Properties

Label 704.2.u.c.63.3
Level $704$
Weight $2$
Character 704.63
Analytic conductor $5.621$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [704,2,Mod(63,704)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("704.63"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(704, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 704.u (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.62146830230\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 13 x^{14} - 25 x^{13} + 35 x^{12} - 30 x^{11} - 2 x^{10} + 60 x^{9} - 116 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 63.3
Root \(-0.544389 - 1.30524i\) of defining polynomial
Character \(\chi\) \(=\) 704.63
Dual form 704.2.u.c.447.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.704424 - 0.228881i) q^{3} +(-1.09089 - 0.792578i) q^{5} +(-0.503194 + 1.54867i) q^{7} +(-1.98322 + 1.44090i) q^{9} +(-3.29726 + 0.357912i) q^{11} +(2.09089 + 2.87786i) q^{13} +(-0.949856 - 0.308627i) q^{15} +(-0.0411247 + 0.0566033i) q^{17} +(2.45716 + 7.56236i) q^{19} +1.20609i q^{21} +5.30988i q^{23} +(-0.983224 - 3.02605i) q^{25} +(-2.37331 + 3.26658i) q^{27} +(-3.74364 - 1.21638i) q^{29} +(2.17121 + 2.98842i) q^{31} +(-2.24075 + 1.00680i) q^{33} +(1.77637 - 1.29061i) q^{35} +(2.12561 - 6.54194i) q^{37} +(2.13156 + 1.54867i) q^{39} +(5.50305 - 1.78805i) q^{41} +1.89516 q^{43} +3.30550 q^{45} +(-9.32545 + 3.03002i) q^{47} +(3.51794 + 2.55593i) q^{49} +(-0.0160138 + 0.0492854i) q^{51} +(-3.14518 + 2.28511i) q^{53} +(3.88062 + 2.22289i) q^{55} +(3.46177 + 4.76471i) q^{57} +(-4.62366 - 1.50232i) q^{59} +(-0.791173 + 1.08896i) q^{61} +(-1.23353 - 3.79641i) q^{63} -4.79662i q^{65} +4.91303i q^{67} +(1.21533 + 3.74041i) q^{69} +(4.10014 - 5.64335i) q^{71} +(-9.62677 - 3.12793i) q^{73} +(-1.38521 - 1.90658i) q^{75} +(1.10487 - 5.28646i) q^{77} +(-4.85779 + 3.52939i) q^{79} +(1.34841 - 4.14999i) q^{81} +(2.92211 + 2.12304i) q^{83} +(0.0897250 - 0.0291534i) q^{85} -2.91552 q^{87} -5.39711 q^{89} +(-5.50899 + 1.78998i) q^{91} +(2.21345 + 1.60816i) q^{93} +(3.31327 - 10.1972i) q^{95} +(-5.92705 + 4.30625i) q^{97} +(6.02348 - 5.46083i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{5} - 10 q^{9} + 10 q^{13} - 10 q^{17} + 6 q^{25} + 10 q^{29} - 12 q^{33} - 18 q^{37} + 10 q^{41} - 40 q^{45} + 6 q^{49} - 38 q^{53} + 10 q^{61} + 16 q^{69} - 30 q^{73} - 2 q^{77} - 4 q^{81}+ \cdots - 68 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.704424 0.228881i 0.406700 0.132145i −0.0985210 0.995135i \(-0.531411\pi\)
0.505221 + 0.862990i \(0.331411\pi\)
\(4\) 0 0
\(5\) −1.09089 0.792578i −0.487861 0.354452i 0.316500 0.948592i \(-0.397492\pi\)
−0.804361 + 0.594141i \(0.797492\pi\)
\(6\) 0 0
\(7\) −0.503194 + 1.54867i −0.190189 + 0.585343i −0.999999 0.00134995i \(-0.999570\pi\)
0.809810 + 0.586693i \(0.199570\pi\)
\(8\) 0 0
\(9\) −1.98322 + 1.44090i −0.661075 + 0.480299i
\(10\) 0 0
\(11\) −3.29726 + 0.357912i −0.994160 + 0.107915i
\(12\) 0 0
\(13\) 2.09089 + 2.87786i 0.579909 + 0.798176i 0.993685 0.112203i \(-0.0357906\pi\)
−0.413777 + 0.910378i \(0.635791\pi\)
\(14\) 0 0
\(15\) −0.949856 0.308627i −0.245252 0.0796871i
\(16\) 0 0
\(17\) −0.0411247 + 0.0566033i −0.00997420 + 0.0137283i −0.813975 0.580900i \(-0.802701\pi\)
0.804001 + 0.594628i \(0.202701\pi\)
\(18\) 0 0
\(19\) 2.45716 + 7.56236i 0.563711 + 1.73493i 0.671749 + 0.740778i \(0.265543\pi\)
−0.108038 + 0.994147i \(0.534457\pi\)
\(20\) 0 0
\(21\) 1.20609i 0.263191i
\(22\) 0 0
\(23\) 5.30988i 1.10719i 0.832787 + 0.553593i \(0.186744\pi\)
−0.832787 + 0.553593i \(0.813256\pi\)
\(24\) 0 0
\(25\) −0.983224 3.02605i −0.196645 0.605210i
\(26\) 0 0
\(27\) −2.37331 + 3.26658i −0.456744 + 0.628654i
\(28\) 0 0
\(29\) −3.74364 1.21638i −0.695177 0.225877i −0.0599489 0.998201i \(-0.519094\pi\)
−0.635228 + 0.772325i \(0.719094\pi\)
\(30\) 0 0
\(31\) 2.17121 + 2.98842i 0.389961 + 0.536735i 0.958189 0.286136i \(-0.0923708\pi\)
−0.568228 + 0.822871i \(0.692371\pi\)
\(32\) 0 0
\(33\) −2.24075 + 1.00680i −0.390064 + 0.175262i
\(34\) 0 0
\(35\) 1.77637 1.29061i 0.300262 0.218153i
\(36\) 0 0
\(37\) 2.12561 6.54194i 0.349448 1.07549i −0.609712 0.792623i \(-0.708715\pi\)
0.959159 0.282866i \(-0.0912852\pi\)
\(38\) 0 0
\(39\) 2.13156 + 1.54867i 0.341323 + 0.247986i
\(40\) 0 0
\(41\) 5.50305 1.78805i 0.859432 0.279246i 0.154041 0.988065i \(-0.450771\pi\)
0.705391 + 0.708818i \(0.250771\pi\)
\(42\) 0 0
\(43\) 1.89516 0.289009 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(44\) 0 0
\(45\) 3.30550 0.492755
\(46\) 0 0
\(47\) −9.32545 + 3.03002i −1.36026 + 0.441974i −0.896129 0.443794i \(-0.853632\pi\)
−0.464128 + 0.885768i \(0.653632\pi\)
\(48\) 0 0
\(49\) 3.51794 + 2.55593i 0.502563 + 0.365133i
\(50\) 0 0
\(51\) −0.0160138 + 0.0492854i −0.00224238 + 0.00690134i
\(52\) 0 0
\(53\) −3.14518 + 2.28511i −0.432023 + 0.313883i −0.782457 0.622704i \(-0.786034\pi\)
0.350434 + 0.936587i \(0.386034\pi\)
\(54\) 0 0
\(55\) 3.88062 + 2.22289i 0.523262 + 0.299734i
\(56\) 0 0
\(57\) 3.46177 + 4.76471i 0.458522 + 0.631102i
\(58\) 0 0
\(59\) −4.62366 1.50232i −0.601950 0.195585i −0.00783982 0.999969i \(-0.502496\pi\)
−0.594110 + 0.804384i \(0.702496\pi\)
\(60\) 0 0
\(61\) −0.791173 + 1.08896i −0.101299 + 0.139427i −0.856657 0.515886i \(-0.827463\pi\)
0.755358 + 0.655312i \(0.227463\pi\)
\(62\) 0 0
\(63\) −1.23353 3.79641i −0.155410 0.478303i
\(64\) 0 0
\(65\) 4.79662i 0.594948i
\(66\) 0 0
\(67\) 4.91303i 0.600223i 0.953904 + 0.300111i \(0.0970238\pi\)
−0.953904 + 0.300111i \(0.902976\pi\)
\(68\) 0 0
\(69\) 1.21533 + 3.74041i 0.146309 + 0.450292i
\(70\) 0 0
\(71\) 4.10014 5.64335i 0.486597 0.669743i −0.493159 0.869939i \(-0.664158\pi\)
0.979756 + 0.200196i \(0.0641580\pi\)
\(72\) 0 0
\(73\) −9.62677 3.12793i −1.12673 0.366096i −0.314397 0.949292i \(-0.601802\pi\)
−0.812332 + 0.583195i \(0.801802\pi\)
\(74\) 0 0
\(75\) −1.38521 1.90658i −0.159951 0.220153i
\(76\) 0 0
\(77\) 1.10487 5.28646i 0.125912 0.602449i
\(78\) 0 0
\(79\) −4.85779 + 3.52939i −0.546544 + 0.397088i −0.826510 0.562923i \(-0.809677\pi\)
0.279966 + 0.960010i \(0.409677\pi\)
\(80\) 0 0
\(81\) 1.34841 4.14999i 0.149824 0.461110i
\(82\) 0 0
\(83\) 2.92211 + 2.12304i 0.320744 + 0.233034i 0.736493 0.676446i \(-0.236481\pi\)
−0.415749 + 0.909479i \(0.636481\pi\)
\(84\) 0 0
\(85\) 0.0897250 0.0291534i 0.00973205 0.00316213i
\(86\) 0 0
\(87\) −2.91552 −0.312576
\(88\) 0 0
\(89\) −5.39711 −0.572093 −0.286046 0.958216i \(-0.592341\pi\)
−0.286046 + 0.958216i \(0.592341\pi\)
\(90\) 0 0
\(91\) −5.50899 + 1.78998i −0.577499 + 0.187641i
\(92\) 0 0
\(93\) 2.21345 + 1.60816i 0.229524 + 0.166759i
\(94\) 0 0
\(95\) 3.31327 10.1972i 0.339934 1.04621i
\(96\) 0 0
\(97\) −5.92705 + 4.30625i −0.601801 + 0.437234i −0.846518 0.532361i \(-0.821305\pi\)
0.244717 + 0.969595i \(0.421305\pi\)
\(98\) 0 0
\(99\) 6.02348 5.46083i 0.605383 0.548834i
\(100\) 0 0
\(101\) 5.62667 + 7.74445i 0.559875 + 0.770602i 0.991311 0.131542i \(-0.0419928\pi\)
−0.431436 + 0.902144i \(0.641993\pi\)
\(102\) 0 0
\(103\) 9.81631 + 3.18951i 0.967230 + 0.314272i 0.749697 0.661781i \(-0.230199\pi\)
0.217533 + 0.976053i \(0.430199\pi\)
\(104\) 0 0
\(105\) 0.955923 1.31571i 0.0932885 0.128401i
\(106\) 0 0
\(107\) −3.42303 10.5350i −0.330917 1.01846i −0.968699 0.248240i \(-0.920148\pi\)
0.637782 0.770217i \(-0.279852\pi\)
\(108\) 0 0
\(109\) 8.95933i 0.858149i −0.903269 0.429074i \(-0.858840\pi\)
0.903269 0.429074i \(-0.141160\pi\)
\(110\) 0 0
\(111\) 5.09482i 0.483579i
\(112\) 0 0
\(113\) 3.40631 + 10.4836i 0.320439 + 0.986210i 0.973457 + 0.228868i \(0.0735025\pi\)
−0.653018 + 0.757342i \(0.726498\pi\)
\(114\) 0 0
\(115\) 4.20849 5.79249i 0.392444 0.540153i
\(116\) 0 0
\(117\) −8.29341 2.69469i −0.766726 0.249124i
\(118\) 0 0
\(119\) −0.0669662 0.0921710i −0.00613878 0.00844931i
\(120\) 0 0
\(121\) 10.7438 2.36026i 0.976709 0.214569i
\(122\) 0 0
\(123\) 3.46723 2.51909i 0.312630 0.227139i
\(124\) 0 0
\(125\) −3.40921 + 10.4925i −0.304929 + 0.938474i
\(126\) 0 0
\(127\) −8.32668 6.04969i −0.738874 0.536823i 0.153485 0.988151i \(-0.450950\pi\)
−0.892358 + 0.451328i \(0.850950\pi\)
\(128\) 0 0
\(129\) 1.33500 0.433767i 0.117540 0.0381910i
\(130\) 0 0
\(131\) 1.86768 0.163180 0.0815901 0.996666i \(-0.474000\pi\)
0.0815901 + 0.996666i \(0.474000\pi\)
\(132\) 0 0
\(133\) −12.9480 −1.12274
\(134\) 0 0
\(135\) 5.17804 1.68245i 0.445655 0.144802i
\(136\) 0 0
\(137\) 1.01489 + 0.737362i 0.0867080 + 0.0629971i 0.630295 0.776356i \(-0.282934\pi\)
−0.543587 + 0.839353i \(0.682934\pi\)
\(138\) 0 0
\(139\) 1.94407 5.98323i 0.164894 0.507491i −0.834135 0.551561i \(-0.814032\pi\)
0.999028 + 0.0440698i \(0.0140324\pi\)
\(140\) 0 0
\(141\) −5.87556 + 4.26884i −0.494811 + 0.359501i
\(142\) 0 0
\(143\) −7.92422 8.74070i −0.662657 0.730934i
\(144\) 0 0
\(145\) 3.11982 + 4.29407i 0.259087 + 0.356603i
\(146\) 0 0
\(147\) 3.06313 + 0.995271i 0.252643 + 0.0820886i
\(148\) 0 0
\(149\) 10.0839 13.8792i 0.826102 1.13703i −0.162534 0.986703i \(-0.551967\pi\)
0.988636 0.150329i \(-0.0480332\pi\)
\(150\) 0 0
\(151\) 3.75712 + 11.5632i 0.305750 + 0.941002i 0.979396 + 0.201948i \(0.0647271\pi\)
−0.673646 + 0.739054i \(0.735273\pi\)
\(152\) 0 0
\(153\) 0.171513i 0.0138660i
\(154\) 0 0
\(155\) 4.98089i 0.400074i
\(156\) 0 0
\(157\) 1.63833 + 5.04225i 0.130753 + 0.402415i 0.994905 0.100815i \(-0.0321449\pi\)
−0.864153 + 0.503230i \(0.832145\pi\)
\(158\) 0 0
\(159\) −1.69252 + 2.32956i −0.134226 + 0.184746i
\(160\) 0 0
\(161\) −8.22325 2.67190i −0.648083 0.210575i
\(162\) 0 0
\(163\) 5.91168 + 8.13673i 0.463039 + 0.637318i 0.975135 0.221610i \(-0.0711311\pi\)
−0.512097 + 0.858928i \(0.671131\pi\)
\(164\) 0 0
\(165\) 3.24238 + 0.677657i 0.252419 + 0.0527555i
\(166\) 0 0
\(167\) 17.7237 12.8770i 1.37150 0.996451i 0.373879 0.927478i \(-0.378028\pi\)
0.997618 0.0689735i \(-0.0219724\pi\)
\(168\) 0 0
\(169\) 0.106946 0.329146i 0.00822661 0.0253189i
\(170\) 0 0
\(171\) −15.7697 11.4573i −1.20594 0.876165i
\(172\) 0 0
\(173\) 11.2531 3.65635i 0.855557 0.277987i 0.151785 0.988413i \(-0.451498\pi\)
0.703772 + 0.710426i \(0.251498\pi\)
\(174\) 0 0
\(175\) 5.18111 0.391655
\(176\) 0 0
\(177\) −3.60087 −0.270658
\(178\) 0 0
\(179\) 0.887979 0.288522i 0.0663707 0.0215651i −0.275643 0.961260i \(-0.588891\pi\)
0.342014 + 0.939695i \(0.388891\pi\)
\(180\) 0 0
\(181\) 15.2414 + 11.0736i 1.13289 + 0.823091i 0.986113 0.166079i \(-0.0531106\pi\)
0.146775 + 0.989170i \(0.453111\pi\)
\(182\) 0 0
\(183\) −0.308080 + 0.948172i −0.0227739 + 0.0700909i
\(184\) 0 0
\(185\) −7.50380 + 5.45183i −0.551691 + 0.400827i
\(186\) 0 0
\(187\) 0.115340 0.201355i 0.00843447 0.0147245i
\(188\) 0 0
\(189\) −3.86463 5.31920i −0.281110 0.386915i
\(190\) 0 0
\(191\) −19.4435 6.31757i −1.40688 0.457124i −0.495472 0.868624i \(-0.665005\pi\)
−0.911410 + 0.411500i \(0.865005\pi\)
\(192\) 0 0
\(193\) 10.1927 14.0291i 0.733690 1.00984i −0.265267 0.964175i \(-0.585460\pi\)
0.998957 0.0456628i \(-0.0145400\pi\)
\(194\) 0 0
\(195\) −1.09786 3.37886i −0.0786192 0.241965i
\(196\) 0 0
\(197\) 3.49133i 0.248747i −0.992235 0.124374i \(-0.960308\pi\)
0.992235 0.124374i \(-0.0396921\pi\)
\(198\) 0 0
\(199\) 11.2660i 0.798625i −0.916815 0.399313i \(-0.869249\pi\)
0.916815 0.399313i \(-0.130751\pi\)
\(200\) 0 0
\(201\) 1.12450 + 3.46086i 0.0793162 + 0.244110i
\(202\) 0 0
\(203\) 3.76755 5.18559i 0.264430 0.363957i
\(204\) 0 0
\(205\) −7.42039 2.41103i −0.518262 0.168394i
\(206\) 0 0
\(207\) −7.65098 10.5307i −0.531780 0.731932i
\(208\) 0 0
\(209\) −10.8086 24.0556i −0.747643 1.66396i
\(210\) 0 0
\(211\) −2.21909 + 1.61227i −0.152769 + 0.110993i −0.661544 0.749906i \(-0.730098\pi\)
0.508775 + 0.860899i \(0.330098\pi\)
\(212\) 0 0
\(213\) 1.59658 4.91376i 0.109396 0.336685i
\(214\) 0 0
\(215\) −2.06741 1.50206i −0.140996 0.102440i
\(216\) 0 0
\(217\) −5.72061 + 1.85874i −0.388341 + 0.126180i
\(218\) 0 0
\(219\) −7.49726 −0.506618
\(220\) 0 0
\(221\) −0.248884 −0.0167417
\(222\) 0 0
\(223\) 22.5646 7.33167i 1.51103 0.490965i 0.567821 0.823152i \(-0.307787\pi\)
0.943213 + 0.332187i \(0.107787\pi\)
\(224\) 0 0
\(225\) 6.31018 + 4.58462i 0.420679 + 0.305641i
\(226\) 0 0
\(227\) 0.247473 0.761643i 0.0164254 0.0505520i −0.942508 0.334184i \(-0.891539\pi\)
0.958933 + 0.283632i \(0.0915394\pi\)
\(228\) 0 0
\(229\) −19.0839 + 13.8652i −1.26110 + 0.916241i −0.998811 0.0487497i \(-0.984476\pi\)
−0.262286 + 0.964990i \(0.584476\pi\)
\(230\) 0 0
\(231\) −0.431676 3.97680i −0.0284022 0.261654i
\(232\) 0 0
\(233\) 10.2812 + 14.1509i 0.673547 + 0.927058i 0.999834 0.0182127i \(-0.00579761\pi\)
−0.326287 + 0.945271i \(0.605798\pi\)
\(234\) 0 0
\(235\) 12.5746 + 4.08572i 0.820274 + 0.266523i
\(236\) 0 0
\(237\) −2.61413 + 3.59805i −0.169806 + 0.233718i
\(238\) 0 0
\(239\) 2.06577 + 6.35778i 0.133623 + 0.411251i 0.995373 0.0960826i \(-0.0306313\pi\)
−0.861750 + 0.507333i \(0.830631\pi\)
\(240\) 0 0
\(241\) 4.28655i 0.276121i −0.990424 0.138061i \(-0.955913\pi\)
0.990424 0.138061i \(-0.0440868\pi\)
\(242\) 0 0
\(243\) 15.3451i 0.984391i
\(244\) 0 0
\(245\) −1.81191 5.57648i −0.115759 0.356268i
\(246\) 0 0
\(247\) −16.6258 + 22.8834i −1.05787 + 1.45604i
\(248\) 0 0
\(249\) 2.54433 + 0.826703i 0.161240 + 0.0523902i
\(250\) 0 0
\(251\) −2.87878 3.96230i −0.181707 0.250098i 0.708441 0.705770i \(-0.249399\pi\)
−0.890148 + 0.455672i \(0.849399\pi\)
\(252\) 0 0
\(253\) −1.90047 17.5080i −0.119482 1.10072i
\(254\) 0 0
\(255\) 0.0565318 0.0410728i 0.00354016 0.00257208i
\(256\) 0 0
\(257\) −3.82696 + 11.7782i −0.238719 + 0.734702i 0.757887 + 0.652386i \(0.226232\pi\)
−0.996606 + 0.0823161i \(0.973768\pi\)
\(258\) 0 0
\(259\) 9.06173 + 6.58373i 0.563068 + 0.409093i
\(260\) 0 0
\(261\) 9.17716 2.98184i 0.568052 0.184571i
\(262\) 0 0
\(263\) 16.9489 1.04511 0.522556 0.852605i \(-0.324979\pi\)
0.522556 + 0.852605i \(0.324979\pi\)
\(264\) 0 0
\(265\) 5.24217 0.322024
\(266\) 0 0
\(267\) −3.80186 + 1.23530i −0.232670 + 0.0755990i
\(268\) 0 0
\(269\) 3.19947 + 2.32455i 0.195075 + 0.141730i 0.681035 0.732251i \(-0.261530\pi\)
−0.485960 + 0.873981i \(0.661530\pi\)
\(270\) 0 0
\(271\) −7.33528 + 22.5757i −0.445587 + 1.37137i 0.436252 + 0.899824i \(0.356305\pi\)
−0.881839 + 0.471550i \(0.843695\pi\)
\(272\) 0 0
\(273\) −3.47097 + 2.52181i −0.210073 + 0.152627i
\(274\) 0 0
\(275\) 4.32500 + 9.62576i 0.260807 + 0.580455i
\(276\) 0 0
\(277\) 8.82329 + 12.1442i 0.530140 + 0.729675i 0.987152 0.159786i \(-0.0510803\pi\)
−0.457012 + 0.889461i \(0.651080\pi\)
\(278\) 0 0
\(279\) −8.61200 2.79821i −0.515587 0.167524i
\(280\) 0 0
\(281\) 3.37468 4.64485i 0.201317 0.277089i −0.696408 0.717647i \(-0.745219\pi\)
0.897724 + 0.440558i \(0.145219\pi\)
\(282\) 0 0
\(283\) 3.45938 + 10.6469i 0.205639 + 0.632890i 0.999687 + 0.0250353i \(0.00796982\pi\)
−0.794048 + 0.607855i \(0.792030\pi\)
\(284\) 0 0
\(285\) 7.94150i 0.470414i
\(286\) 0 0
\(287\) 9.42215i 0.556172i
\(288\) 0 0
\(289\) 5.25178 + 16.1633i 0.308928 + 0.950783i
\(290\) 0 0
\(291\) −3.18954 + 4.39002i −0.186974 + 0.257348i
\(292\) 0 0
\(293\) −5.04336 1.63869i −0.294636 0.0957331i 0.157969 0.987444i \(-0.449505\pi\)
−0.452605 + 0.891711i \(0.649505\pi\)
\(294\) 0 0
\(295\) 3.85320 + 5.30348i 0.224342 + 0.308780i
\(296\) 0 0
\(297\) 6.65627 11.6202i 0.386236 0.674272i
\(298\) 0 0
\(299\) −15.2811 + 11.1024i −0.883729 + 0.642066i
\(300\) 0 0
\(301\) −0.953632 + 2.93498i −0.0549664 + 0.169169i
\(302\) 0 0
\(303\) 5.73613 + 4.16754i 0.329532 + 0.239419i
\(304\) 0 0
\(305\) 1.72617 0.560865i 0.0988400 0.0321150i
\(306\) 0 0
\(307\) −2.27014 −0.129564 −0.0647820 0.997899i \(-0.520635\pi\)
−0.0647820 + 0.997899i \(0.520635\pi\)
\(308\) 0 0
\(309\) 7.64487 0.434901
\(310\) 0 0
\(311\) −19.1795 + 6.23180i −1.08757 + 0.353373i −0.797307 0.603574i \(-0.793743\pi\)
−0.290263 + 0.956947i \(0.593743\pi\)
\(312\) 0 0
\(313\) −1.24741 0.906296i −0.0705078 0.0512269i 0.551973 0.833862i \(-0.313875\pi\)
−0.622481 + 0.782635i \(0.713875\pi\)
\(314\) 0 0
\(315\) −1.66331 + 5.11913i −0.0937168 + 0.288431i
\(316\) 0 0
\(317\) −13.6418 + 9.91136i −0.766201 + 0.556678i −0.900806 0.434222i \(-0.857023\pi\)
0.134605 + 0.990899i \(0.457023\pi\)
\(318\) 0 0
\(319\) 12.7791 + 2.67083i 0.715492 + 0.149538i
\(320\) 0 0
\(321\) −4.82253 6.63765i −0.269167 0.370477i
\(322\) 0 0
\(323\) −0.529105 0.171917i −0.0294402 0.00956569i
\(324\) 0 0
\(325\) 6.65275 9.15673i 0.369028 0.507924i
\(326\) 0 0
\(327\) −2.05062 6.31117i −0.113400 0.349009i
\(328\) 0 0
\(329\) 15.9667i 0.880275i
\(330\) 0 0
\(331\) 33.9735i 1.86735i 0.358115 + 0.933677i \(0.383419\pi\)
−0.358115 + 0.933677i \(0.616581\pi\)
\(332\) 0 0
\(333\) 5.21071 + 16.0369i 0.285545 + 0.878818i
\(334\) 0 0
\(335\) 3.89396 5.35958i 0.212750 0.292825i
\(336\) 0 0
\(337\) −16.2590 5.28286i −0.885683 0.287776i −0.169368 0.985553i \(-0.554173\pi\)
−0.716315 + 0.697777i \(0.754173\pi\)
\(338\) 0 0
\(339\) 4.79898 + 6.60523i 0.260645 + 0.358747i
\(340\) 0 0
\(341\) −8.22863 9.07647i −0.445605 0.491518i
\(342\) 0 0
\(343\) −14.9502 + 10.8619i −0.807232 + 0.586489i
\(344\) 0 0
\(345\) 1.63877 5.04362i 0.0882284 0.271539i
\(346\) 0 0
\(347\) −2.02180 1.46893i −0.108536 0.0788561i 0.532193 0.846623i \(-0.321368\pi\)
−0.640729 + 0.767767i \(0.721368\pi\)
\(348\) 0 0
\(349\) 6.66811 2.16660i 0.356936 0.115975i −0.125060 0.992149i \(-0.539912\pi\)
0.481995 + 0.876174i \(0.339912\pi\)
\(350\) 0 0
\(351\) −14.3631 −0.766646
\(352\) 0 0
\(353\) 17.9431 0.955017 0.477509 0.878627i \(-0.341540\pi\)
0.477509 + 0.878627i \(0.341540\pi\)
\(354\) 0 0
\(355\) −8.94560 + 2.90660i −0.474783 + 0.154266i
\(356\) 0 0
\(357\) −0.0682688 0.0496002i −0.00361317 0.00262512i
\(358\) 0 0
\(359\) 2.99112 9.20572i 0.157865 0.485859i −0.840575 0.541696i \(-0.817783\pi\)
0.998440 + 0.0558363i \(0.0177825\pi\)
\(360\) 0 0
\(361\) −35.7804 + 25.9960i −1.88318 + 1.36821i
\(362\) 0 0
\(363\) 7.02797 4.12168i 0.368873 0.216332i
\(364\) 0 0
\(365\) 8.02262 + 11.0422i 0.419923 + 0.577975i
\(366\) 0 0
\(367\) 29.4325 + 9.56319i 1.53636 + 0.499194i 0.950370 0.311122i \(-0.100705\pi\)
0.585992 + 0.810317i \(0.300705\pi\)
\(368\) 0 0
\(369\) −8.33739 + 11.4754i −0.434027 + 0.597387i
\(370\) 0 0
\(371\) −1.95624 6.02070i −0.101563 0.312579i
\(372\) 0 0
\(373\) 4.92658i 0.255088i 0.991833 + 0.127544i \(0.0407095\pi\)
−0.991833 + 0.127544i \(0.959291\pi\)
\(374\) 0 0
\(375\) 8.17145i 0.421972i
\(376\) 0 0
\(377\) −4.32696 13.3170i −0.222850 0.685861i
\(378\) 0 0
\(379\) −2.36592 + 3.25642i −0.121529 + 0.167271i −0.865447 0.501000i \(-0.832965\pi\)
0.743918 + 0.668271i \(0.232965\pi\)
\(380\) 0 0
\(381\) −7.25018 2.35573i −0.371438 0.120688i
\(382\) 0 0
\(383\) 7.04690 + 9.69922i 0.360080 + 0.495607i 0.950171 0.311729i \(-0.100908\pi\)
−0.590091 + 0.807337i \(0.700908\pi\)
\(384\) 0 0
\(385\) −5.39523 + 4.89125i −0.274966 + 0.249281i
\(386\) 0 0
\(387\) −3.75853 + 2.73073i −0.191057 + 0.138811i
\(388\) 0 0
\(389\) −4.24498 + 13.0647i −0.215229 + 0.662407i 0.783908 + 0.620877i \(0.213223\pi\)
−0.999137 + 0.0415304i \(0.986777\pi\)
\(390\) 0 0
\(391\) −0.300556 0.218367i −0.0151998 0.0110433i
\(392\) 0 0
\(393\) 1.31564 0.427478i 0.0663654 0.0215634i
\(394\) 0 0
\(395\) 8.09663 0.407386
\(396\) 0 0
\(397\) 12.1547 0.610027 0.305014 0.952348i \(-0.401339\pi\)
0.305014 + 0.952348i \(0.401339\pi\)
\(398\) 0 0
\(399\) −9.12092 + 2.96357i −0.456617 + 0.148364i
\(400\) 0 0
\(401\) 23.2839 + 16.9167i 1.16274 + 0.844782i 0.990122 0.140207i \(-0.0447768\pi\)
0.172620 + 0.984989i \(0.444777\pi\)
\(402\) 0 0
\(403\) −4.06049 + 12.4969i −0.202267 + 0.622515i
\(404\) 0 0
\(405\) −4.76016 + 3.45846i −0.236534 + 0.171852i
\(406\) 0 0
\(407\) −4.66723 + 22.3312i −0.231346 + 1.10692i
\(408\) 0 0
\(409\) 11.1416 + 15.3351i 0.550917 + 0.758272i 0.990136 0.140108i \(-0.0447449\pi\)
−0.439219 + 0.898380i \(0.644745\pi\)
\(410\) 0 0
\(411\) 0.883682 + 0.287126i 0.0435888 + 0.0141629i
\(412\) 0 0
\(413\) 4.65320 6.40457i 0.228969 0.315149i
\(414\) 0 0
\(415\) −1.50503 4.63200i −0.0738790 0.227376i
\(416\) 0 0
\(417\) 4.65970i 0.228186i
\(418\) 0 0
\(419\) 15.3705i 0.750898i −0.926843 0.375449i \(-0.877488\pi\)
0.926843 0.375449i \(-0.122512\pi\)
\(420\) 0 0
\(421\) −5.97047 18.3752i −0.290983 0.895553i −0.984541 0.175153i \(-0.943958\pi\)
0.693558 0.720400i \(-0.256042\pi\)
\(422\) 0 0
\(423\) 14.1285 19.4462i 0.686952 0.945508i
\(424\) 0 0
\(425\) 0.211719 + 0.0687918i 0.0102699 + 0.00333689i
\(426\) 0 0
\(427\) −1.28832 1.77322i −0.0623463 0.0858123i
\(428\) 0 0
\(429\) −7.58260 4.34345i −0.366091 0.209704i
\(430\) 0 0
\(431\) −21.9276 + 15.9313i −1.05621 + 0.767385i −0.973384 0.229179i \(-0.926396\pi\)
−0.0828305 + 0.996564i \(0.526396\pi\)
\(432\) 0 0
\(433\) 1.34612 4.14294i 0.0646905 0.199097i −0.913487 0.406868i \(-0.866621\pi\)
0.978177 + 0.207771i \(0.0666209\pi\)
\(434\) 0 0
\(435\) 3.18051 + 2.31078i 0.152494 + 0.110793i
\(436\) 0 0
\(437\) −40.1552 + 13.0472i −1.92088 + 0.624133i
\(438\) 0 0
\(439\) −24.0996 −1.15021 −0.575105 0.818080i \(-0.695039\pi\)
−0.575105 + 0.818080i \(0.695039\pi\)
\(440\) 0 0
\(441\) −10.6597 −0.507605
\(442\) 0 0
\(443\) 21.9169 7.12124i 1.04130 0.338340i 0.262054 0.965053i \(-0.415600\pi\)
0.779250 + 0.626713i \(0.215600\pi\)
\(444\) 0 0
\(445\) 5.88765 + 4.27763i 0.279102 + 0.202779i
\(446\) 0 0
\(447\) 3.92662 12.0849i 0.185723 0.571595i
\(448\) 0 0
\(449\) 3.05281 2.21800i 0.144071 0.104674i −0.513415 0.858140i \(-0.671620\pi\)
0.657486 + 0.753467i \(0.271620\pi\)
\(450\) 0 0
\(451\) −17.5050 + 7.86527i −0.824278 + 0.370361i
\(452\) 0 0
\(453\) 5.29321 + 7.28548i 0.248697 + 0.342302i
\(454\) 0 0
\(455\) 7.42839 + 2.41363i 0.348248 + 0.113153i
\(456\) 0 0
\(457\) 20.7236 28.5236i 0.969409 1.33428i 0.0270646 0.999634i \(-0.491384\pi\)
0.942345 0.334644i \(-0.108616\pi\)
\(458\) 0 0
\(459\) −0.0872976 0.268674i −0.00407470 0.0125406i
\(460\) 0 0
\(461\) 38.5074i 1.79347i −0.442571 0.896734i \(-0.645933\pi\)
0.442571 0.896734i \(-0.354067\pi\)
\(462\) 0 0
\(463\) 10.7672i 0.500394i 0.968195 + 0.250197i \(0.0804954\pi\)
−0.968195 + 0.250197i \(0.919505\pi\)
\(464\) 0 0
\(465\) −1.14003 3.50866i −0.0528677 0.162710i
\(466\) 0 0
\(467\) −12.1553 + 16.7304i −0.562481 + 0.774189i −0.991639 0.129040i \(-0.958810\pi\)
0.429158 + 0.903229i \(0.358810\pi\)
\(468\) 0 0
\(469\) −7.60867 2.47221i −0.351336 0.114156i
\(470\) 0 0
\(471\) 2.30815 + 3.17690i 0.106354 + 0.146384i
\(472\) 0 0
\(473\) −6.24883 + 0.678301i −0.287321 + 0.0311883i
\(474\) 0 0
\(475\) 20.4682 14.8710i 0.939144 0.682328i
\(476\) 0 0
\(477\) 2.94499 9.06375i 0.134842 0.415001i
\(478\) 0 0
\(479\) 9.23398 + 6.70888i 0.421911 + 0.306536i 0.778406 0.627761i \(-0.216028\pi\)
−0.356495 + 0.934297i \(0.616028\pi\)
\(480\) 0 0
\(481\) 23.2712 7.56128i 1.06108 0.344765i
\(482\) 0 0
\(483\) −6.40421 −0.291401
\(484\) 0 0
\(485\) 9.87880 0.448573
\(486\) 0 0
\(487\) −3.80894 + 1.23760i −0.172600 + 0.0560810i −0.394042 0.919092i \(-0.628924\pi\)
0.221442 + 0.975173i \(0.428924\pi\)
\(488\) 0 0
\(489\) 6.02668 + 4.37864i 0.272536 + 0.198009i
\(490\) 0 0
\(491\) −3.45914 + 10.6461i −0.156109 + 0.480454i −0.998272 0.0587698i \(-0.981282\pi\)
0.842163 + 0.539223i \(0.181282\pi\)
\(492\) 0 0
\(493\) 0.222807 0.161879i 0.0100347 0.00729066i
\(494\) 0 0
\(495\) −10.8991 + 1.18308i −0.489877 + 0.0531755i
\(496\) 0 0
\(497\) 6.67654 + 9.18946i 0.299484 + 0.412204i
\(498\) 0 0
\(499\) −37.4389 12.1646i −1.67599 0.544564i −0.691867 0.722025i \(-0.743211\pi\)
−0.984128 + 0.177462i \(0.943211\pi\)
\(500\) 0 0
\(501\) 9.53767 13.1275i 0.426112 0.586492i
\(502\) 0 0
\(503\) −5.97544 18.3905i −0.266432 0.819993i −0.991360 0.131168i \(-0.958127\pi\)
0.724928 0.688824i \(-0.241873\pi\)
\(504\) 0 0
\(505\) 12.9079i 0.574395i
\(506\) 0 0
\(507\) 0.256336i 0.0113843i
\(508\) 0 0
\(509\) 13.2867 + 40.8921i 0.588920 + 1.81251i 0.582921 + 0.812529i \(0.301910\pi\)
0.00599915 + 0.999982i \(0.498090\pi\)
\(510\) 0 0
\(511\) 9.68826 13.3347i 0.428583 0.589895i
\(512\) 0 0
\(513\) −30.5347 9.92132i −1.34814 0.438037i
\(514\) 0 0
\(515\) −8.18058 11.2596i −0.360479 0.496157i
\(516\) 0 0
\(517\) 29.6639 13.3285i 1.30462 0.586185i
\(518\) 0 0
\(519\) 7.09009 5.15125i 0.311220 0.226115i
\(520\) 0 0
\(521\) −4.55221 + 14.0103i −0.199436 + 0.613801i 0.800460 + 0.599386i \(0.204589\pi\)
−0.999896 + 0.0144150i \(0.995411\pi\)
\(522\) 0 0
\(523\) 32.7270 + 23.7776i 1.43105 + 1.03972i 0.989819 + 0.142329i \(0.0454591\pi\)
0.441234 + 0.897392i \(0.354541\pi\)
\(524\) 0 0
\(525\) 3.64970 1.18586i 0.159286 0.0517552i
\(526\) 0 0
\(527\) −0.258445 −0.0112580
\(528\) 0 0
\(529\) −5.19479 −0.225860
\(530\) 0 0
\(531\) 11.3344 3.68278i 0.491873 0.159819i
\(532\) 0 0
\(533\) 16.6520 + 12.0984i 0.721280 + 0.524040i
\(534\) 0 0
\(535\) −4.61566 + 14.2055i −0.199552 + 0.614159i
\(536\) 0 0
\(537\) 0.559477 0.406484i 0.0241432 0.0175411i
\(538\) 0 0
\(539\) −12.5144 7.16845i −0.539031 0.308767i
\(540\) 0 0
\(541\) 9.83661 + 13.5389i 0.422909 + 0.582084i 0.966307 0.257391i \(-0.0828627\pi\)
−0.543399 + 0.839475i \(0.682863\pi\)
\(542\) 0 0
\(543\) 13.2710 + 4.31200i 0.569512 + 0.185046i
\(544\) 0 0
\(545\) −7.10097 + 9.77365i −0.304172 + 0.418657i
\(546\) 0 0
\(547\) 2.87078 + 8.83536i 0.122746 + 0.377773i 0.993484 0.113975i \(-0.0363583\pi\)
−0.870738 + 0.491747i \(0.836358\pi\)
\(548\) 0 0
\(549\) 3.29964i 0.140825i
\(550\) 0 0
\(551\) 31.2996i 1.33341i
\(552\) 0 0
\(553\) −3.02146 9.29909i −0.128485 0.395437i
\(554\) 0 0
\(555\) −4.03804 + 5.55788i −0.171405 + 0.235919i
\(556\) 0 0
\(557\) −12.6129 4.09818i −0.534425 0.173645i 0.0293567 0.999569i \(-0.490654\pi\)
−0.563782 + 0.825924i \(0.690654\pi\)
\(558\) 0 0
\(559\) 3.96257 + 5.45401i 0.167599 + 0.230680i
\(560\) 0 0
\(561\) 0.0351618 0.168238i 0.00148453 0.00710302i
\(562\) 0 0
\(563\) 19.0155 13.8156i 0.801408 0.582257i −0.109919 0.993941i \(-0.535059\pi\)
0.911327 + 0.411684i \(0.135059\pi\)
\(564\) 0 0
\(565\) 4.59312 14.1362i 0.193234 0.594713i
\(566\) 0 0
\(567\) 5.74846 + 4.17650i 0.241413 + 0.175396i
\(568\) 0 0
\(569\) −12.2494 + 3.98008i −0.513523 + 0.166854i −0.554304 0.832315i \(-0.687015\pi\)
0.0407811 + 0.999168i \(0.487015\pi\)
\(570\) 0 0
\(571\) 20.4261 0.854806 0.427403 0.904061i \(-0.359429\pi\)
0.427403 + 0.904061i \(0.359429\pi\)
\(572\) 0 0
\(573\) −15.1424 −0.632585
\(574\) 0 0
\(575\) 16.0680 5.22080i 0.670080 0.217722i
\(576\) 0 0
\(577\) −5.53777 4.02342i −0.230540 0.167497i 0.466518 0.884512i \(-0.345508\pi\)
−0.697058 + 0.717014i \(0.745508\pi\)
\(578\) 0 0
\(579\) 3.96902 12.2154i 0.164947 0.507654i
\(580\) 0 0
\(581\) −4.75828 + 3.45709i −0.197407 + 0.143424i
\(582\) 0 0
\(583\) 9.55259 8.66028i 0.395628 0.358672i
\(584\) 0 0
\(585\) 6.91144 + 9.51278i 0.285753 + 0.393305i
\(586\) 0 0
\(587\) −0.607533 0.197399i −0.0250756 0.00814754i 0.296452 0.955048i \(-0.404196\pi\)
−0.321528 + 0.946900i \(0.604196\pi\)
\(588\) 0 0
\(589\) −17.2645 + 23.7625i −0.711370 + 0.979117i
\(590\) 0 0
\(591\) −0.799100 2.45938i −0.0328706 0.101165i
\(592\) 0 0
\(593\) 17.0480i 0.700077i −0.936735 0.350039i \(-0.886168\pi\)
0.936735 0.350039i \(-0.113832\pi\)
\(594\) 0 0
\(595\) 0.153624i 0.00629799i
\(596\) 0 0
\(597\) −2.57858 7.93604i −0.105534 0.324801i
\(598\) 0 0
\(599\) 1.16656 1.60564i 0.0476645 0.0656045i −0.784519 0.620104i \(-0.787090\pi\)
0.832184 + 0.554500i \(0.187090\pi\)
\(600\) 0 0
\(601\) 15.6571 + 5.08729i 0.638665 + 0.207515i 0.610410 0.792086i \(-0.291005\pi\)
0.0282553 + 0.999601i \(0.491005\pi\)
\(602\) 0 0
\(603\) −7.07917 9.74365i −0.288286 0.396792i
\(604\) 0 0
\(605\) −13.5910 5.94052i −0.552552 0.241516i
\(606\) 0 0
\(607\) 23.2353 16.8814i 0.943091 0.685196i −0.00607141 0.999982i \(-0.501933\pi\)
0.949163 + 0.314786i \(0.101933\pi\)
\(608\) 0 0
\(609\) 1.46707 4.51518i 0.0594487 0.182964i
\(610\) 0 0
\(611\) −28.2185 20.5019i −1.14160 0.829419i
\(612\) 0 0
\(613\) −6.32812 + 2.05613i −0.255590 + 0.0830464i −0.434010 0.900908i \(-0.642902\pi\)
0.178419 + 0.983955i \(0.442902\pi\)
\(614\) 0 0
\(615\) −5.77894 −0.233029
\(616\) 0 0
\(617\) −17.8948 −0.720416 −0.360208 0.932872i \(-0.617294\pi\)
−0.360208 + 0.932872i \(0.617294\pi\)
\(618\) 0 0
\(619\) 22.1005 7.18088i 0.888293 0.288624i 0.170897 0.985289i \(-0.445334\pi\)
0.717397 + 0.696665i \(0.245334\pi\)
\(620\) 0 0
\(621\) −17.3452 12.6020i −0.696037 0.505700i
\(622\) 0 0
\(623\) 2.71579 8.35835i 0.108806 0.334870i
\(624\) 0 0
\(625\) −0.835407 + 0.606959i −0.0334163 + 0.0242784i
\(626\) 0 0
\(627\) −13.1197 14.4715i −0.523950 0.577935i
\(628\) 0 0
\(629\) 0.282881 + 0.389352i 0.0112792 + 0.0155245i
\(630\) 0 0
\(631\) −44.0545 14.3142i −1.75378 0.569838i −0.757255 0.653119i \(-0.773460\pi\)
−0.996526 + 0.0832806i \(0.973460\pi\)
\(632\) 0 0
\(633\) −1.19417 + 1.64363i −0.0474639 + 0.0653284i
\(634\) 0 0
\(635\) 4.28864 + 13.1991i 0.170190 + 0.523790i
\(636\) 0 0
\(637\) 15.4683i 0.612877i
\(638\) 0 0
\(639\) 17.0999i 0.676462i
\(640\) 0 0
\(641\) 8.39773 + 25.8456i 0.331691 + 1.02084i 0.968329 + 0.249676i \(0.0803242\pi\)
−0.636639 + 0.771162i \(0.719676\pi\)
\(642\) 0 0
\(643\) 18.2352 25.0987i 0.719128 0.989794i −0.280425 0.959876i \(-0.590475\pi\)
0.999552 0.0299182i \(-0.00952467\pi\)
\(644\) 0 0
\(645\) −1.80013 0.584897i −0.0708800 0.0230303i
\(646\) 0 0
\(647\) −24.7877 34.1173i −0.974505 1.34129i −0.939738 0.341895i \(-0.888931\pi\)
−0.0347664 0.999395i \(-0.511069\pi\)
\(648\) 0 0
\(649\) 15.7831 + 3.29867i 0.619541 + 0.129484i
\(650\) 0 0
\(651\) −3.60431 + 2.61868i −0.141264 + 0.102634i
\(652\) 0 0
\(653\) 1.25077 3.84947i 0.0489464 0.150641i −0.923596 0.383367i \(-0.874764\pi\)
0.972542 + 0.232726i \(0.0747644\pi\)
\(654\) 0 0
\(655\) −2.03744 1.48028i −0.0796093 0.0578395i
\(656\) 0 0
\(657\) 23.5991 7.66780i 0.920687 0.299149i
\(658\) 0 0
\(659\) −6.46292 −0.251760 −0.125880 0.992045i \(-0.540175\pi\)
−0.125880 + 0.992045i \(0.540175\pi\)
\(660\) 0 0
\(661\) −26.6232 −1.03552 −0.517761 0.855525i \(-0.673234\pi\)
−0.517761 + 0.855525i \(0.673234\pi\)
\(662\) 0 0
\(663\) −0.175320 + 0.0569648i −0.00680885 + 0.00221233i
\(664\) 0 0
\(665\) 14.1249 + 10.2623i 0.547740 + 0.397956i
\(666\) 0 0
\(667\) 6.45884 19.8783i 0.250087 0.769690i
\(668\) 0 0
\(669\) 14.2169 10.3292i 0.549659 0.399350i
\(670\) 0 0
\(671\) 2.21895 3.87374i 0.0856616 0.149544i
\(672\) 0 0
\(673\) −4.89033 6.73096i −0.188508 0.259460i 0.704294 0.709909i \(-0.251264\pi\)
−0.892802 + 0.450449i \(0.851264\pi\)
\(674\) 0 0
\(675\) 12.2183 + 3.96998i 0.470284 + 0.152805i
\(676\) 0 0
\(677\) 8.97132 12.3480i 0.344796 0.474571i −0.601039 0.799220i \(-0.705246\pi\)
0.945834 + 0.324649i \(0.105246\pi\)
\(678\) 0 0
\(679\) −3.68652 11.3459i −0.141476 0.435417i
\(680\) 0 0
\(681\) 0.593162i 0.0227300i
\(682\) 0 0
\(683\) 32.9156i 1.25948i −0.776806 0.629740i \(-0.783161\pi\)
0.776806 0.629740i \(-0.216839\pi\)
\(684\) 0 0
\(685\) −0.522718 1.60876i −0.0199720 0.0614676i
\(686\) 0 0
\(687\) −10.2696 + 14.1349i −0.391811 + 0.539282i
\(688\) 0 0
\(689\) −13.1524 4.27349i −0.501068 0.162807i
\(690\) 0 0
\(691\) −26.7545 36.8244i −1.01779 1.40087i −0.913742 0.406294i \(-0.866821\pi\)
−0.104047 0.994572i \(-0.533179\pi\)
\(692\) 0 0
\(693\) 5.42604 + 12.0762i 0.206118 + 0.458739i
\(694\) 0 0
\(695\) −6.86294 + 4.98622i −0.260326 + 0.189138i
\(696\) 0 0
\(697\) −0.125102 + 0.385024i −0.00473857 + 0.0145838i
\(698\) 0 0
\(699\) 10.4812 + 7.61507i 0.396437 + 0.288028i
\(700\) 0 0
\(701\) 47.6330 15.4769i 1.79907 0.584555i 0.799210 0.601052i \(-0.205252\pi\)
0.999864 + 0.0164975i \(0.00525154\pi\)
\(702\) 0 0
\(703\) 54.6955 2.06288
\(704\) 0 0
\(705\) 9.79298 0.368825
\(706\) 0 0
\(707\) −14.8249 + 4.81691i −0.557548 + 0.181158i
\(708\) 0 0
\(709\) −6.87556 4.99539i −0.258217 0.187606i 0.451144 0.892451i \(-0.351016\pi\)
−0.709361 + 0.704846i \(0.751016\pi\)
\(710\) 0 0
\(711\) 4.54860 13.9991i 0.170586 0.525009i
\(712\) 0 0
\(713\) −15.8681 + 11.5289i −0.594266 + 0.431759i
\(714\) 0 0
\(715\) 1.71677 + 15.8157i 0.0642036 + 0.591474i
\(716\) 0 0
\(717\) 2.91036 + 4.00576i 0.108689 + 0.149598i
\(718\) 0 0
\(719\) −6.94019 2.25500i −0.258825 0.0840974i 0.176730 0.984259i \(-0.443448\pi\)
−0.435555 + 0.900162i \(0.643448\pi\)
\(720\) 0 0
\(721\) −9.87901 + 13.5973i −0.367914 + 0.506390i
\(722\) 0 0
\(723\) −0.981112 3.01955i −0.0364879 0.112298i
\(724\) 0 0
\(725\) 12.5244i 0.465146i
\(726\) 0 0
\(727\) 1.85004i 0.0686140i 0.999411 + 0.0343070i \(0.0109224\pi\)
−0.999411 + 0.0343070i \(0.989078\pi\)
\(728\) 0 0
\(729\) 0.533026 + 1.64049i 0.0197417 + 0.0607587i
\(730\) 0 0
\(731\) −0.0779378 + 0.107272i −0.00288264 + 0.00396761i
\(732\) 0 0
\(733\) −17.9690 5.83849i −0.663701 0.215650i −0.0422555 0.999107i \(-0.513454\pi\)
−0.621446 + 0.783457i \(0.713454\pi\)
\(734\) 0 0
\(735\) −2.55271 3.51350i −0.0941580 0.129597i
\(736\) 0 0
\(737\) −1.75843 16.1995i −0.0647728 0.596717i
\(738\) 0 0
\(739\) −12.7166 + 9.23916i −0.467788 + 0.339868i −0.796579 0.604535i \(-0.793359\pi\)
0.328791 + 0.944403i \(0.393359\pi\)
\(740\) 0 0
\(741\) −6.47402 + 19.9250i −0.237829 + 0.731963i
\(742\) 0 0
\(743\) 4.69746 + 3.41290i 0.172333 + 0.125207i 0.670608 0.741812i \(-0.266033\pi\)
−0.498275 + 0.867019i \(0.666033\pi\)
\(744\) 0 0
\(745\) −22.0008 + 7.14848i −0.806045 + 0.261900i
\(746\) 0 0
\(747\) −8.85428 −0.323961
\(748\) 0 0
\(749\) 18.0377 0.659083
\(750\) 0 0
\(751\) 2.85643 0.928110i 0.104233 0.0338672i −0.256436 0.966561i \(-0.582548\pi\)
0.360669 + 0.932694i \(0.382548\pi\)
\(752\) 0 0
\(753\) −2.93478 2.13224i −0.106949 0.0777033i
\(754\) 0 0
\(755\) 5.06615 15.5920i 0.184376 0.567451i
\(756\) 0 0
\(757\) −21.1049 + 15.3336i −0.767071 + 0.557310i −0.901071 0.433672i \(-0.857218\pi\)
0.134000 + 0.990981i \(0.457218\pi\)
\(758\) 0 0
\(759\) −5.34600 11.8981i −0.194047 0.431874i
\(760\) 0 0
\(761\) −18.7813 25.8502i −0.680820 0.937068i 0.319123 0.947713i \(-0.396612\pi\)
−0.999943 + 0.0106450i \(0.996612\pi\)
\(762\) 0 0
\(763\) 13.8751 + 4.50828i 0.502311 + 0.163211i
\(764\) 0 0
\(765\) −0.135938 + 0.187102i −0.00491484 + 0.00676470i
\(766\) 0 0
\(767\) −5.34410 16.4474i −0.192964 0.593883i
\(768\) 0 0
\(769\) 22.3560i 0.806176i 0.915161 + 0.403088i \(0.132063\pi\)
−0.915161 + 0.403088i \(0.867937\pi\)
\(770\) 0 0
\(771\) 9.17275i 0.330348i
\(772\) 0 0
\(773\) −1.56889 4.82855i −0.0564291 0.173671i 0.918869 0.394562i \(-0.129104\pi\)
−0.975299 + 0.220891i \(0.929104\pi\)
\(774\) 0 0
\(775\) 6.90832 9.50848i 0.248154 0.341555i
\(776\) 0 0
\(777\) 7.89020 + 2.56368i 0.283059 + 0.0919715i
\(778\) 0 0
\(779\) 27.0438 + 37.2225i 0.968943 + 1.33364i
\(780\) 0 0
\(781\) −11.4994 + 20.0751i −0.411480 + 0.718343i
\(782\) 0 0
\(783\) 12.8582 9.34206i 0.459516 0.333858i
\(784\) 0 0
\(785\) 2.20914 6.79904i 0.0788476 0.242668i
\(786\) 0 0
\(787\) −2.38155 1.73029i −0.0848930 0.0616783i 0.544529 0.838742i \(-0.316708\pi\)
−0.629422 + 0.777064i \(0.716708\pi\)
\(788\) 0 0
\(789\) 11.9392 3.87928i 0.425046 0.138106i
\(790\) 0 0
\(791\) −17.9496 −0.638215
\(792\) 0 0
\(793\) −4.78812 −0.170031
\(794\) 0 0
\(795\) 3.69271 1.19983i 0.130967 0.0425537i
\(796\) 0 0
\(797\) 6.06111 + 4.40365i 0.214695 + 0.155985i 0.689936 0.723871i \(-0.257639\pi\)
−0.475240 + 0.879856i \(0.657639\pi\)
\(798\) 0 0
\(799\) 0.211997 0.652460i 0.00749992 0.0230824i
\(800\) 0 0
\(801\) 10.7037 7.77668i 0.378196 0.274775i
\(802\) 0 0
\(803\) 32.8615 + 6.86804i 1.15966 + 0.242368i
\(804\) 0 0
\(805\) 6.85298 + 9.43231i 0.241536 + 0.332445i
\(806\) 0 0
\(807\) 2.78583 + 0.905170i 0.0980658 + 0.0318635i
\(808\) 0 0
\(809\) 23.4091 32.2199i 0.823022 1.13279i −0.166160 0.986099i \(-0.553137\pi\)
0.989182 0.146694i \(-0.0468631\pi\)
\(810\) 0 0
\(811\) −13.1790 40.5607i −0.462777 1.42428i −0.861757 0.507321i \(-0.830636\pi\)
0.398981 0.916959i \(-0.369364\pi\)
\(812\) 0 0
\(813\) 17.5818i 0.616619i
\(814\) 0 0
\(815\) 13.5617i 0.475047i
\(816\) 0 0
\(817\) 4.65671 + 14.3319i 0.162918 + 0.501409i
\(818\) 0 0
\(819\) 8.34638 11.4878i 0.291646 0.401416i
\(820\) 0 0
\(821\) 18.3658 + 5.96742i 0.640972 + 0.208264i 0.611429 0.791299i \(-0.290595\pi\)
0.0295426 + 0.999564i \(0.490595\pi\)
\(822\) 0 0
\(823\) −5.83041 8.02487i −0.203235 0.279729i 0.695218 0.718799i \(-0.255308\pi\)
−0.898453 + 0.439070i \(0.855308\pi\)
\(824\) 0 0
\(825\) 5.24979 + 5.79071i 0.182774 + 0.201607i
\(826\) 0 0
\(827\) −35.2981 + 25.6455i −1.22743 + 0.891783i −0.996695 0.0812332i \(-0.974114\pi\)
−0.230738 + 0.973016i \(0.574114\pi\)
\(828\) 0 0
\(829\) 8.69871 26.7719i 0.302119 0.929826i −0.678618 0.734491i \(-0.737421\pi\)
0.980737 0.195335i \(-0.0625793\pi\)
\(830\) 0 0
\(831\) 8.99492 + 6.53519i 0.312030 + 0.226703i
\(832\) 0 0
\(833\) −0.289348 + 0.0940150i −0.0100253 + 0.00325743i
\(834\) 0 0
\(835\) −29.5406 −1.02229
\(836\) 0 0
\(837\) −14.9149 −0.515533
\(838\) 0 0
\(839\) 33.2421 10.8010i 1.14764 0.372892i 0.327388 0.944890i \(-0.393831\pi\)
0.820255 + 0.571998i \(0.193831\pi\)
\(840\) 0 0
\(841\) −10.9262 7.93837i −0.376767 0.273737i
\(842\) 0 0
\(843\) 1.31409 4.04435i 0.0452596 0.139295i
\(844\) 0 0
\(845\) −0.377540 + 0.274299i −0.0129878 + 0.00943617i
\(846\) 0 0
\(847\) −1.75095 + 17.8263i −0.0601634 + 0.612518i
\(848\) 0 0
\(849\) 4.87374 + 6.70812i 0.167266 + 0.230222i
\(850\) 0 0
\(851\) 34.7369 + 11.2867i 1.19077 + 0.386903i
\(852\) 0 0
\(853\) 15.9973 22.0183i 0.547736 0.753894i −0.441967 0.897031i \(-0.645719\pi\)
0.989703 + 0.143138i \(0.0457191\pi\)
\(854\) 0 0
\(855\) 8.12215 + 24.9974i 0.277772 + 0.854893i
\(856\) 0 0
\(857\) 37.5541i 1.28282i 0.767197 + 0.641412i \(0.221651\pi\)
−0.767197 + 0.641412i \(0.778349\pi\)
\(858\) 0 0
\(859\) 4.50293i 0.153638i 0.997045 + 0.0768190i \(0.0244764\pi\)
−0.997045 + 0.0768190i \(0.975524\pi\)
\(860\) 0 0
\(861\) 2.15655 + 6.63719i 0.0734952 + 0.226195i
\(862\) 0 0
\(863\) −10.6014 + 14.5915i −0.360875 + 0.496702i −0.950392 0.311054i \(-0.899318\pi\)
0.589517 + 0.807756i \(0.299318\pi\)
\(864\) 0 0
\(865\) −15.1738 4.93028i −0.515926 0.167634i
\(866\) 0 0
\(867\) 7.39896 + 10.1838i 0.251282 + 0.345860i
\(868\) 0 0
\(869\) 14.7542 13.3760i 0.500501 0.453749i
\(870\) 0 0
\(871\) −14.1390 + 10.2726i −0.479083 + 0.348074i
\(872\) 0 0
\(873\) 5.54980 17.0805i 0.187832 0.578089i
\(874\) 0 0
\(875\) −14.5339 10.5595i −0.491335 0.356976i
\(876\) 0 0
\(877\) 12.9541 4.20903i 0.437428 0.142129i −0.0820206 0.996631i \(-0.526137\pi\)
0.519449 + 0.854502i \(0.326137\pi\)
\(878\) 0 0
\(879\) −3.92773 −0.132479
\(880\) 0 0
\(881\) 5.44549 0.183463 0.0917317 0.995784i \(-0.470760\pi\)
0.0917317 + 0.995784i \(0.470760\pi\)
\(882\) 0 0
\(883\) −26.8480 + 8.72345i −0.903508 + 0.293568i −0.723684 0.690131i \(-0.757553\pi\)
−0.179824 + 0.983699i \(0.557553\pi\)
\(884\) 0 0
\(885\) 3.92816 + 2.85397i 0.132044 + 0.0959352i
\(886\) 0 0
\(887\) −13.1145 + 40.3623i −0.440342 + 1.35523i 0.447171 + 0.894449i \(0.352432\pi\)
−0.887512 + 0.460784i \(0.847568\pi\)
\(888\) 0 0
\(889\) 13.5589 9.85113i 0.454751 0.330396i
\(890\) 0 0
\(891\) −2.96073 + 14.1662i −0.0991883 + 0.474586i
\(892\) 0 0
\(893\) −45.8283 63.0772i −1.53358 2.11080i
\(894\) 0 0
\(895\) −1.19736 0.389047i −0.0400234 0.0130044i
\(896\) 0 0
\(897\) −8.22325 + 11.3183i −0.274566 + 0.377908i
\(898\) 0 0
\(899\) −4.49318 13.8286i −0.149856 0.461209i
\(900\) 0 0
\(901\) 0.272002i 0.00906169i
\(902\) 0 0
\(903\) 2.28574i 0.0760646i
\(904\) 0 0
\(905\) −7.85008 24.1601i −0.260946 0.803108i
\(906\) 0 0
\(907\) 20.3902 28.0647i 0.677046 0.931873i −0.322848 0.946451i \(-0.604640\pi\)
0.999894 + 0.0145776i \(0.00464034\pi\)
\(908\) 0 0
\(909\) −22.3179 7.25153i −0.740238 0.240518i
\(910\) 0 0
\(911\) 17.4380 + 24.0014i 0.577748 + 0.795202i 0.993446 0.114300i \(-0.0364627\pi\)
−0.415698 + 0.909503i \(0.636463\pi\)
\(912\) 0 0
\(913\) −10.3948 5.95434i −0.344018 0.197060i
\(914\) 0 0
\(915\) 1.08758 0.790174i 0.0359543 0.0261224i
\(916\) 0 0
\(917\) −0.939807 + 2.89243i −0.0310352 + 0.0955164i
\(918\) 0 0
\(919\) −17.4823 12.7016i −0.576687 0.418988i 0.260841 0.965382i \(-0.416000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(920\) 0 0
\(921\) −1.59915 + 0.519594i −0.0526936 + 0.0171212i
\(922\) 0 0
\(923\) 24.8137 0.816754
\(924\) 0 0
\(925\) −21.8862 −0.719614
\(926\) 0 0
\(927\) −24.0637 + 7.81877i −0.790356 + 0.256802i
\(928\) 0 0
\(929\) −38.2024 27.7557i −1.25338 0.910635i −0.254968 0.966949i \(-0.582065\pi\)
−0.998413 + 0.0563145i \(0.982065\pi\)
\(930\) 0 0
\(931\) −10.6848 + 32.8843i −0.350179 + 1.07774i
\(932\) 0 0
\(933\) −12.0842 + 8.77967i −0.395618 + 0.287433i
\(934\) 0 0
\(935\) −0.285412 + 0.128240i −0.00933397 + 0.00419390i
\(936\) 0 0
\(937\) 27.2659 + 37.5283i 0.890738 + 1.22600i 0.973329 + 0.229412i \(0.0736804\pi\)
−0.0825914 + 0.996583i \(0.526320\pi\)
\(938\) 0 0
\(939\) −1.08614 0.352908i −0.0354449 0.0115167i
\(940\) 0 0
\(941\) −23.1708 + 31.8919i −0.755347 + 1.03965i 0.242240 + 0.970216i \(0.422118\pi\)
−0.997587 + 0.0694293i \(0.977882\pi\)
\(942\) 0 0
\(943\) 9.49432 + 29.2205i 0.309178 + 0.951551i
\(944\) 0 0
\(945\) 8.86568i 0.288401i
\(946\) 0 0
\(947\) 24.9488i 0.810725i 0.914156 + 0.405363i \(0.132855\pi\)
−0.914156 + 0.405363i \(0.867145\pi\)
\(948\) 0 0
\(949\) −11.1268 34.2447i −0.361190 1.11163i
\(950\) 0 0
\(951\) −7.34110 + 10.1042i −0.238052 + 0.327650i
\(952\) 0 0
\(953\) 38.9090 + 12.6423i 1.26039 + 0.409524i 0.861632 0.507534i \(-0.169443\pi\)
0.398754 + 0.917058i \(0.369443\pi\)
\(954\) 0 0
\(955\) 16.2035 + 22.3023i 0.524334 + 0.721684i
\(956\) 0 0
\(957\) 9.61321 1.04350i 0.310751 0.0337316i
\(958\) 0 0
\(959\) −1.65262 + 1.20070i −0.0533658 + 0.0387725i
\(960\) 0 0
\(961\) 5.36305 16.5058i 0.173002 0.532445i
\(962\) 0 0
\(963\) 21.9685 + 15.9610i 0.707925 + 0.514337i
\(964\) 0 0
\(965\) −22.2383 + 7.22567i −0.715877 + 0.232603i
\(966\) 0 0
\(967\) −23.6696 −0.761164 −0.380582 0.924747i \(-0.624276\pi\)
−0.380582 + 0.924747i \(0.624276\pi\)
\(968\) 0 0
\(969\) −0.412063 −0.0132374
\(970\) 0 0
\(971\) −51.2925 + 16.6659i −1.64606 + 0.534836i −0.977880 0.209168i \(-0.932924\pi\)
−0.668176 + 0.744004i \(0.732924\pi\)
\(972\) 0 0
\(973\) 8.28781 + 6.02145i 0.265695 + 0.193039i
\(974\) 0 0
\(975\) 2.59056 7.97291i 0.0829642 0.255338i
\(976\) 0 0
\(977\) 7.76321 5.64030i 0.248367 0.180449i −0.456636 0.889654i \(-0.650946\pi\)
0.705003 + 0.709204i \(0.250946\pi\)
\(978\) 0 0
\(979\) 17.7957 1.93169i 0.568752 0.0617371i
\(980\) 0 0
\(981\) 12.9095 + 17.7684i 0.412168 + 0.567300i
\(982\) 0 0
\(983\) 33.5747 + 10.9091i 1.07087 + 0.347945i 0.790824 0.612043i \(-0.209652\pi\)
0.280041 + 0.959988i \(0.409652\pi\)
\(984\) 0 0
\(985\) −2.76715 + 3.80866i −0.0881688 + 0.121354i
\(986\) 0 0
\(987\) −3.65449 11.2474i −0.116324 0.358007i
\(988\) 0 0
\(989\) 10.0631i 0.319987i
\(990\) 0 0
\(991\) 17.8021i 0.565502i −0.959193 0.282751i \(-0.908753\pi\)
0.959193 0.282751i \(-0.0912471\pi\)
\(992\) 0 0
\(993\) 7.77591 + 23.9318i 0.246761 + 0.759452i
\(994\) 0 0
\(995\) −8.92918 + 12.2900i −0.283074 + 0.389618i
\(996\) 0 0
\(997\) 59.8586 + 19.4492i 1.89574 + 0.615963i 0.973144 + 0.230197i \(0.0739370\pi\)
0.922596 + 0.385766i \(0.126063\pi\)
\(998\) 0 0
\(999\) 16.3251 + 22.4695i 0.516503 + 0.710905i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.2.u.c.63.3 16
4.3 odd 2 inner 704.2.u.c.63.2 16
8.3 odd 2 44.2.g.a.19.1 yes 16
8.5 even 2 44.2.g.a.19.3 yes 16
11.7 odd 10 inner 704.2.u.c.447.2 16
24.5 odd 2 396.2.r.a.19.2 16
24.11 even 2 396.2.r.a.19.4 16
44.7 even 10 inner 704.2.u.c.447.3 16
88.3 odd 10 484.2.g.j.215.2 16
88.5 even 10 484.2.g.f.475.3 16
88.13 odd 10 484.2.c.d.483.13 16
88.19 even 10 484.2.g.f.215.3 16
88.21 odd 2 484.2.g.i.239.2 16
88.27 odd 10 484.2.g.f.475.4 16
88.29 odd 10 44.2.g.a.7.1 16
88.35 even 10 484.2.c.d.483.3 16
88.37 even 10 484.2.g.i.403.4 16
88.43 even 2 484.2.g.i.239.4 16
88.51 even 10 44.2.g.a.7.3 yes 16
88.53 even 10 484.2.c.d.483.4 16
88.59 odd 10 484.2.g.i.403.2 16
88.61 odd 10 484.2.g.j.475.2 16
88.69 even 10 484.2.g.j.215.1 16
88.75 odd 10 484.2.c.d.483.14 16
88.83 even 10 484.2.g.j.475.1 16
88.85 odd 10 484.2.g.f.215.4 16
264.29 even 10 396.2.r.a.271.4 16
264.227 odd 10 396.2.r.a.271.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.g.a.7.1 16 88.29 odd 10
44.2.g.a.7.3 yes 16 88.51 even 10
44.2.g.a.19.1 yes 16 8.3 odd 2
44.2.g.a.19.3 yes 16 8.5 even 2
396.2.r.a.19.2 16 24.5 odd 2
396.2.r.a.19.4 16 24.11 even 2
396.2.r.a.271.2 16 264.227 odd 10
396.2.r.a.271.4 16 264.29 even 10
484.2.c.d.483.3 16 88.35 even 10
484.2.c.d.483.4 16 88.53 even 10
484.2.c.d.483.13 16 88.13 odd 10
484.2.c.d.483.14 16 88.75 odd 10
484.2.g.f.215.3 16 88.19 even 10
484.2.g.f.215.4 16 88.85 odd 10
484.2.g.f.475.3 16 88.5 even 10
484.2.g.f.475.4 16 88.27 odd 10
484.2.g.i.239.2 16 88.21 odd 2
484.2.g.i.239.4 16 88.43 even 2
484.2.g.i.403.2 16 88.59 odd 10
484.2.g.i.403.4 16 88.37 even 10
484.2.g.j.215.1 16 88.69 even 10
484.2.g.j.215.2 16 88.3 odd 10
484.2.g.j.475.1 16 88.83 even 10
484.2.g.j.475.2 16 88.61 odd 10
704.2.u.c.63.2 16 4.3 odd 2 inner
704.2.u.c.63.3 16 1.1 even 1 trivial
704.2.u.c.447.2 16 11.7 odd 10 inner
704.2.u.c.447.3 16 44.7 even 10 inner