Properties

Label 704.4.a.c
Level $704$
Weight $4$
Character orbit 704.a
Self dual yes
Analytic conductor $41.537$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,4,Mod(1,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 704.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5373446440\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 5 q^{3} + 7 q^{5} + 26 q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 5 q^{3} + 7 q^{5} + 26 q^{7} - 2 q^{9} - 11 q^{11} - 52 q^{13} - 35 q^{15} + 46 q^{17} - 96 q^{19} - 130 q^{21} - 27 q^{23} - 76 q^{25} + 145 q^{27} - 16 q^{29} + 293 q^{31} + 55 q^{33} + 182 q^{35} + 29 q^{37} + 260 q^{39} - 472 q^{41} - 110 q^{43} - 14 q^{45} + 224 q^{47} + 333 q^{49} - 230 q^{51} - 754 q^{53} - 77 q^{55} + 480 q^{57} + 825 q^{59} + 548 q^{61} - 52 q^{63} - 364 q^{65} - 123 q^{67} + 135 q^{69} - 1001 q^{71} - 1020 q^{73} + 380 q^{75} - 286 q^{77} - 526 q^{79} - 671 q^{81} - 158 q^{83} + 322 q^{85} + 80 q^{87} - 1217 q^{89} - 1352 q^{91} - 1465 q^{93} - 672 q^{95} - 263 q^{97} + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −5.00000 0 7.00000 0 26.0000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 704.4.a.c 1
4.b odd 2 1 704.4.a.j 1
8.b even 2 1 176.4.a.e 1
8.d odd 2 1 44.4.a.a 1
24.f even 2 1 396.4.a.e 1
24.h odd 2 1 1584.4.a.p 1
40.e odd 2 1 1100.4.a.d 1
40.k even 4 2 1100.4.b.c 2
56.e even 2 1 2156.4.a.b 1
88.b odd 2 1 1936.4.a.m 1
88.g even 2 1 484.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.4.a.a 1 8.d odd 2 1
176.4.a.e 1 8.b even 2 1
396.4.a.e 1 24.f even 2 1
484.4.a.a 1 88.g even 2 1
704.4.a.c 1 1.a even 1 1 trivial
704.4.a.j 1 4.b odd 2 1
1100.4.a.d 1 40.e odd 2 1
1100.4.b.c 2 40.k even 4 2
1584.4.a.p 1 24.h odd 2 1
1936.4.a.m 1 88.b odd 2 1
2156.4.a.b 1 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(704))\):

\( T_{3} + 5 \) Copy content Toggle raw display
\( T_{5} - 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 5 \) Copy content Toggle raw display
$5$ \( T - 7 \) Copy content Toggle raw display
$7$ \( T - 26 \) Copy content Toggle raw display
$11$ \( T + 11 \) Copy content Toggle raw display
$13$ \( T + 52 \) Copy content Toggle raw display
$17$ \( T - 46 \) Copy content Toggle raw display
$19$ \( T + 96 \) Copy content Toggle raw display
$23$ \( T + 27 \) Copy content Toggle raw display
$29$ \( T + 16 \) Copy content Toggle raw display
$31$ \( T - 293 \) Copy content Toggle raw display
$37$ \( T - 29 \) Copy content Toggle raw display
$41$ \( T + 472 \) Copy content Toggle raw display
$43$ \( T + 110 \) Copy content Toggle raw display
$47$ \( T - 224 \) Copy content Toggle raw display
$53$ \( T + 754 \) Copy content Toggle raw display
$59$ \( T - 825 \) Copy content Toggle raw display
$61$ \( T - 548 \) Copy content Toggle raw display
$67$ \( T + 123 \) Copy content Toggle raw display
$71$ \( T + 1001 \) Copy content Toggle raw display
$73$ \( T + 1020 \) Copy content Toggle raw display
$79$ \( T + 526 \) Copy content Toggle raw display
$83$ \( T + 158 \) Copy content Toggle raw display
$89$ \( T + 1217 \) Copy content Toggle raw display
$97$ \( T + 263 \) Copy content Toggle raw display
show more
show less