0.771469 0.385734 0.922610i \(-0.373948\pi\)
0.385734 + 0.922610i \(0.373948\pi\)
\(132\) 0 0
\(133\) 1149.82 0.749636
\(134\) 0 0
\(135\) −1437.15 −0.916223
\(136\) 0 0
\(137\) 198.323 0.123678 0.0618391 0.998086i \(-0.480303\pi\)
0.0618391 + 0.998086i \(0.480303\pi\)
\(138\) 0 0
\(139\) −2900.14 −1.76969 −0.884844 0.465888i \(-0.845735\pi\)
−0.884844 + 0.465888i \(0.845735\pi\)
\(140\) 0 0
\(141\) −425.918 −0.254389
\(142\) 0 0
\(143\) 821.051 0.480138
\(144\) 0 0
\(145\) −2172.67 −1.24435
\(146\) 0 0
\(147\) −334.564 −0.187717
\(148\) 0 0
\(149\) −3488.34 −1.91796 −0.958980 0.283472i \(-0.908514\pi\)
−0.958980 + 0.283472i \(0.908514\pi\)
\(150\) 0 0
\(151\) 1163.32 0.626953 0.313477 0.949596i \(-0.398506\pi\)
0.313477 + 0.949596i \(0.398506\pi\)
\(152\) 0 0
\(153\) −674.164 −0.356228
\(154\) 0 0
\(155\) 842.061 0.436361
\(156\) 0 0
\(157\) −342.057 −0.173880 −0.0869398 0.996214i \(-0.527709\pi\)
−0.0869398 + 0.996214i \(0.527709\pi\)
\(158\) 0 0
\(159\) 883.333 0.440584
\(160\) 0 0
\(161\) 226.056 0.110657
\(162\) 0 0
\(163\) −1394.89 −0.670285 −0.335142 0.942167i \(-0.608784\pi\)
−0.335142 + 0.942167i \(0.608784\pi\)
\(164\) 0 0
\(165\) −838.369 −0.395557
\(166\) 0 0
\(167\) −478.703 −0.221815 −0.110908 0.993831i \(-0.535376\pi\)
−0.110908 + 0.993831i \(0.535376\pi\)
\(168\) 0 0
\(169\) 3374.28 1.53586
\(170\) 0 0
\(171\) −553.138 −0.247365
\(172\) 0 0
\(173\) −1808.58 −0.794822 −0.397411 0.917641i \(-0.630091\pi\)
−0.397411 + 0.917641i \(0.630091\pi\)
\(174\) 0 0
\(175\) −681.990 −0.294592
\(176\) 0 0
\(177\) 3234.61 1.37361
\(178\) 0 0
\(179\) −4429.85 −1.84973 −0.924867 0.380292i \(-0.875824\pi\)
−0.924867 + 0.380292i \(0.875824\pi\)
\(180\) 0 0
\(181\) −3409.17 −1.40001 −0.700005 0.714138i \(-0.746819\pi\)
−0.700005 + 0.714138i \(0.746819\pi\)
\(182\) 0 0
\(183\) −600.543 −0.242587
\(184\) 0 0
\(185\) −525.267 −0.208748
\(186\) 0 0
\(187\) 910.631 0.356106
\(188\) 0 0
\(189\) 1892.31 0.728283
\(190\) 0 0
\(191\) −2923.75 −1.10762 −0.553810 0.832643i \(-0.686827\pi\)
−0.553810 + 0.832643i \(0.686827\pi\)
\(192\) 0 0
\(193\) −2484.18 −0.926505 −0.463253 0.886226i \(-0.653318\pi\)
−0.463253 + 0.886226i \(0.653318\pi\)
\(194\) 0 0
\(195\) −5688.79 −2.08914
\(196\) 0 0
\(197\) 5125.67 1.85375 0.926876 0.375369i \(-0.122484\pi\)
0.926876 + 0.375369i \(0.122484\pi\)
\(198\) 0 0
\(199\) 7.69219 0.00274013 0.00137006 0.999999i \(-0.499564\pi\)
0.00137006 + 0.999999i \(0.499564\pi\)
\(200\) 0 0
\(201\) 2440.29 0.856343
\(202\) 0 0
\(203\) 2860.78 0.989100
\(204\) 0 0
\(205\) 3534.59 1.20423
\(206\) 0 0
\(207\) −108.748 −0.0365146
\(208\) 0 0
\(209\) 747.154 0.247281
\(210\) 0 0
\(211\) 3107.34 1.01383 0.506915 0.861996i \(-0.330786\pi\)
0.506915 + 0.861996i \(0.330786\pi\)
\(212\) 0 0
\(213\) 2790.03 0.897509
\(214\) 0 0
\(215\) −29.4050 −0.00932746
\(216\) 0 0
\(217\) −1108.75 −0.346853
\(218\) 0 0
\(219\) 3619.76 1.11690
\(220\) 0 0
\(221\) 6179.13 1.88078
\(222\) 0 0
\(223\) 12.3185 0.00369913 0.00184957 0.999998i \(-0.499411\pi\)
0.00184957 + 0.999998i \(0.499411\pi\)
\(224\) 0 0
\(225\) 328.082 0.0972096
\(226\) 0 0
\(227\) 4615.90 1.34964 0.674820 0.737983i \(-0.264221\pi\)
0.674820 + 0.737983i \(0.264221\pi\)
\(228\) 0 0
\(229\) −5074.63 −1.46437 −0.732186 0.681105i \(-0.761500\pi\)
−0.732186 + 0.681105i \(0.761500\pi\)
\(230\) 0 0
\(231\) 1103.89 0.314419
\(232\) 0 0
\(233\) 211.683 0.0595184 0.0297592 0.999557i \(-0.490526\pi\)
0.0297592 + 0.999557i \(0.490526\pi\)
\(234\) 0 0
\(235\) −923.683 −0.256402
\(236\) 0 0
\(237\) 5799.12 1.58942
\(238\) 0 0
\(239\) −4312.49 −1.16716 −0.583581 0.812055i \(-0.698349\pi\)
−0.583581 + 0.812055i \(0.698349\pi\)
\(240\) 0 0
\(241\) −996.584 −0.266372 −0.133186 0.991091i \(-0.542521\pi\)
−0.133186 + 0.991091i \(0.542521\pi\)
\(242\) 0 0
\(243\) −2213.80 −0.584426
\(244\) 0 0
\(245\) −725.563 −0.189202
\(246\) 0 0
\(247\) 5069.85 1.30602
\(248\) 0 0
\(249\) 155.046 0.0394603
\(250\) 0 0
\(251\) −276.892 −0.0696306 −0.0348153 0.999394i \(-0.511084\pi\)
−0.0348153 + 0.999394i \(0.511084\pi\)
\(252\) 0 0
\(253\) 146.892 0.0365021
\(254\) 0 0
\(255\) −6309.46 −1.54947
\(256\) 0 0
\(257\) −3235.18 −0.785233 −0.392617 0.919702i \(-0.628430\pi\)
−0.392617 + 0.919702i \(0.628430\pi\)
\(258\) 0 0
\(259\) 691.626 0.165929
\(260\) 0 0
\(261\) −1376.23 −0.326384
\(262\) 0 0
\(263\) −207.944 −0.0487544 −0.0243772 0.999703i \(-0.507760\pi\)
−0.0243772 + 0.999703i \(0.507760\pi\)
\(264\) 0 0
\(265\) 1915.67 0.444071
\(266\) 0 0
\(267\) −2091.99 −0.479504
\(268\) 0 0
\(269\) −5033.04 −1.14078 −0.570390 0.821374i \(-0.693208\pi\)
−0.570390 + 0.821374i \(0.693208\pi\)
\(270\) 0 0
\(271\) −1487.01 −0.333319 −0.166660 0.986015i \(-0.553298\pi\)
−0.166660 + 0.986015i \(0.553298\pi\)
\(272\) 0 0
\(273\) 7490.51 1.66061
\(274\) 0 0
\(275\) −443.159 −0.0971764
\(276\) 0 0
\(277\) 235.836 0.0511552 0.0255776 0.999673i \(-0.491858\pi\)
0.0255776 + 0.999673i \(0.491858\pi\)
\(278\) 0 0
\(279\) 533.384 0.114455
\(280\) 0 0
\(281\) −4915.01 −1.04343 −0.521717 0.853118i \(-0.674708\pi\)
−0.521717 + 0.853118i \(0.674708\pi\)
\(282\) 0 0
\(283\) −5199.56 −1.09216 −0.546081 0.837733i \(-0.683881\pi\)
−0.546081 + 0.837733i \(0.683881\pi\)
\(284\) 0 0
\(285\) −5176.78 −1.07595
\(286\) 0 0
\(287\) −4654.04 −0.957210
\(288\) 0 0
\(289\) 1940.29 0.394930
\(290\) 0 0
\(291\) 5024.65 1.01220
\(292\) 0 0
\(293\) 8880.92 1.77075 0.885373 0.464881i \(-0.153903\pi\)
0.885373 + 0.464881i \(0.153903\pi\)
\(294\) 0 0
\(295\) 7014.85 1.38448
\(296\) 0 0
\(297\) 1229.63 0.240237
\(298\) 0 0
\(299\) 996.743 0.192786
\(300\) 0 0
\(301\) 38.7180 0.00741417
\(302\) 0 0
\(303\) −7667.90 −1.45383
\(304\) 0 0
\(305\) −1302.39 −0.244507
\(306\) 0 0
\(307\) −1497.93 −0.278474 −0.139237 0.990259i \(-0.544465\pi\)
−0.139237 + 0.990259i \(0.544465\pi\)
\(308\) 0 0
\(309\) 10227.6 1.88293
\(310\) 0 0
\(311\) 7484.71 1.36469 0.682345 0.731030i \(-0.260960\pi\)
0.682345 + 0.731030i \(0.260960\pi\)
\(312\) 0 0
\(313\) −658.363 −0.118891 −0.0594455 0.998232i \(-0.518933\pi\)
−0.0594455 + 0.998232i \(0.518933\pi\)
\(314\) 0 0
\(315\) −1772.34 −0.317016
\(316\) 0 0
\(317\) −233.708 −0.0414080 −0.0207040 0.999786i \(-0.506591\pi\)
−0.0207040 + 0.999786i \(0.506591\pi\)
\(318\) 0 0
\(319\) 1858.94 0.326272
\(320\) 0 0
\(321\) −2870.31 −0.499082
\(322\) 0 0
\(323\) 5622.98 0.968641
\(324\) 0 0
\(325\) −3007.08 −0.513239
\(326\) 0 0
\(327\) 380.924 0.0644194
\(328\) 0 0
\(329\) 1216.23 0.203808
\(330\) 0 0
\(331\) 8532.95 1.41696 0.708480 0.705731i \(-0.249381\pi\)
0.708480 + 0.705731i \(0.249381\pi\)
\(332\) 0 0
\(333\) −332.718 −0.0547533
\(334\) 0 0
\(335\) 5292.22 0.863120
\(336\) 0 0
\(337\) 11691.2 1.88979 0.944895 0.327373i \(-0.106163\pi\)
0.944895 + 0.327373i \(0.106163\pi\)
\(338\) 0 0
\(339\) −11886.5 −1.90439
\(340\) 0 0
\(341\) −720.472 −0.114416
\(342\) 0 0
\(343\) 6761.73 1.06443
\(344\) 0 0
\(345\) −1017.77 −0.158825
\(346\) 0 0
\(347\) 4598.79 0.711459 0.355729 0.934589i \(-0.384232\pi\)
0.355729 + 0.934589i \(0.384232\pi\)
\(348\) 0 0
\(349\) −6720.27 −1.03074 −0.515369 0.856968i \(-0.672345\pi\)
−0.515369 + 0.856968i \(0.672345\pi\)
\(350\) 0 0
\(351\) 8343.72 1.26882
\(352\) 0 0
\(353\) 5738.70 0.865270 0.432635 0.901569i \(-0.357584\pi\)
0.432635 + 0.901569i \(0.357584\pi\)
\(354\) 0 0
\(355\) 6050.69 0.904611
\(356\) 0 0
\(357\) 8307.75 1.23163
\(358\) 0 0
\(359\) 4115.27 0.605001 0.302501 0.953149i \(-0.402179\pi\)
0.302501 + 0.953149i \(0.402179\pi\)
\(360\) 0 0
\(361\) −2245.46 −0.327374
\(362\) 0 0
\(363\) 717.313 0.103717
\(364\) 0 0
\(365\) 7850.12 1.12574
\(366\) 0 0
\(367\) −9662.99 −1.37440 −0.687199 0.726469i \(-0.741160\pi\)
−0.687199 + 0.726469i \(0.741160\pi\)
\(368\) 0 0
\(369\) 2238.90 0.315861
\(370\) 0 0
\(371\) −2522.39 −0.352981
\(372\) 0 0
\(373\) 141.780 0.0196812 0.00984062 0.999952i \(-0.496868\pi\)
0.00984062 + 0.999952i \(0.496868\pi\)
\(374\) 0 0
\(375\) −6456.42 −0.889088
\(376\) 0 0
\(377\) 12613.9 1.72321
\(378\) 0 0
\(379\) −2819.73 −0.382163 −0.191082 0.981574i \(-0.561200\pi\)
−0.191082 + 0.981574i \(0.561200\pi\)
\(380\) 0 0
\(381\) −649.760 −0.0873707
\(382\) 0 0
\(383\) 6337.84 0.845557 0.422778 0.906233i \(-0.361055\pi\)
0.422778 + 0.906233i \(0.361055\pi\)
\(384\) 0 0
\(385\) 2393.99 0.316907
\(386\) 0 0
\(387\) −18.6259 −0.00244653
\(388\) 0 0
\(389\) 8805.25 1.14767 0.573836 0.818970i \(-0.305455\pi\)
0.573836 + 0.818970i \(0.305455\pi\)
\(390\) 0 0
\(391\) 1105.49 0.142985
\(392\) 0 0
\(393\) 6857.23 0.880156
\(394\) 0 0
\(395\) 12576.5 1.60200
\(396\) 0 0
\(397\) −4315.26 −0.545534 −0.272767 0.962080i \(-0.587939\pi\)
−0.272767 + 0.962080i \(0.587939\pi\)
\(398\) 0 0
\(399\) 6816.34 0.855247
\(400\) 0 0
\(401\) 361.681 0.0450411 0.0225206 0.999746i \(-0.492831\pi\)
0.0225206 + 0.999746i \(0.492831\pi\)
\(402\) 0 0
\(403\) −4888.79 −0.604288
\(404\) 0 0
\(405\) −11346.5 −1.39213
\(406\) 0 0
\(407\) 449.420 0.0547345
\(408\) 0 0
\(409\) 9220.50 1.11473 0.557365 0.830268i \(-0.311812\pi\)
0.557365 + 0.830268i \(0.311812\pi\)
\(410\) 0 0
\(411\) 1175.70 0.141102
\(412\) 0 0
\(413\) −9236.55 −1.10049
\(414\) 0 0
\(415\) 336.245 0.0397726
\(416\) 0 0
\(417\) −17192.6 −2.01901
\(418\) 0 0
\(419\) −14912.9 −1.73876 −0.869380 0.494144i \(-0.835481\pi\)
−0.869380 + 0.494144i \(0.835481\pi\)
\(420\) 0 0
\(421\) 13486.0 1.56121 0.780603 0.625027i \(-0.214912\pi\)
0.780603 + 0.625027i \(0.214912\pi\)
\(422\) 0 0
\(423\) −585.085 −0.0672525
\(424\) 0 0
\(425\) −3335.16 −0.380656
\(426\) 0 0
\(427\) 1714.87 0.194352
\(428\) 0 0
\(429\) 4867.36 0.547782
\(430\) 0 0
\(431\) −406.334 −0.0454116 −0.0227058 0.999742i \(-0.507228\pi\)
−0.0227058 + 0.999742i \(0.507228\pi\)
\(432\) 0 0
\(433\) −1766.69 −0.196078 −0.0980391 0.995183i \(-0.531257\pi\)
−0.0980391 + 0.995183i \(0.531257\pi\)
\(434\) 0 0
\(435\) −12880.0 −1.41965
\(436\) 0 0
\(437\) 907.033 0.0992889
\(438\) 0 0
\(439\) −7824.19 −0.850634 −0.425317 0.905044i \(-0.639837\pi\)
−0.425317 + 0.905044i \(0.639837\pi\)
\(440\) 0 0
\(441\) −459.591 −0.0496265
\(442\) 0 0
\(443\) 11667.9 1.25137 0.625686 0.780075i \(-0.284819\pi\)
0.625686 + 0.780075i \(0.284819\pi\)
\(444\) 0 0
\(445\) −4536.86 −0.483299
\(446\) 0 0
\(447\) −20679.6 −2.18817
\(448\) 0 0
\(449\) 16975.3 1.78421 0.892107 0.451825i \(-0.149227\pi\)
0.892107 + 0.451825i \(0.149227\pi\)
\(450\) 0 0
\(451\) −3024.21 −0.315753
\(452\) 0 0
\(453\) 6896.42 0.715280
\(454\) 0 0
\(455\) 16244.6 1.67375
\(456\) 0 0
\(457\) −16192.9 −1.65748 −0.828741 0.559632i \(-0.810943\pi\)
−0.828741 + 0.559632i \(0.810943\pi\)
\(458\) 0 0
\(459\) 9254.05 0.941050
\(460\) 0 0
\(461\) −8586.04 −0.867444 −0.433722 0.901047i \(-0.642800\pi\)
−0.433722 + 0.901047i \(0.642800\pi\)
\(462\) 0 0
\(463\) 7917.20 0.794694 0.397347 0.917668i \(-0.369931\pi\)
0.397347 + 0.917668i \(0.369931\pi\)
\(464\) 0 0
\(465\) 4991.91 0.497837
\(466\) 0 0
\(467\) −15155.0 −1.50169 −0.750844 0.660480i \(-0.770353\pi\)
−0.750844 + 0.660480i \(0.770353\pi\)
\(468\) 0 0
\(469\) −6968.34 −0.686073
\(470\) 0 0
\(471\) −2027.78 −0.198376
\(472\) 0 0
\(473\) 25.1591 0.00244570
\(474\) 0 0
\(475\) −2736.43 −0.264328
\(476\) 0 0
\(477\) 1213.44 0.116477
\(478\) 0 0
\(479\) −10001.1 −0.953993 −0.476996 0.878905i \(-0.658275\pi\)
−0.476996 + 0.878905i \(0.658275\pi\)
\(480\) 0 0
\(481\) 3049.56 0.289081
\(482\) 0 0
\(483\) 1340.11 0.126246
\(484\) 0 0
\(485\) 10896.9 1.02021
\(486\) 0 0
\(487\) −7044.54 −0.655480 −0.327740 0.944768i \(-0.606287\pi\)
−0.327740 + 0.944768i \(0.606287\pi\)
\(488\) 0 0
\(489\) −8269.21 −0.764717
\(490\) 0 0
\(491\) −13326.4 −1.22487 −0.612437 0.790520i \(-0.709811\pi\)
−0.612437 + 0.790520i \(0.709811\pi\)
\(492\) 0 0
\(493\) 13990.2 1.27806
\(494\) 0 0
\(495\) −1151.67 −0.104573
\(496\) 0 0
\(497\) −7967.02 −0.719054
\(498\) 0 0
\(499\) −20069.1 −1.80044 −0.900218 0.435440i \(-0.856593\pi\)
−0.900218 + 0.435440i \(0.856593\pi\)
\(500\) 0 0
\(501\) −2837.85 −0.253065
\(502\) 0 0
\(503\) −7782.35 −0.689856 −0.344928 0.938629i \(-0.612097\pi\)
−0.344928 + 0.938629i \(0.612097\pi\)
\(504\) 0 0
\(505\) −16629.3 −1.46533
\(506\) 0 0
\(507\) 20003.4 1.75224
\(508\) 0 0
\(509\) 1475.93 0.128526 0.0642628 0.997933i \(-0.479530\pi\)
0.0642628 + 0.997933i \(0.479530\pi\)
\(510\) 0 0
\(511\) −10336.4 −0.894821
\(512\) 0 0
\(513\) 7592.75 0.653466
\(514\) 0 0
\(515\) 22180.4 1.89784
\(516\) 0 0
\(517\) 790.307 0.0672295
\(518\) 0 0
\(519\) −10721.7 −0.906799
\(520\) 0 0
\(521\) 7609.43 0.639875 0.319938 0.947439i \(-0.396338\pi\)
0.319938 + 0.947439i \(0.396338\pi\)
\(522\) 0 0
\(523\) 12452.9 1.04116 0.520581 0.853812i \(-0.325715\pi\)
0.520581 + 0.853812i \(0.325715\pi\)
\(524\) 0 0
\(525\) −4042.97 −0.336095
\(526\) 0 0
\(527\) −5422.18 −0.448186
\(528\) 0 0
\(529\) −11988.7 −0.985344
\(530\) 0 0
\(531\) 4443.39 0.363139
\(532\) 0 0
\(533\) −20520.9 −1.66765
\(534\) 0 0
\(535\) −6224.81 −0.503031
\(536\) 0 0
\(537\) −26261.0 −2.11033
\(538\) 0 0
\(539\) 620.795 0.0496095
\(540\) 0 0
\(541\) −9312.17 −0.740039 −0.370020 0.929024i \(-0.620649\pi\)
−0.370020 + 0.929024i \(0.620649\pi\)
\(542\) 0 0
\(543\) −20210.3 −1.59725
\(544\) 0 0
\(545\) 826.105 0.0649292
\(546\) 0 0
\(547\) −11018.6 −0.861278 −0.430639 0.902524i \(-0.641712\pi\)
−0.430639 + 0.902524i \(0.641712\pi\)
\(548\) 0 0
\(549\) −824.968 −0.0641325
\(550\) 0 0
\(551\) 11478.6 0.887490
\(552\) 0 0
\(553\) −16559.6 −1.27339
\(554\) 0 0
\(555\) −3113.89 −0.238157
\(556\) 0 0
\(557\) 12018.4 0.914250 0.457125 0.889403i \(-0.348879\pi\)
0.457125 + 0.889403i \(0.348879\pi\)
\(558\) 0 0
\(559\) 170.718 0.0129170
\(560\) 0 0
\(561\) 5398.40 0.406276
\(562\) 0 0
\(563\) −8763.89 −0.656046 −0.328023 0.944670i \(-0.606382\pi\)
−0.328023 + 0.944670i \(0.606382\pi\)
\(564\) 0 0
\(565\) −25778.1 −1.91946
\(566\) 0 0
\(567\) 14940.1 1.10657
\(568\) 0 0
\(569\) −10273.2 −0.756895 −0.378447 0.925623i \(-0.623542\pi\)
−0.378447 + 0.925623i \(0.623542\pi\)
\(570\) 0 0
\(571\) 2602.62 0.190747 0.0953734 0.995442i \(-0.469596\pi\)
0.0953734 + 0.995442i \(0.469596\pi\)
\(572\) 0 0
\(573\) −17332.6 −1.26366
\(574\) 0 0
\(575\) −537.988 −0.0390185
\(576\) 0 0
\(577\) −19727.0 −1.42331 −0.711653 0.702532i \(-0.752053\pi\)
−0.711653 + 0.702532i \(0.752053\pi\)
\(578\) 0 0
\(579\) −14726.7 −1.05703
\(580\) 0 0
\(581\) −442.739 −0.0316143
\(582\) 0 0
\(583\) −1639.06 −0.116437
\(584\) 0 0
\(585\) −7814.72 −0.552306
\(586\) 0 0
\(587\) −10116.2 −0.711309 −0.355654 0.934618i \(-0.615742\pi\)
−0.355654 + 0.934618i \(0.615742\pi\)
\(588\) 0 0
\(589\) −4448.78 −0.311221
\(590\) 0 0
\(591\) 30386.0 2.11491
\(592\) 0 0
\(593\) 3130.32 0.216774 0.108387 0.994109i \(-0.465431\pi\)
0.108387 + 0.994109i \(0.465431\pi\)
\(594\) 0 0
\(595\) 18016.9 1.24138
\(596\) 0 0
\(597\) 45.6009 0.00312616
\(598\) 0 0
\(599\) −10080.1 −0.687581 −0.343790 0.939046i \(-0.611711\pi\)
−0.343790 + 0.939046i \(0.611711\pi\)
\(600\) 0 0
\(601\) 4777.02 0.324224 0.162112 0.986772i \(-0.448169\pi\)
0.162112 + 0.986772i \(0.448169\pi\)
\(602\) 0 0
\(603\) 3352.24 0.226391
\(604\) 0 0
\(605\) 1555.63 0.104537
\(606\) 0 0
\(607\) 2571.35 0.171941 0.0859703 0.996298i \(-0.472601\pi\)
0.0859703 + 0.996298i \(0.472601\pi\)
\(608\) 0 0
\(609\) 16959.3 1.12845
\(610\) 0 0
\(611\) 5362.67 0.355074
\(612\) 0 0
\(613\) −12711.9 −0.837564 −0.418782 0.908087i \(-0.637543\pi\)
−0.418782 + 0.908087i \(0.637543\pi\)
\(614\) 0 0
\(615\) 20953.8 1.37388
\(616\) 0 0
\(617\) 16236.1 1.05939 0.529693 0.848189i \(-0.322307\pi\)
0.529693 + 0.848189i \(0.322307\pi\)
\(618\) 0 0
\(619\) 12657.3 0.821874 0.410937 0.911664i \(-0.365202\pi\)
0.410937 + 0.911664i \(0.365202\pi\)
\(620\) 0 0
\(621\) 1492.75 0.0964607
\(622\) 0 0
\(623\) 5973.75 0.384162
\(624\) 0 0
\(625\) −19037.8 −1.21842
\(626\) 0 0
\(627\) 4429.28 0.282119
\(628\) 0 0
\(629\) 3382.28 0.214404
\(630\) 0 0
\(631\) 3949.97 0.249201 0.124600 0.992207i \(-0.460235\pi\)
0.124600 + 0.992207i \(0.460235\pi\)
\(632\) 0 0
\(633\) 18421.0 1.15666
\(634\) 0 0
\(635\) −1409.13 −0.0880621
\(636\) 0 0
\(637\) 4212.44 0.262014
\(638\) 0 0
\(639\) 3832.67 0.237274
\(640\) 0 0
\(641\) −7398.27 −0.455872 −0.227936 0.973676i \(-0.573198\pi\)
−0.227936 + 0.973676i \(0.573198\pi\)
\(642\) 0 0
\(643\) −12491.7 −0.766134 −0.383067 0.923721i \(-0.625132\pi\)
−0.383067 + 0.923721i \(0.625132\pi\)
\(644\) 0 0
\(645\) −174.319 −0.0106415
\(646\) 0 0
\(647\) 10472.0 0.636315 0.318158 0.948038i \(-0.396936\pi\)
0.318158 + 0.948038i \(0.396936\pi\)
\(648\) 0 0
\(649\) −6001.94 −0.363015
\(650\) 0 0
\(651\) −6572.92 −0.395719
\(652\) 0 0
\(653\) −6337.94 −0.379820 −0.189910 0.981801i \(-0.560820\pi\)
−0.189910 + 0.981801i \(0.560820\pi\)
\(654\) 0 0
\(655\) 14871.2 0.887121
\(656\) 0 0
\(657\) 4972.48 0.295274
\(658\) 0 0
\(659\) 15196.7 0.898302 0.449151 0.893456i \(-0.351726\pi\)
0.449151 + 0.893456i \(0.351726\pi\)
\(660\) 0 0
\(661\) −2298.17 −0.135232 −0.0676161 0.997711i \(-0.521539\pi\)
−0.0676161 + 0.997711i \(0.521539\pi\)
\(662\) 0 0
\(663\) 36631.1 2.14575
\(664\) 0 0
\(665\) 14782.5 0.862016
\(666\) 0 0
\(667\) 2256.73 0.131006
\(668\) 0 0
\(669\) 73.0265 0.00422028
\(670\) 0 0
\(671\) 1114.33 0.0641106
\(672\) 0 0
\(673\) 23199.6 1.32880 0.664398 0.747379i \(-0.268688\pi\)
0.664398 + 0.747379i \(0.268688\pi\)
\(674\) 0 0
\(675\) −4503.49 −0.256799
\(676\) 0 0
\(677\) 2145.38 0.121793 0.0608963 0.998144i \(-0.480604\pi\)
0.0608963 + 0.998144i \(0.480604\pi\)
\(678\) 0 0
\(679\) −14348.1 −0.810941
\(680\) 0 0
\(681\) 27364.0 1.53978
\(682\) 0 0
\(683\) −29544.6 −1.65519 −0.827593 0.561329i \(-0.810290\pi\)
−0.827593 + 0.561329i \(0.810290\pi\)
\(684\) 0 0
\(685\) 2549.72 0.142219
\(686\) 0 0
\(687\) −30083.4 −1.67068
\(688\) 0 0
\(689\) −11121.9 −0.614964
\(690\) 0 0
\(691\) 27803.1 1.53065 0.765325 0.643644i \(-0.222578\pi\)
0.765325 + 0.643644i \(0.222578\pi\)
\(692\) 0 0
\(693\) 1516.42 0.0831227
\(694\) 0 0
\(695\) −37285.4 −2.03498
\(696\) 0 0
\(697\) −22759.8 −1.23686
\(698\) 0 0
\(699\) 1254.90 0.0679036
\(700\) 0 0
\(701\) 19697.8 1.06130 0.530652 0.847590i \(-0.321947\pi\)
0.530652 + 0.847590i \(0.321947\pi\)
\(702\) 0 0
\(703\) 2775.09 0.148883
\(704\) 0 0
\(705\) −5475.78 −0.292524
\(706\) 0 0
\(707\) 21896.0 1.16476
\(708\) 0 0
\(709\) −19122.5 −1.01292 −0.506460 0.862263i \(-0.669046\pi\)
−0.506460 + 0.862263i \(0.669046\pi\)
\(710\) 0 0
\(711\) 7966.27 0.420195
\(712\) 0 0
\(713\) −874.641 −0.0459405
\(714\) 0 0
\(715\) 10555.8 0.552117
\(716\) 0 0
\(717\) −25565.3 −1.33160
\(718\) 0 0
\(719\) −1837.44 −0.0953060 −0.0476530 0.998864i \(-0.515174\pi\)
−0.0476530 + 0.998864i \(0.515174\pi\)
\(720\) 0 0
\(721\) −29205.2 −1.50854
\(722\) 0 0
\(723\) −5907.95 −0.303899
\(724\) 0 0
\(725\) −6808.33 −0.348765
\(726\) 0 0
\(727\) 7555.46 0.385442 0.192721 0.981254i \(-0.438269\pi\)
0.192721 + 0.981254i \(0.438269\pi\)
\(728\) 0 0
\(729\) 10705.2 0.543881
\(730\) 0 0
\(731\) 189.344 0.00958021
\(732\) 0 0
\(733\) −11984.6 −0.603905 −0.301952 0.953323i \(-0.597638\pi\)
−0.301952 + 0.953323i \(0.597638\pi\)
\(734\) 0 0
\(735\) −4301.29 −0.215858
\(736\) 0 0
\(737\) −4528.05 −0.226313
\(738\) 0 0
\(739\) −27142.5 −1.35109 −0.675543 0.737321i \(-0.736091\pi\)
−0.675543 + 0.737321i \(0.736091\pi\)
\(740\) 0 0
\(741\) 30055.1 1.49001
\(742\) 0 0
\(743\) 29222.6 1.44290 0.721450 0.692467i \(-0.243476\pi\)
0.721450 + 0.692467i \(0.243476\pi\)
\(744\) 0 0
\(745\) −44847.6 −2.20549
\(746\) 0 0
\(747\) 212.987 0.0104321
\(748\) 0 0
\(749\) 8196.29 0.399847
\(750\) 0 0
\(751\) 8859.39 0.430471 0.215236 0.976562i \(-0.430948\pi\)
0.215236 + 0.976562i \(0.430948\pi\)
\(752\) 0 0
\(753\) −1641.47 −0.0794404
\(754\) 0 0
\(755\) 14956.2 0.720941
\(756\) 0 0
\(757\) −35734.4 −1.71571 −0.857853 0.513896i \(-0.828202\pi\)
−0.857853 + 0.513896i \(0.828202\pi\)
\(758\) 0 0
\(759\) 870.806 0.0416446
\(760\) 0 0
\(761\) 34394.7 1.63838 0.819189 0.573524i \(-0.194424\pi\)
0.819189 + 0.573524i \(0.194424\pi\)
\(762\) 0 0
\(763\) −1087.74 −0.0516107
\(764\) 0 0
\(765\) −8667.33 −0.409631
\(766\) 0 0
\(767\) −40726.4 −1.91727
\(768\) 0 0
\(769\) −11602.7 −0.544091 −0.272045 0.962284i \(-0.587700\pi\)
−0.272045 + 0.962284i \(0.587700\pi\)
\(770\) 0 0
\(771\) −19178.8 −0.895859
\(772\) 0 0
\(773\) 12680.6 0.590026 0.295013 0.955493i \(-0.404676\pi\)
0.295013 + 0.955493i \(0.404676\pi\)
\(774\) 0 0
\(775\) 2638.71 0.122303
\(776\) 0 0
\(777\) 4100.10 0.189305
\(778\) 0 0
\(779\) −18674.0 −0.858876
\(780\) 0 0
\(781\) −5176.99 −0.237193
\(782\) 0 0
\(783\) 18891.0 0.862210
\(784\) 0 0
\(785\) −4397.62 −0.199946
\(786\) 0 0
\(787\) −4417.61 −0.200090 −0.100045 0.994983i \(-0.531899\pi\)
−0.100045 + 0.994983i \(0.531899\pi\)
\(788\) 0 0
\(789\) −1232.74 −0.0556231
\(790\) 0 0
\(791\) 33942.4 1.52573
\(792\) 0 0
\(793\) 7561.33 0.338601
\(794\) 0 0
\(795\) 11356.5 0.506633
\(796\) 0 0
\(797\) 27030.1 1.20132 0.600661 0.799504i \(-0.294904\pi\)
0.600661 + 0.799504i \(0.294904\pi\)
\(798\) 0 0
\(799\) 5947.75 0.263350
\(800\) 0 0
\(801\) −2873.77 −0.126766
\(802\) 0 0
\(803\) −6716.60 −0.295173
\(804\) 0 0
\(805\) 2906.27 0.127246
\(806\) 0 0
\(807\) −29836.9 −1.30150
\(808\) 0 0
\(809\) 23647.0 1.02767 0.513835 0.857889i \(-0.328224\pi\)
0.513835 + 0.857889i \(0.328224\pi\)
\(810\) 0 0
\(811\) 33486.1 1.44988 0.724941 0.688811i \(-0.241867\pi\)
0.724941 + 0.688811i \(0.241867\pi\)
\(812\) 0 0
\(813\) −8815.30 −0.380278
\(814\) 0 0
\(815\) −17933.3 −0.770768
\(816\) 0 0
\(817\) 155.353 0.00665251
\(818\) 0 0
\(819\) 10289.7 0.439014
\(820\) 0 0
\(821\) −2605.69 −0.110766 −0.0553832 0.998465i \(-0.517638\pi\)
−0.0553832 + 0.998465i \(0.517638\pi\)
\(822\) 0 0
\(823\) −31976.2 −1.35434 −0.677169 0.735828i \(-0.736793\pi\)
−0.677169 + 0.735828i \(0.736793\pi\)
\(824\) 0 0
\(825\) −2627.14 −0.110867
\(826\) 0 0
\(827\) −37759.0 −1.58768 −0.793839 0.608128i \(-0.791921\pi\)
−0.793839 + 0.608128i \(0.791921\pi\)
\(828\) 0 0
\(829\) 1137.55 0.0476584 0.0238292 0.999716i \(-0.492414\pi\)
0.0238292 + 0.999716i \(0.492414\pi\)
\(830\) 0 0
\(831\) 1398.08 0.0583621
\(832\) 0 0
\(833\) 4672.03 0.194329
\(834\) 0 0
\(835\) −6154.40 −0.255068
\(836\) 0 0
\(837\) −7321.60 −0.302356
\(838\) 0 0
\(839\) 37372.2 1.53782 0.768911 0.639356i \(-0.220799\pi\)
0.768911 + 0.639356i \(0.220799\pi\)
\(840\) 0 0
\(841\) 4170.26 0.170989
\(842\) 0 0
\(843\) −29137.2 −1.19044
\(844\) 0 0
\(845\) 43381.1 1.76610
\(846\) 0 0
\(847\) −2048.31 −0.0830943
\(848\) 0 0
\(849\) −30824.0 −1.24603
\(850\) 0 0
\(851\) 545.589 0.0219772
\(852\) 0 0
\(853\) 22490.8 0.902780 0.451390 0.892327i \(-0.350928\pi\)
0.451390 + 0.892327i \(0.350928\pi\)
\(854\) 0 0
\(855\) −7111.36 −0.284449
\(856\) 0 0
\(857\) 43409.5 1.73027 0.865135 0.501539i \(-0.167233\pi\)
0.865135 + 0.501539i \(0.167233\pi\)
\(858\) 0 0
\(859\) 29533.2 1.17306 0.586532 0.809926i \(-0.300493\pi\)
0.586532 + 0.809926i \(0.300493\pi\)
\(860\) 0 0
\(861\) −27590.1 −1.09207
\(862\) 0 0
\(863\) −14351.6 −0.566090 −0.283045 0.959107i \(-0.591345\pi\)
−0.283045 + 0.959107i \(0.591345\pi\)
\(864\) 0 0
\(865\) −23251.9 −0.913975
\(866\) 0 0
\(867\) 11502.4 0.450569
\(868\) 0 0
\(869\) −10760.5 −0.420051
\(870\) 0 0
\(871\) −30725.3 −1.19528
\(872\) 0 0
\(873\) 6902.39 0.267595
\(874\) 0 0
\(875\) 18436.5 0.712307
\(876\) 0 0
\(877\) 43248.7 1.66523 0.832614 0.553854i \(-0.186844\pi\)
0.832614 + 0.553854i \(0.186844\pi\)
\(878\) 0 0
\(879\) 52647.9 2.02021
\(880\) 0 0
\(881\) 3816.13 0.145935 0.0729675 0.997334i \(-0.476753\pi\)
0.0729675 + 0.997334i \(0.476753\pi\)
\(882\) 0 0
\(883\) 48787.6 1.85938 0.929690 0.368343i \(-0.120075\pi\)
0.929690 + 0.368343i \(0.120075\pi\)
\(884\) 0 0
\(885\) 41585.5 1.57953
\(886\) 0 0
\(887\) −41495.1 −1.57077 −0.785384 0.619009i \(-0.787534\pi\)
−0.785384 + 0.619009i \(0.787534\pi\)
\(888\) 0 0
\(889\) 1855.41 0.0699984
\(890\) 0 0
\(891\) 9708.15 0.365023
\(892\) 0 0
\(893\) 4880.01 0.182870
\(894\) 0 0
\(895\) −56951.9 −2.12703
\(896\) 0 0
\(897\) 5908.90 0.219947
\(898\) 0 0
\(899\) −11068.7 −0.410637
\(900\) 0 0
\(901\) −12335.3 −0.456104
\(902\) 0 0
\(903\) 229.528 0.00845871
\(904\) 0 0
\(905\) −43829.7 −1.60989
\(906\) 0 0
\(907\) 21615.3 0.791316 0.395658 0.918398i \(-0.370517\pi\)
0.395658 + 0.918398i \(0.370517\pi\)
\(908\) 0 0
\(909\) −10533.4 −0.384347
\(910\) 0 0
\(911\) −3646.35 −0.132611 −0.0663057 0.997799i \(-0.521121\pi\)
−0.0663057 + 0.997799i \(0.521121\pi\)
\(912\) 0 0
\(913\) −287.693 −0.0104285
\(914\) 0 0
\(915\) −7720.82 −0.278954
\(916\) 0 0
\(917\) −19581.1 −0.705151
\(918\) 0 0
\(919\) −31280.0 −1.12278 −0.561388 0.827553i \(-0.689733\pi\)
−0.561388 + 0.827553i \(0.689733\pi\)
\(920\) 0 0
\(921\) −8880.05 −0.317707
\(922\) 0 0
\(923\) −35128.7 −1.25274
\(924\) 0 0
\(925\) −1645.99 −0.0585079
\(926\) 0 0
\(927\) 14049.7 0.497790
\(928\) 0 0
\(929\) 6557.92 0.231602 0.115801 0.993272i \(-0.463056\pi\)
0.115801 + 0.993272i \(0.463056\pi\)
\(930\) 0 0
\(931\) 3833.30 0.134942
\(932\) 0 0
\(933\) 44370.9 1.55695
\(934\) 0 0
\(935\) 11707.4 0.409491
\(936\) 0 0
\(937\) −24473.3 −0.853265 −0.426632 0.904425i \(-0.640300\pi\)
−0.426632 + 0.904425i \(0.640300\pi\)
\(938\) 0 0
\(939\) −3902.91 −0.135641
\(940\) 0 0
\(941\) −15420.8 −0.534224 −0.267112 0.963665i \(-0.586069\pi\)
−0.267112 + 0.963665i \(0.586069\pi\)
\(942\) 0 0
\(943\) −3671.34 −0.126782
\(944\) 0 0
\(945\) 24328.3 0.837461
\(946\) 0 0
\(947\) −33141.2 −1.13722 −0.568608 0.822609i \(-0.692518\pi\)
−0.568608 + 0.822609i \(0.692518\pi\)
\(948\) 0 0
\(949\) −45575.8 −1.55896
\(950\) 0 0
\(951\) −1385.47 −0.0472417
\(952\) 0 0
\(953\) −20735.4 −0.704813 −0.352406 0.935847i \(-0.614637\pi\)
−0.352406 + 0.935847i \(0.614637\pi\)
\(954\) 0 0
\(955\) −37589.0 −1.27367
\(956\) 0 0
\(957\) 11020.2 0.372239
\(958\) 0 0
\(959\) −3357.26 −0.113046
\(960\) 0 0
\(961\) −25501.1 −0.856000
\(962\) 0 0
\(963\) −3942.96 −0.131942
\(964\) 0 0
\(965\) −31937.7 −1.06540
\(966\) 0 0
\(967\) 8178.87 0.271990 0.135995 0.990710i \(-0.456577\pi\)
0.135995 + 0.990710i \(0.456577\pi\)
\(968\) 0 0
\(969\) 33334.2 1.10511
\(970\) 0 0
\(971\) −20576.1 −0.680039 −0.340020 0.940418i \(-0.610434\pi\)
−0.340020 + 0.940418i \(0.610434\pi\)
\(972\) 0 0
\(973\) 49094.1 1.61756
\(974\) 0 0
\(975\) −17826.6 −0.585546
\(976\) 0 0
\(977\) 14541.9 0.476188 0.238094 0.971242i \(-0.423477\pi\)
0.238094 + 0.971242i \(0.423477\pi\)
\(978\) 0 0
\(979\) 3881.76 0.126723
\(980\) 0 0
\(981\) 523.277 0.0170305
\(982\) 0 0
\(983\) 29285.7 0.950223 0.475111 0.879926i \(-0.342408\pi\)
0.475111 + 0.879926i \(0.342408\pi\)
\(984\) 0 0
\(985\) 65897.7 2.13165
\(986\) 0 0
\(987\) 7210.03 0.232521
\(988\) 0 0
\(989\) 30.5427 0.000982004 0
\(990\) 0 0
\(991\) 38085.9 1.22083 0.610413 0.792083i \(-0.291003\pi\)
0.610413 + 0.792083i \(0.291003\pi\)
\(992\) 0 0
\(993\) 50585.1 1.61658
\(994\) 0 0
\(995\) 98.8940 0.00315090
\(996\) 0 0
\(997\) 26803.6 0.851434 0.425717 0.904856i \(-0.360022\pi\)
0.425717 + 0.904856i \(0.360022\pi\)
\(998\) 0 0
\(999\) 4567.12 0.144642
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.4.a.n.1.2 2
4.3 odd 2 704.4.a.p.1.1 2
8.3 odd 2 11.4.a.a.1.1 2
8.5 even 2 176.4.a.i.1.1 2
24.5 odd 2 1584.4.a.bc.1.2 2
24.11 even 2 99.4.a.c.1.2 2
40.3 even 4 275.4.b.c.199.3 4
40.19 odd 2 275.4.a.b.1.2 2
40.27 even 4 275.4.b.c.199.2 4
56.27 even 2 539.4.a.e.1.1 2
88.3 odd 10 121.4.c.c.9.1 8
88.19 even 10 121.4.c.f.9.2 8
88.21 odd 2 1936.4.a.w.1.1 2
88.27 odd 10 121.4.c.c.3.2 8
88.35 even 10 121.4.c.f.81.1 8
88.43 even 2 121.4.a.c.1.2 2
88.51 even 10 121.4.c.f.27.2 8
88.59 odd 10 121.4.c.c.27.1 8
88.75 odd 10 121.4.c.c.81.2 8
88.83 even 10 121.4.c.f.3.1 8
104.51 odd 2 1859.4.a.a.1.2 2
120.59 even 2 2475.4.a.q.1.1 2
264.131 odd 2 1089.4.a.v.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.4.a.a.1.1 2 8.3 odd 2
99.4.a.c.1.2 2 24.11 even 2
121.4.a.c.1.2 2 88.43 even 2
121.4.c.c.3.2 8 88.27 odd 10
121.4.c.c.9.1 8 88.3 odd 10
121.4.c.c.27.1 8 88.59 odd 10
121.4.c.c.81.2 8 88.75 odd 10
121.4.c.f.3.1 8 88.83 even 10
121.4.c.f.9.2 8 88.19 even 10
121.4.c.f.27.2 8 88.51 even 10
121.4.c.f.81.1 8 88.35 even 10
176.4.a.i.1.1 2 8.5 even 2
275.4.a.b.1.2 2 40.19 odd 2
275.4.b.c.199.2 4 40.27 even 4
275.4.b.c.199.3 4 40.3 even 4
539.4.a.e.1.1 2 56.27 even 2
704.4.a.n.1.2 2 1.1 even 1 trivial
704.4.a.p.1.1 2 4.3 odd 2
1089.4.a.v.1.1 2 264.131 odd 2
1584.4.a.bc.1.2 2 24.5 odd 2
1859.4.a.a.1.2 2 104.51 odd 2
1936.4.a.w.1.1 2 88.21 odd 2
2475.4.a.q.1.1 2 120.59 even 2