Properties

Label 704.4.a.j
Level $704$
Weight $4$
Character orbit 704.a
Self dual yes
Analytic conductor $41.537$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [704,4,Mod(1,704)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("704.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(704, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 704.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,5,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5373446440\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 5 q^{3} + 7 q^{5} - 26 q^{7} - 2 q^{9} + 11 q^{11} - 52 q^{13} + 35 q^{15} + 46 q^{17} + 96 q^{19} - 130 q^{21} + 27 q^{23} - 76 q^{25} - 145 q^{27} - 16 q^{29} - 293 q^{31} + 55 q^{33} - 182 q^{35}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 5.00000 0 7.00000 0 −26.0000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 704.4.a.j 1
4.b odd 2 1 704.4.a.c 1
8.b even 2 1 44.4.a.a 1
8.d odd 2 1 176.4.a.e 1
24.f even 2 1 1584.4.a.p 1
24.h odd 2 1 396.4.a.e 1
40.f even 2 1 1100.4.a.d 1
40.i odd 4 2 1100.4.b.c 2
56.h odd 2 1 2156.4.a.b 1
88.b odd 2 1 484.4.a.a 1
88.g even 2 1 1936.4.a.m 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.4.a.a 1 8.b even 2 1
176.4.a.e 1 8.d odd 2 1
396.4.a.e 1 24.h odd 2 1
484.4.a.a 1 88.b odd 2 1
704.4.a.c 1 4.b odd 2 1
704.4.a.j 1 1.a even 1 1 trivial
1100.4.a.d 1 40.f even 2 1
1100.4.b.c 2 40.i odd 4 2
1584.4.a.p 1 24.f even 2 1
1936.4.a.m 1 88.g even 2 1
2156.4.a.b 1 56.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(704))\):

\( T_{3} - 5 \) Copy content Toggle raw display
\( T_{5} - 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 5 \) Copy content Toggle raw display
$5$ \( T - 7 \) Copy content Toggle raw display
$7$ \( T + 26 \) Copy content Toggle raw display
$11$ \( T - 11 \) Copy content Toggle raw display
$13$ \( T + 52 \) Copy content Toggle raw display
$17$ \( T - 46 \) Copy content Toggle raw display
$19$ \( T - 96 \) Copy content Toggle raw display
$23$ \( T - 27 \) Copy content Toggle raw display
$29$ \( T + 16 \) Copy content Toggle raw display
$31$ \( T + 293 \) Copy content Toggle raw display
$37$ \( T - 29 \) Copy content Toggle raw display
$41$ \( T + 472 \) Copy content Toggle raw display
$43$ \( T - 110 \) Copy content Toggle raw display
$47$ \( T + 224 \) Copy content Toggle raw display
$53$ \( T + 754 \) Copy content Toggle raw display
$59$ \( T + 825 \) Copy content Toggle raw display
$61$ \( T - 548 \) Copy content Toggle raw display
$67$ \( T - 123 \) Copy content Toggle raw display
$71$ \( T - 1001 \) Copy content Toggle raw display
$73$ \( T + 1020 \) Copy content Toggle raw display
$79$ \( T - 526 \) Copy content Toggle raw display
$83$ \( T - 158 \) Copy content Toggle raw display
$89$ \( T + 1217 \) Copy content Toggle raw display
$97$ \( T + 263 \) Copy content Toggle raw display
show more
show less