Properties

Label 704.2.m.g.641.1
Level $704$
Weight $2$
Character 704.641
Analytic conductor $5.621$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [704,2,Mod(257,704)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("704.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(704, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 704.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,3,0,-3,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.62146830230\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 641.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 704.641
Dual form 704.2.m.g.257.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.190983 + 0.587785i) q^{3} +(-1.30902 - 0.951057i) q^{5} +(0.190983 - 0.587785i) q^{7} +(2.11803 - 1.53884i) q^{9} +(-3.23607 - 0.726543i) q^{11} +(0.690983 - 0.502029i) q^{13} +(0.309017 - 0.951057i) q^{15} +(-3.92705 - 2.85317i) q^{17} +(-0.572949 - 1.76336i) q^{19} +0.381966 q^{21} +4.00000 q^{23} +(-0.736068 - 2.26538i) q^{25} +(2.80902 + 2.04087i) q^{27} +(2.57295 - 7.91872i) q^{29} +(-8.16312 + 5.93085i) q^{31} +(-0.190983 - 2.04087i) q^{33} +(-0.809017 + 0.587785i) q^{35} +(2.28115 - 7.02067i) q^{37} +(0.427051 + 0.310271i) q^{39} +(-2.28115 - 7.02067i) q^{41} +10.4721 q^{43} -4.23607 q^{45} +(-2.95492 - 9.09429i) q^{47} +(5.35410 + 3.88998i) q^{49} +(0.927051 - 2.85317i) q^{51} +(-1.30902 + 0.951057i) q^{53} +(3.54508 + 4.02874i) q^{55} +(0.927051 - 0.673542i) q^{57} +(-1.42705 + 4.39201i) q^{59} +(3.92705 + 2.85317i) q^{61} +(-0.500000 - 1.53884i) q^{63} -1.38197 q^{65} -5.52786 q^{67} +(0.763932 + 2.35114i) q^{69} +(4.92705 + 3.57971i) q^{71} +(-3.04508 + 9.37181i) q^{73} +(1.19098 - 0.865300i) q^{75} +(-1.04508 + 1.76336i) q^{77} +(2.30902 - 1.67760i) q^{79} +(1.76393 - 5.42882i) q^{81} +(-9.39919 - 6.82891i) q^{83} +(2.42705 + 7.46969i) q^{85} +5.14590 q^{87} +4.47214 q^{89} +(-0.163119 - 0.502029i) q^{91} +(-5.04508 - 3.66547i) q^{93} +(-0.927051 + 2.85317i) q^{95} +(-2.69098 + 1.95511i) q^{97} +(-7.97214 + 3.44095i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} - 3 q^{5} + 3 q^{7} + 4 q^{9} - 4 q^{11} + 5 q^{13} - q^{15} - 9 q^{17} - 9 q^{19} + 6 q^{21} + 16 q^{23} + 6 q^{25} + 9 q^{27} + 17 q^{29} - 17 q^{31} - 3 q^{33} - q^{35} - 11 q^{37} - 5 q^{39}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.190983 + 0.587785i 0.110264 + 0.339358i 0.990930 0.134380i \(-0.0429043\pi\)
−0.880666 + 0.473738i \(0.842904\pi\)
\(4\) 0 0
\(5\) −1.30902 0.951057i −0.585410 0.425325i 0.255260 0.966872i \(-0.417839\pi\)
−0.840670 + 0.541547i \(0.817839\pi\)
\(6\) 0 0
\(7\) 0.190983 0.587785i 0.0721848 0.222162i −0.908455 0.417983i \(-0.862737\pi\)
0.980640 + 0.195821i \(0.0627372\pi\)
\(8\) 0 0
\(9\) 2.11803 1.53884i 0.706011 0.512947i
\(10\) 0 0
\(11\) −3.23607 0.726543i −0.975711 0.219061i
\(12\) 0 0
\(13\) 0.690983 0.502029i 0.191644 0.139238i −0.487826 0.872941i \(-0.662210\pi\)
0.679470 + 0.733703i \(0.262210\pi\)
\(14\) 0 0
\(15\) 0.309017 0.951057i 0.0797878 0.245562i
\(16\) 0 0
\(17\) −3.92705 2.85317i −0.952450 0.691995i −0.00106476 0.999999i \(-0.500339\pi\)
−0.951385 + 0.308004i \(0.900339\pi\)
\(18\) 0 0
\(19\) −0.572949 1.76336i −0.131444 0.404542i 0.863576 0.504218i \(-0.168219\pi\)
−0.995020 + 0.0996765i \(0.968219\pi\)
\(20\) 0 0
\(21\) 0.381966 0.0833518
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −0.736068 2.26538i −0.147214 0.453077i
\(26\) 0 0
\(27\) 2.80902 + 2.04087i 0.540596 + 0.392766i
\(28\) 0 0
\(29\) 2.57295 7.91872i 0.477785 1.47047i −0.364380 0.931250i \(-0.618719\pi\)
0.842165 0.539220i \(-0.181281\pi\)
\(30\) 0 0
\(31\) −8.16312 + 5.93085i −1.46614 + 1.06521i −0.484429 + 0.874830i \(0.660973\pi\)
−0.981710 + 0.190382i \(0.939027\pi\)
\(32\) 0 0
\(33\) −0.190983 2.04087i −0.0332459 0.355270i
\(34\) 0 0
\(35\) −0.809017 + 0.587785i −0.136749 + 0.0993538i
\(36\) 0 0
\(37\) 2.28115 7.02067i 0.375019 1.15419i −0.568446 0.822720i \(-0.692455\pi\)
0.943466 0.331470i \(-0.107545\pi\)
\(38\) 0 0
\(39\) 0.427051 + 0.310271i 0.0683829 + 0.0496831i
\(40\) 0 0
\(41\) −2.28115 7.02067i −0.356256 1.09644i −0.955277 0.295711i \(-0.904444\pi\)
0.599021 0.800733i \(-0.295556\pi\)
\(42\) 0 0
\(43\) 10.4721 1.59699 0.798493 0.602004i \(-0.205631\pi\)
0.798493 + 0.602004i \(0.205631\pi\)
\(44\) 0 0
\(45\) −4.23607 −0.631476
\(46\) 0 0
\(47\) −2.95492 9.09429i −0.431019 1.32654i −0.897112 0.441803i \(-0.854339\pi\)
0.466093 0.884736i \(-0.345661\pi\)
\(48\) 0 0
\(49\) 5.35410 + 3.88998i 0.764872 + 0.555712i
\(50\) 0 0
\(51\) 0.927051 2.85317i 0.129813 0.399524i
\(52\) 0 0
\(53\) −1.30902 + 0.951057i −0.179807 + 0.130638i −0.674048 0.738687i \(-0.735446\pi\)
0.494241 + 0.869325i \(0.335446\pi\)
\(54\) 0 0
\(55\) 3.54508 + 4.02874i 0.478019 + 0.543235i
\(56\) 0 0
\(57\) 0.927051 0.673542i 0.122791 0.0892128i
\(58\) 0 0
\(59\) −1.42705 + 4.39201i −0.185786 + 0.571791i −0.999961 0.00882865i \(-0.997190\pi\)
0.814175 + 0.580620i \(0.197190\pi\)
\(60\) 0 0
\(61\) 3.92705 + 2.85317i 0.502807 + 0.365311i 0.810088 0.586308i \(-0.199419\pi\)
−0.307281 + 0.951619i \(0.599419\pi\)
\(62\) 0 0
\(63\) −0.500000 1.53884i −0.0629941 0.193876i
\(64\) 0 0
\(65\) −1.38197 −0.171412
\(66\) 0 0
\(67\) −5.52786 −0.675336 −0.337668 0.941265i \(-0.609638\pi\)
−0.337668 + 0.941265i \(0.609638\pi\)
\(68\) 0 0
\(69\) 0.763932 + 2.35114i 0.0919666 + 0.283044i
\(70\) 0 0
\(71\) 4.92705 + 3.57971i 0.584733 + 0.424834i 0.840427 0.541924i \(-0.182304\pi\)
−0.255694 + 0.966758i \(0.582304\pi\)
\(72\) 0 0
\(73\) −3.04508 + 9.37181i −0.356400 + 1.09689i 0.598793 + 0.800904i \(0.295647\pi\)
−0.955193 + 0.295983i \(0.904353\pi\)
\(74\) 0 0
\(75\) 1.19098 0.865300i 0.137523 0.0999162i
\(76\) 0 0
\(77\) −1.04508 + 1.76336i −0.119098 + 0.200953i
\(78\) 0 0
\(79\) 2.30902 1.67760i 0.259785 0.188745i −0.450267 0.892894i \(-0.648671\pi\)
0.710052 + 0.704149i \(0.248671\pi\)
\(80\) 0 0
\(81\) 1.76393 5.42882i 0.195992 0.603203i
\(82\) 0 0
\(83\) −9.39919 6.82891i −1.03169 0.749570i −0.0630476 0.998011i \(-0.520082\pi\)
−0.968647 + 0.248440i \(0.920082\pi\)
\(84\) 0 0
\(85\) 2.42705 + 7.46969i 0.263251 + 0.810202i
\(86\) 0 0
\(87\) 5.14590 0.551698
\(88\) 0 0
\(89\) 4.47214 0.474045 0.237023 0.971504i \(-0.423828\pi\)
0.237023 + 0.971504i \(0.423828\pi\)
\(90\) 0 0
\(91\) −0.163119 0.502029i −0.0170995 0.0526269i
\(92\) 0 0
\(93\) −5.04508 3.66547i −0.523151 0.380091i
\(94\) 0 0
\(95\) −0.927051 + 2.85317i −0.0951134 + 0.292729i
\(96\) 0 0
\(97\) −2.69098 + 1.95511i −0.273228 + 0.198512i −0.715958 0.698143i \(-0.754010\pi\)
0.442730 + 0.896655i \(0.354010\pi\)
\(98\) 0 0
\(99\) −7.97214 + 3.44095i −0.801230 + 0.345829i
\(100\) 0 0
\(101\) −6.54508 + 4.75528i −0.651260 + 0.473168i −0.863700 0.504006i \(-0.831859\pi\)
0.212440 + 0.977174i \(0.431859\pi\)
\(102\) 0 0
\(103\) −0.281153 + 0.865300i −0.0277028 + 0.0852605i −0.963952 0.266076i \(-0.914273\pi\)
0.936249 + 0.351337i \(0.114273\pi\)
\(104\) 0 0
\(105\) −0.500000 0.363271i −0.0487950 0.0354516i
\(106\) 0 0
\(107\) 4.66312 + 14.3516i 0.450801 + 1.38742i 0.875995 + 0.482320i \(0.160206\pi\)
−0.425194 + 0.905102i \(0.639794\pi\)
\(108\) 0 0
\(109\) 2.94427 0.282010 0.141005 0.990009i \(-0.454967\pi\)
0.141005 + 0.990009i \(0.454967\pi\)
\(110\) 0 0
\(111\) 4.56231 0.433035
\(112\) 0 0
\(113\) 0.663119 + 2.04087i 0.0623810 + 0.191989i 0.977390 0.211444i \(-0.0678167\pi\)
−0.915009 + 0.403433i \(0.867817\pi\)
\(114\) 0 0
\(115\) −5.23607 3.80423i −0.488266 0.354746i
\(116\) 0 0
\(117\) 0.690983 2.12663i 0.0638814 0.196607i
\(118\) 0 0
\(119\) −2.42705 + 1.76336i −0.222487 + 0.161647i
\(120\) 0 0
\(121\) 9.94427 + 4.70228i 0.904025 + 0.427480i
\(122\) 0 0
\(123\) 3.69098 2.68166i 0.332805 0.241797i
\(124\) 0 0
\(125\) −3.69098 + 11.3597i −0.330132 + 1.01604i
\(126\) 0 0
\(127\) −17.2533 12.5352i −1.53098 1.11232i −0.955690 0.294375i \(-0.904888\pi\)
−0.575292 0.817948i \(-0.695112\pi\)
\(128\) 0 0
\(129\) 2.00000 + 6.15537i 0.176090 + 0.541950i
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) −1.14590 −0.0993620
\(134\) 0 0
\(135\) −1.73607 5.34307i −0.149417 0.459858i
\(136\) 0 0
\(137\) 2.07295 + 1.50609i 0.177104 + 0.128674i 0.672806 0.739819i \(-0.265089\pi\)
−0.495702 + 0.868493i \(0.665089\pi\)
\(138\) 0 0
\(139\) 5.33688 16.4252i 0.452668 1.39317i −0.421183 0.906976i \(-0.638385\pi\)
0.873851 0.486194i \(-0.161615\pi\)
\(140\) 0 0
\(141\) 4.78115 3.47371i 0.402646 0.292539i
\(142\) 0 0
\(143\) −2.60081 + 1.12257i −0.217491 + 0.0938740i
\(144\) 0 0
\(145\) −10.8992 + 7.91872i −0.905128 + 0.657614i
\(146\) 0 0
\(147\) −1.26393 + 3.88998i −0.104247 + 0.320840i
\(148\) 0 0
\(149\) −9.01722 6.55139i −0.738720 0.536711i 0.153590 0.988135i \(-0.450916\pi\)
−0.892310 + 0.451423i \(0.850916\pi\)
\(150\) 0 0
\(151\) 2.57295 + 7.91872i 0.209384 + 0.644417i 0.999505 + 0.0314659i \(0.0100176\pi\)
−0.790121 + 0.612951i \(0.789982\pi\)
\(152\) 0 0
\(153\) −12.7082 −1.02740
\(154\) 0 0
\(155\) 16.3262 1.31135
\(156\) 0 0
\(157\) 5.04508 + 15.5272i 0.402642 + 1.23920i 0.922848 + 0.385163i \(0.125855\pi\)
−0.520207 + 0.854040i \(0.674145\pi\)
\(158\) 0 0
\(159\) −0.809017 0.587785i −0.0641592 0.0466144i
\(160\) 0 0
\(161\) 0.763932 2.35114i 0.0602063 0.185296i
\(162\) 0 0
\(163\) −12.7812 + 9.28605i −1.00110 + 0.727340i −0.962323 0.271908i \(-0.912345\pi\)
−0.0387740 + 0.999248i \(0.512345\pi\)
\(164\) 0 0
\(165\) −1.69098 + 2.85317i −0.131643 + 0.222119i
\(166\) 0 0
\(167\) 1.07295 0.779543i 0.0830273 0.0603229i −0.545497 0.838113i \(-0.683659\pi\)
0.628525 + 0.777790i \(0.283659\pi\)
\(168\) 0 0
\(169\) −3.79180 + 11.6699i −0.291677 + 0.897688i
\(170\) 0 0
\(171\) −3.92705 2.85317i −0.300309 0.218187i
\(172\) 0 0
\(173\) −0.663119 2.04087i −0.0504160 0.155164i 0.922679 0.385569i \(-0.125995\pi\)
−0.973095 + 0.230405i \(0.925995\pi\)
\(174\) 0 0
\(175\) −1.47214 −0.111283
\(176\) 0 0
\(177\) −2.85410 −0.214527
\(178\) 0 0
\(179\) −2.86475 8.81678i −0.214121 0.658997i −0.999215 0.0396200i \(-0.987385\pi\)
0.785094 0.619377i \(-0.212615\pi\)
\(180\) 0 0
\(181\) 19.6353 + 14.2658i 1.45948 + 1.06037i 0.983499 + 0.180915i \(0.0579059\pi\)
0.475978 + 0.879457i \(0.342094\pi\)
\(182\) 0 0
\(183\) −0.927051 + 2.85317i −0.0685296 + 0.210912i
\(184\) 0 0
\(185\) −9.66312 + 7.02067i −0.710447 + 0.516170i
\(186\) 0 0
\(187\) 10.6353 + 12.0862i 0.777727 + 0.883832i
\(188\) 0 0
\(189\) 1.73607 1.26133i 0.126280 0.0917481i
\(190\) 0 0
\(191\) −6.75329 + 20.7845i −0.488651 + 1.50391i 0.337972 + 0.941156i \(0.390259\pi\)
−0.826623 + 0.562756i \(0.809741\pi\)
\(192\) 0 0
\(193\) 7.78115 + 5.65334i 0.560100 + 0.406936i 0.831495 0.555532i \(-0.187485\pi\)
−0.271396 + 0.962468i \(0.587485\pi\)
\(194\) 0 0
\(195\) −0.263932 0.812299i −0.0189006 0.0581700i
\(196\) 0 0
\(197\) 8.47214 0.603615 0.301807 0.953369i \(-0.402410\pi\)
0.301807 + 0.953369i \(0.402410\pi\)
\(198\) 0 0
\(199\) 24.3607 1.72688 0.863441 0.504449i \(-0.168304\pi\)
0.863441 + 0.504449i \(0.168304\pi\)
\(200\) 0 0
\(201\) −1.05573 3.24920i −0.0744653 0.229181i
\(202\) 0 0
\(203\) −4.16312 3.02468i −0.292194 0.212291i
\(204\) 0 0
\(205\) −3.69098 + 11.3597i −0.257789 + 0.793394i
\(206\) 0 0
\(207\) 8.47214 6.15537i 0.588854 0.427828i
\(208\) 0 0
\(209\) 0.572949 + 6.12261i 0.0396317 + 0.423510i
\(210\) 0 0
\(211\) −1.54508 + 1.12257i −0.106368 + 0.0772809i −0.639698 0.768627i \(-0.720940\pi\)
0.533330 + 0.845907i \(0.320940\pi\)
\(212\) 0 0
\(213\) −1.16312 + 3.57971i −0.0796956 + 0.245278i
\(214\) 0 0
\(215\) −13.7082 9.95959i −0.934892 0.679239i
\(216\) 0 0
\(217\) 1.92705 + 5.93085i 0.130817 + 0.402613i
\(218\) 0 0
\(219\) −6.09017 −0.411536
\(220\) 0 0
\(221\) −4.14590 −0.278883
\(222\) 0 0
\(223\) 2.28115 + 7.02067i 0.152757 + 0.470139i 0.997927 0.0643598i \(-0.0205005\pi\)
−0.845169 + 0.534498i \(0.820501\pi\)
\(224\) 0 0
\(225\) −5.04508 3.66547i −0.336339 0.244365i
\(226\) 0 0
\(227\) 4.28115 13.1760i 0.284150 0.874524i −0.702502 0.711682i \(-0.747934\pi\)
0.986652 0.162842i \(-0.0520662\pi\)
\(228\) 0 0
\(229\) −0.545085 + 0.396027i −0.0360202 + 0.0261702i −0.605650 0.795731i \(-0.707087\pi\)
0.569629 + 0.821902i \(0.307087\pi\)
\(230\) 0 0
\(231\) −1.23607 0.277515i −0.0813273 0.0182591i
\(232\) 0 0
\(233\) 10.5451 7.66145i 0.690831 0.501918i −0.186102 0.982530i \(-0.559585\pi\)
0.876933 + 0.480612i \(0.159585\pi\)
\(234\) 0 0
\(235\) −4.78115 + 14.7149i −0.311888 + 0.959893i
\(236\) 0 0
\(237\) 1.42705 + 1.03681i 0.0926969 + 0.0673483i
\(238\) 0 0
\(239\) −4.48278 13.7966i −0.289967 0.892426i −0.984866 0.173319i \(-0.944551\pi\)
0.694899 0.719107i \(-0.255449\pi\)
\(240\) 0 0
\(241\) 18.9443 1.22031 0.610154 0.792283i \(-0.291108\pi\)
0.610154 + 0.792283i \(0.291108\pi\)
\(242\) 0 0
\(243\) 13.9443 0.894525
\(244\) 0 0
\(245\) −3.30902 10.1841i −0.211405 0.650639i
\(246\) 0 0
\(247\) −1.28115 0.930812i −0.0815178 0.0592262i
\(248\) 0 0
\(249\) 2.21885 6.82891i 0.140614 0.432765i
\(250\) 0 0
\(251\) −6.78115 + 4.92680i −0.428023 + 0.310977i −0.780858 0.624709i \(-0.785218\pi\)
0.352835 + 0.935685i \(0.385218\pi\)
\(252\) 0 0
\(253\) −12.9443 2.90617i −0.813799 0.182709i
\(254\) 0 0
\(255\) −3.92705 + 2.85317i −0.245921 + 0.178672i
\(256\) 0 0
\(257\) 5.42705 16.7027i 0.338530 1.04189i −0.626427 0.779480i \(-0.715483\pi\)
0.964957 0.262408i \(-0.0845167\pi\)
\(258\) 0 0
\(259\) −3.69098 2.68166i −0.229347 0.166630i
\(260\) 0 0
\(261\) −6.73607 20.7315i −0.416952 1.28325i
\(262\) 0 0
\(263\) 19.4164 1.19727 0.598633 0.801023i \(-0.295711\pi\)
0.598633 + 0.801023i \(0.295711\pi\)
\(264\) 0 0
\(265\) 2.61803 0.160825
\(266\) 0 0
\(267\) 0.854102 + 2.62866i 0.0522702 + 0.160871i
\(268\) 0 0
\(269\) −9.78115 7.10642i −0.596367 0.433286i 0.248220 0.968704i \(-0.420154\pi\)
−0.844588 + 0.535417i \(0.820154\pi\)
\(270\) 0 0
\(271\) 8.84346 27.2174i 0.537202 1.65334i −0.201641 0.979460i \(-0.564627\pi\)
0.738843 0.673878i \(-0.235373\pi\)
\(272\) 0 0
\(273\) 0.263932 0.191758i 0.0159739 0.0116057i
\(274\) 0 0
\(275\) 0.736068 + 7.86572i 0.0443866 + 0.474321i
\(276\) 0 0
\(277\) −4.54508 + 3.30220i −0.273088 + 0.198410i −0.715897 0.698206i \(-0.753982\pi\)
0.442809 + 0.896616i \(0.353982\pi\)
\(278\) 0 0
\(279\) −8.16312 + 25.1235i −0.488713 + 1.50410i
\(280\) 0 0
\(281\) 5.30902 + 3.85723i 0.316709 + 0.230103i 0.734770 0.678316i \(-0.237290\pi\)
−0.418061 + 0.908419i \(0.637290\pi\)
\(282\) 0 0
\(283\) −3.33688 10.2699i −0.198357 0.610480i −0.999921 0.0125710i \(-0.995998\pi\)
0.801564 0.597909i \(-0.204002\pi\)
\(284\) 0 0
\(285\) −1.85410 −0.109828
\(286\) 0 0
\(287\) −4.56231 −0.269304
\(288\) 0 0
\(289\) 2.02786 + 6.24112i 0.119286 + 0.367125i
\(290\) 0 0
\(291\) −1.66312 1.20833i −0.0974938 0.0708334i
\(292\) 0 0
\(293\) −2.95492 + 9.09429i −0.172628 + 0.531294i −0.999517 0.0310706i \(-0.990108\pi\)
0.826889 + 0.562365i \(0.190108\pi\)
\(294\) 0 0
\(295\) 6.04508 4.39201i 0.351958 0.255713i
\(296\) 0 0
\(297\) −7.60739 8.64527i −0.441426 0.501649i
\(298\) 0 0
\(299\) 2.76393 2.00811i 0.159842 0.116132i
\(300\) 0 0
\(301\) 2.00000 6.15537i 0.115278 0.354789i
\(302\) 0 0
\(303\) −4.04508 2.93893i −0.232384 0.168837i
\(304\) 0 0
\(305\) −2.42705 7.46969i −0.138973 0.427713i
\(306\) 0 0
\(307\) −1.88854 −0.107785 −0.0538924 0.998547i \(-0.517163\pi\)
−0.0538924 + 0.998547i \(0.517163\pi\)
\(308\) 0 0
\(309\) −0.562306 −0.0319885
\(310\) 0 0
\(311\) 0.392609 + 1.20833i 0.0222628 + 0.0685179i 0.961571 0.274557i \(-0.0885314\pi\)
−0.939308 + 0.343075i \(0.888531\pi\)
\(312\) 0 0
\(313\) −11.9271 8.66551i −0.674157 0.489804i 0.197257 0.980352i \(-0.436797\pi\)
−0.871414 + 0.490548i \(0.836797\pi\)
\(314\) 0 0
\(315\) −0.809017 + 2.48990i −0.0455829 + 0.140290i
\(316\) 0 0
\(317\) 12.3992 9.00854i 0.696408 0.505970i −0.182353 0.983233i \(-0.558371\pi\)
0.878760 + 0.477263i \(0.158371\pi\)
\(318\) 0 0
\(319\) −14.0795 + 23.7562i −0.788302 + 1.33009i
\(320\) 0 0
\(321\) −7.54508 + 5.48183i −0.421126 + 0.305966i
\(322\) 0 0
\(323\) −2.78115 + 8.55951i −0.154747 + 0.476264i
\(324\) 0 0
\(325\) −1.64590 1.19581i −0.0912980 0.0663319i
\(326\) 0 0
\(327\) 0.562306 + 1.73060i 0.0310956 + 0.0957024i
\(328\) 0 0
\(329\) −5.90983 −0.325819
\(330\) 0 0
\(331\) 8.94427 0.491622 0.245811 0.969318i \(-0.420946\pi\)
0.245811 + 0.969318i \(0.420946\pi\)
\(332\) 0 0
\(333\) −5.97214 18.3803i −0.327271 1.00724i
\(334\) 0 0
\(335\) 7.23607 + 5.25731i 0.395349 + 0.287238i
\(336\) 0 0
\(337\) 8.84346 27.2174i 0.481734 1.48262i −0.354922 0.934896i \(-0.615493\pi\)
0.836656 0.547729i \(-0.184507\pi\)
\(338\) 0 0
\(339\) −1.07295 + 0.779543i −0.0582746 + 0.0423390i
\(340\) 0 0
\(341\) 30.7254 13.2618i 1.66388 0.718166i
\(342\) 0 0
\(343\) 6.80902 4.94704i 0.367652 0.267115i
\(344\) 0 0
\(345\) 1.23607 3.80423i 0.0665477 0.204813i
\(346\) 0 0
\(347\) −23.8713 17.3435i −1.28148 0.931050i −0.281883 0.959449i \(-0.590959\pi\)
−0.999597 + 0.0283992i \(0.990959\pi\)
\(348\) 0 0
\(349\) 4.10081 + 12.6210i 0.219511 + 0.675587i 0.998802 + 0.0489247i \(0.0155794\pi\)
−0.779291 + 0.626662i \(0.784421\pi\)
\(350\) 0 0
\(351\) 2.96556 0.158290
\(352\) 0 0
\(353\) −25.4164 −1.35278 −0.676389 0.736544i \(-0.736456\pi\)
−0.676389 + 0.736544i \(0.736456\pi\)
\(354\) 0 0
\(355\) −3.04508 9.37181i −0.161616 0.497404i
\(356\) 0 0
\(357\) −1.50000 1.08981i −0.0793884 0.0576791i
\(358\) 0 0
\(359\) 6.95492 21.4050i 0.367066 1.12971i −0.581611 0.813467i \(-0.697577\pi\)
0.948677 0.316247i \(-0.102423\pi\)
\(360\) 0 0
\(361\) 12.5902 9.14729i 0.662641 0.481437i
\(362\) 0 0
\(363\) −0.864745 + 6.74315i −0.0453873 + 0.353924i
\(364\) 0 0
\(365\) 12.8992 9.37181i 0.675174 0.490543i
\(366\) 0 0
\(367\) 3.60739 11.1024i 0.188304 0.579541i −0.811685 0.584095i \(-0.801450\pi\)
0.999990 + 0.00455397i \(0.00144958\pi\)
\(368\) 0 0
\(369\) −15.6353 11.3597i −0.813939 0.591361i
\(370\) 0 0
\(371\) 0.309017 + 0.951057i 0.0160434 + 0.0493764i
\(372\) 0 0
\(373\) −21.4164 −1.10890 −0.554450 0.832217i \(-0.687071\pi\)
−0.554450 + 0.832217i \(0.687071\pi\)
\(374\) 0 0
\(375\) −7.38197 −0.381203
\(376\) 0 0
\(377\) −2.19756 6.76340i −0.113180 0.348333i
\(378\) 0 0
\(379\) 11.5451 + 8.38800i 0.593031 + 0.430862i 0.843398 0.537289i \(-0.180551\pi\)
−0.250367 + 0.968151i \(0.580551\pi\)
\(380\) 0 0
\(381\) 4.07295 12.5352i 0.208663 0.642200i
\(382\) 0 0
\(383\) −25.1074 + 18.2416i −1.28293 + 0.932102i −0.999637 0.0269326i \(-0.991426\pi\)
−0.283290 + 0.959034i \(0.591426\pi\)
\(384\) 0 0
\(385\) 3.04508 1.31433i 0.155192 0.0669843i
\(386\) 0 0
\(387\) 22.1803 16.1150i 1.12749 0.819169i
\(388\) 0 0
\(389\) 4.86475 14.9721i 0.246652 0.759118i −0.748708 0.662900i \(-0.769325\pi\)
0.995360 0.0962179i \(-0.0306746\pi\)
\(390\) 0 0
\(391\) −15.7082 11.4127i −0.794398 0.577164i
\(392\) 0 0
\(393\) 1.52786 + 4.70228i 0.0770705 + 0.237199i
\(394\) 0 0
\(395\) −4.61803 −0.232359
\(396\) 0 0
\(397\) 29.4164 1.47637 0.738184 0.674600i \(-0.235684\pi\)
0.738184 + 0.674600i \(0.235684\pi\)
\(398\) 0 0
\(399\) −0.218847 0.673542i −0.0109561 0.0337193i
\(400\) 0 0
\(401\) 3.30902 + 2.40414i 0.165244 + 0.120057i 0.667334 0.744758i \(-0.267435\pi\)
−0.502090 + 0.864816i \(0.667435\pi\)
\(402\) 0 0
\(403\) −2.66312 + 8.19624i −0.132659 + 0.408284i
\(404\) 0 0
\(405\) −7.47214 + 5.42882i −0.371293 + 0.269760i
\(406\) 0 0
\(407\) −12.4828 + 21.0620i −0.618748 + 1.04400i
\(408\) 0 0
\(409\) 15.0172 10.9106i 0.742554 0.539497i −0.150956 0.988540i \(-0.548235\pi\)
0.893510 + 0.449044i \(0.148235\pi\)
\(410\) 0 0
\(411\) −0.489357 + 1.50609i −0.0241382 + 0.0742897i
\(412\) 0 0
\(413\) 2.30902 + 1.67760i 0.113619 + 0.0825493i
\(414\) 0 0
\(415\) 5.80902 + 17.8783i 0.285153 + 0.877612i
\(416\) 0 0
\(417\) 10.6738 0.522696
\(418\) 0 0
\(419\) 20.9443 1.02319 0.511597 0.859225i \(-0.329054\pi\)
0.511597 + 0.859225i \(0.329054\pi\)
\(420\) 0 0
\(421\) −0.954915 2.93893i −0.0465397 0.143235i 0.925086 0.379757i \(-0.123992\pi\)
−0.971626 + 0.236522i \(0.923992\pi\)
\(422\) 0 0
\(423\) −20.2533 14.7149i −0.984749 0.715462i
\(424\) 0 0
\(425\) −3.57295 + 10.9964i −0.173313 + 0.533404i
\(426\) 0 0
\(427\) 2.42705 1.76336i 0.117453 0.0853348i
\(428\) 0 0
\(429\) −1.15654 1.31433i −0.0558383 0.0634563i
\(430\) 0 0
\(431\) 29.2533 21.2538i 1.40908 1.02376i 0.415626 0.909536i \(-0.363562\pi\)
0.993455 0.114222i \(-0.0364375\pi\)
\(432\) 0 0
\(433\) −8.28115 + 25.4868i −0.397967 + 1.22482i 0.528660 + 0.848834i \(0.322695\pi\)
−0.926627 + 0.375982i \(0.877305\pi\)
\(434\) 0 0
\(435\) −6.73607 4.89404i −0.322970 0.234651i
\(436\) 0 0
\(437\) −2.29180 7.05342i −0.109631 0.337411i
\(438\) 0 0
\(439\) −16.9443 −0.808706 −0.404353 0.914603i \(-0.632503\pi\)
−0.404353 + 0.914603i \(0.632503\pi\)
\(440\) 0 0
\(441\) 17.3262 0.825059
\(442\) 0 0
\(443\) −5.80902 17.8783i −0.275995 0.849424i −0.988954 0.148219i \(-0.952646\pi\)
0.712960 0.701205i \(-0.247354\pi\)
\(444\) 0 0
\(445\) −5.85410 4.25325i −0.277511 0.201624i
\(446\) 0 0
\(447\) 2.12868 6.55139i 0.100683 0.309870i
\(448\) 0 0
\(449\) 13.3090 9.66957i 0.628091 0.456335i −0.227647 0.973744i \(-0.573103\pi\)
0.855738 + 0.517409i \(0.173103\pi\)
\(450\) 0 0
\(451\) 2.28115 + 24.3767i 0.107415 + 1.14785i
\(452\) 0 0
\(453\) −4.16312 + 3.02468i −0.195600 + 0.142112i
\(454\) 0 0
\(455\) −0.263932 + 0.812299i −0.0123733 + 0.0380812i
\(456\) 0 0
\(457\) 8.54508 + 6.20837i 0.399722 + 0.290415i 0.769428 0.638734i \(-0.220541\pi\)
−0.369706 + 0.929149i \(0.620541\pi\)
\(458\) 0 0
\(459\) −5.20820 16.0292i −0.243098 0.748179i
\(460\) 0 0
\(461\) −14.3607 −0.668844 −0.334422 0.942424i \(-0.608541\pi\)
−0.334422 + 0.942424i \(0.608541\pi\)
\(462\) 0 0
\(463\) 11.4164 0.530565 0.265283 0.964171i \(-0.414535\pi\)
0.265283 + 0.964171i \(0.414535\pi\)
\(464\) 0 0
\(465\) 3.11803 + 9.59632i 0.144595 + 0.445019i
\(466\) 0 0
\(467\) 22.4894 + 16.3395i 1.04068 + 0.756101i 0.970419 0.241428i \(-0.0776157\pi\)
0.0702645 + 0.997528i \(0.477616\pi\)
\(468\) 0 0
\(469\) −1.05573 + 3.24920i −0.0487490 + 0.150034i
\(470\) 0 0
\(471\) −8.16312 + 5.93085i −0.376137 + 0.273279i
\(472\) 0 0
\(473\) −33.8885 7.60845i −1.55820 0.349837i
\(474\) 0 0
\(475\) −3.57295 + 2.59590i −0.163938 + 0.119108i
\(476\) 0 0
\(477\) −1.30902 + 4.02874i −0.0599358 + 0.184463i
\(478\) 0 0
\(479\) 19.3992 + 14.0943i 0.886371 + 0.643987i 0.934929 0.354834i \(-0.115463\pi\)
−0.0485579 + 0.998820i \(0.515463\pi\)
\(480\) 0 0
\(481\) −1.94834 5.99637i −0.0888365 0.273411i
\(482\) 0 0
\(483\) 1.52786 0.0695202
\(484\) 0 0
\(485\) 5.38197 0.244382
\(486\) 0 0
\(487\) 1.22542 + 3.77147i 0.0555293 + 0.170902i 0.974975 0.222316i \(-0.0713618\pi\)
−0.919445 + 0.393218i \(0.871362\pi\)
\(488\) 0 0
\(489\) −7.89919 5.73910i −0.357214 0.259531i
\(490\) 0 0
\(491\) −5.71885 + 17.6008i −0.258088 + 0.794313i 0.735118 + 0.677940i \(0.237127\pi\)
−0.993206 + 0.116373i \(0.962873\pi\)
\(492\) 0 0
\(493\) −32.6976 + 23.7562i −1.47262 + 1.06992i
\(494\) 0 0
\(495\) 13.7082 + 3.07768i 0.616138 + 0.138332i
\(496\) 0 0
\(497\) 3.04508 2.21238i 0.136591 0.0992390i
\(498\) 0 0
\(499\) −7.13525 + 21.9601i −0.319418 + 0.983067i 0.654480 + 0.756080i \(0.272888\pi\)
−0.973898 + 0.226988i \(0.927112\pi\)
\(500\) 0 0
\(501\) 0.663119 + 0.481784i 0.0296260 + 0.0215245i
\(502\) 0 0
\(503\) −0.954915 2.93893i −0.0425776 0.131040i 0.927508 0.373803i \(-0.121946\pi\)
−0.970086 + 0.242763i \(0.921946\pi\)
\(504\) 0 0
\(505\) 13.0902 0.582505
\(506\) 0 0
\(507\) −7.58359 −0.336799
\(508\) 0 0
\(509\) −5.71885 17.6008i −0.253483 0.780142i −0.994125 0.108241i \(-0.965478\pi\)
0.740641 0.671901i \(-0.234522\pi\)
\(510\) 0 0
\(511\) 4.92705 + 3.57971i 0.217960 + 0.158357i
\(512\) 0 0
\(513\) 1.98936 6.12261i 0.0878323 0.270320i
\(514\) 0 0
\(515\) 1.19098 0.865300i 0.0524810 0.0381297i
\(516\) 0 0
\(517\) 2.95492 + 31.5766i 0.129957 + 1.38874i
\(518\) 0 0
\(519\) 1.07295 0.779543i 0.0470972 0.0342181i
\(520\) 0 0
\(521\) 1.24671 3.83698i 0.0546194 0.168101i −0.920026 0.391858i \(-0.871832\pi\)
0.974645 + 0.223757i \(0.0718323\pi\)
\(522\) 0 0
\(523\) −20.6353 14.9924i −0.902317 0.655571i 0.0367433 0.999325i \(-0.488302\pi\)
−0.939060 + 0.343753i \(0.888302\pi\)
\(524\) 0 0
\(525\) −0.281153 0.865300i −0.0122705 0.0377648i
\(526\) 0 0
\(527\) 48.9787 2.13355
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 3.73607 + 11.4984i 0.162132 + 0.498990i
\(532\) 0 0
\(533\) −5.10081 3.70596i −0.220941 0.160523i
\(534\) 0 0
\(535\) 7.54508 23.2214i 0.326202 1.00395i
\(536\) 0 0
\(537\) 4.63525 3.36771i 0.200026 0.145327i
\(538\) 0 0
\(539\) −14.5000 16.4782i −0.624559 0.709768i
\(540\) 0 0
\(541\) 29.3435 21.3193i 1.26157 0.916587i 0.262740 0.964867i \(-0.415374\pi\)
0.998834 + 0.0482796i \(0.0153739\pi\)
\(542\) 0 0
\(543\) −4.63525 + 14.2658i −0.198918 + 0.612206i
\(544\) 0 0
\(545\) −3.85410 2.80017i −0.165092 0.119946i
\(546\) 0 0
\(547\) −10.7533 33.0952i −0.459777 1.41505i −0.865434 0.501024i \(-0.832957\pi\)
0.405656 0.914026i \(-0.367043\pi\)
\(548\) 0 0
\(549\) 12.7082 0.542373
\(550\) 0 0
\(551\) −15.4377 −0.657668
\(552\) 0 0
\(553\) −0.545085 1.67760i −0.0231794 0.0713388i
\(554\) 0 0
\(555\) −5.97214 4.33901i −0.253503 0.184181i
\(556\) 0 0
\(557\) −8.07953 + 24.8662i −0.342341 + 1.05362i 0.620652 + 0.784086i \(0.286868\pi\)
−0.962992 + 0.269529i \(0.913132\pi\)
\(558\) 0 0
\(559\) 7.23607 5.25731i 0.306053 0.222361i
\(560\) 0 0
\(561\) −5.07295 + 8.55951i −0.214180 + 0.361383i
\(562\) 0 0
\(563\) 3.69098 2.68166i 0.155556 0.113018i −0.507284 0.861779i \(-0.669351\pi\)
0.662841 + 0.748760i \(0.269351\pi\)
\(564\) 0 0
\(565\) 1.07295 3.30220i 0.0451393 0.138924i
\(566\) 0 0
\(567\) −2.85410 2.07363i −0.119861 0.0870841i
\(568\) 0 0
\(569\) 0.371323 + 1.14281i 0.0155667 + 0.0479093i 0.958538 0.284964i \(-0.0919818\pi\)
−0.942971 + 0.332874i \(0.891982\pi\)
\(570\) 0 0
\(571\) 22.8328 0.955524 0.477762 0.878489i \(-0.341448\pi\)
0.477762 + 0.878489i \(0.341448\pi\)
\(572\) 0 0
\(573\) −13.5066 −0.564245
\(574\) 0 0
\(575\) −2.94427 9.06154i −0.122785 0.377892i
\(576\) 0 0
\(577\) 17.4894 + 12.7068i 0.728091 + 0.528989i 0.888959 0.457987i \(-0.151429\pi\)
−0.160868 + 0.986976i \(0.551429\pi\)
\(578\) 0 0
\(579\) −1.83688 + 5.65334i −0.0763382 + 0.234945i
\(580\) 0 0
\(581\) −5.80902 + 4.22050i −0.240999 + 0.175096i
\(582\) 0 0
\(583\) 4.92705 2.12663i 0.204058 0.0880759i
\(584\) 0 0
\(585\) −2.92705 + 2.12663i −0.121019 + 0.0879252i
\(586\) 0 0
\(587\) −3.42705 + 10.5474i −0.141450 + 0.435337i −0.996537 0.0831463i \(-0.973503\pi\)
0.855088 + 0.518483i \(0.173503\pi\)
\(588\) 0 0
\(589\) 15.1353 + 10.9964i 0.623637 + 0.453099i
\(590\) 0 0
\(591\) 1.61803 + 4.97980i 0.0665570 + 0.204841i
\(592\) 0 0
\(593\) −8.47214 −0.347909 −0.173954 0.984754i \(-0.555655\pi\)
−0.173954 + 0.984754i \(0.555655\pi\)
\(594\) 0 0
\(595\) 4.85410 0.198999
\(596\) 0 0
\(597\) 4.65248 + 14.3188i 0.190413 + 0.586031i
\(598\) 0 0
\(599\) −11.2533 8.17599i −0.459797 0.334062i 0.333655 0.942695i \(-0.391718\pi\)
−0.793452 + 0.608633i \(0.791718\pi\)
\(600\) 0 0
\(601\) −11.6976 + 36.0014i −0.477153 + 1.46853i 0.365878 + 0.930663i \(0.380769\pi\)
−0.843031 + 0.537864i \(0.819231\pi\)
\(602\) 0 0
\(603\) −11.7082 + 8.50651i −0.476795 + 0.346412i
\(604\) 0 0
\(605\) −8.54508 15.6129i −0.347407 0.634756i
\(606\) 0 0
\(607\) −25.5795 + 18.5846i −1.03824 + 0.754326i −0.969941 0.243339i \(-0.921757\pi\)
−0.0682996 + 0.997665i \(0.521757\pi\)
\(608\) 0 0
\(609\) 0.982779 3.02468i 0.0398242 0.122566i
\(610\) 0 0
\(611\) −6.60739 4.80055i −0.267306 0.194209i
\(612\) 0 0
\(613\) −1.53851 4.73504i −0.0621397 0.191246i 0.915167 0.403074i \(-0.132058\pi\)
−0.977307 + 0.211828i \(0.932058\pi\)
\(614\) 0 0
\(615\) −7.38197 −0.297670
\(616\) 0 0
\(617\) 1.41641 0.0570224 0.0285112 0.999593i \(-0.490923\pi\)
0.0285112 + 0.999593i \(0.490923\pi\)
\(618\) 0 0
\(619\) −4.28115 13.1760i −0.172074 0.529590i 0.827414 0.561593i \(-0.189811\pi\)
−0.999488 + 0.0320034i \(0.989811\pi\)
\(620\) 0 0
\(621\) 11.2361 + 8.16348i 0.450888 + 0.327589i
\(622\) 0 0
\(623\) 0.854102 2.62866i 0.0342189 0.105315i
\(624\) 0 0
\(625\) 6.00000 4.35926i 0.240000 0.174370i
\(626\) 0 0
\(627\) −3.48936 + 1.50609i −0.139351 + 0.0601473i
\(628\) 0 0
\(629\) −28.9894 + 21.0620i −1.15588 + 0.839797i
\(630\) 0 0
\(631\) −0.281153 + 0.865300i −0.0111925 + 0.0344470i −0.956497 0.291743i \(-0.905765\pi\)
0.945304 + 0.326190i \(0.105765\pi\)
\(632\) 0 0
\(633\) −0.954915 0.693786i −0.0379545 0.0275755i
\(634\) 0 0
\(635\) 10.6631 + 32.8177i 0.423153 + 1.30233i
\(636\) 0 0
\(637\) 5.65248 0.223959
\(638\) 0 0
\(639\) 15.9443 0.630746
\(640\) 0 0
\(641\) 10.3713 + 31.9196i 0.409643 + 1.26075i 0.916956 + 0.398989i \(0.130639\pi\)
−0.507313 + 0.861762i \(0.669361\pi\)
\(642\) 0 0
\(643\) 19.7254 + 14.3314i 0.777895 + 0.565174i 0.904346 0.426799i \(-0.140359\pi\)
−0.126452 + 0.991973i \(0.540359\pi\)
\(644\) 0 0
\(645\) 3.23607 9.95959i 0.127420 0.392159i
\(646\) 0 0
\(647\) −26.3435 + 19.1396i −1.03567 + 0.752457i −0.969435 0.245347i \(-0.921098\pi\)
−0.0662330 + 0.997804i \(0.521098\pi\)
\(648\) 0 0
\(649\) 7.80902 13.1760i 0.306531 0.517205i
\(650\) 0 0
\(651\) −3.11803 + 2.26538i −0.122205 + 0.0887874i
\(652\) 0 0
\(653\) −8.01064 + 24.6542i −0.313481 + 0.964794i 0.662895 + 0.748713i \(0.269328\pi\)
−0.976375 + 0.216082i \(0.930672\pi\)
\(654\) 0 0
\(655\) −10.4721 7.60845i −0.409180 0.297287i
\(656\) 0 0
\(657\) 7.97214 + 24.5357i 0.311023 + 0.957229i
\(658\) 0 0
\(659\) 32.0000 1.24654 0.623272 0.782006i \(-0.285803\pi\)
0.623272 + 0.782006i \(0.285803\pi\)
\(660\) 0 0
\(661\) 10.9443 0.425683 0.212841 0.977087i \(-0.431728\pi\)
0.212841 + 0.977087i \(0.431728\pi\)
\(662\) 0 0
\(663\) −0.791796 2.43690i −0.0307508 0.0946413i
\(664\) 0 0
\(665\) 1.50000 + 1.08981i 0.0581675 + 0.0422612i
\(666\) 0 0
\(667\) 10.2918 31.6749i 0.398500 1.22646i
\(668\) 0 0
\(669\) −3.69098 + 2.68166i −0.142702 + 0.103679i
\(670\) 0 0
\(671\) −10.6353 12.0862i −0.410569 0.466583i
\(672\) 0 0
\(673\) −28.1074 + 20.4212i −1.08346 + 0.787180i −0.978283 0.207274i \(-0.933541\pi\)
−0.105177 + 0.994453i \(0.533541\pi\)
\(674\) 0 0
\(675\) 2.55573 7.86572i 0.0983700 0.302752i
\(676\) 0 0
\(677\) −3.78115 2.74717i −0.145322 0.105582i 0.512749 0.858539i \(-0.328627\pi\)
−0.658071 + 0.752956i \(0.728627\pi\)
\(678\) 0 0
\(679\) 0.635255 + 1.95511i 0.0243788 + 0.0750304i
\(680\) 0 0
\(681\) 8.56231 0.328108
\(682\) 0 0
\(683\) 16.9443 0.648355 0.324177 0.945996i \(-0.394913\pi\)
0.324177 + 0.945996i \(0.394913\pi\)
\(684\) 0 0
\(685\) −1.28115 3.94298i −0.0489503 0.150654i
\(686\) 0 0
\(687\) −0.336881 0.244758i −0.0128528 0.00933812i
\(688\) 0 0
\(689\) −0.427051 + 1.31433i −0.0162693 + 0.0500719i
\(690\) 0 0
\(691\) −2.78115 + 2.02063i −0.105800 + 0.0768682i −0.639427 0.768852i \(-0.720829\pi\)
0.533627 + 0.845720i \(0.320829\pi\)
\(692\) 0 0
\(693\) 0.500000 + 5.34307i 0.0189934 + 0.202966i
\(694\) 0 0
\(695\) −22.6074 + 16.4252i −0.857547 + 0.623045i
\(696\) 0 0
\(697\) −11.0729 + 34.0790i −0.419418 + 1.29084i
\(698\) 0 0
\(699\) 6.51722 + 4.73504i 0.246504 + 0.179096i
\(700\) 0 0
\(701\) 15.2254 + 46.8590i 0.575056 + 1.76984i 0.635987 + 0.771700i \(0.280593\pi\)
−0.0609310 + 0.998142i \(0.519407\pi\)
\(702\) 0 0
\(703\) −13.6869 −0.516212
\(704\) 0 0
\(705\) −9.56231 −0.360137
\(706\) 0 0
\(707\) 1.54508 + 4.75528i 0.0581089 + 0.178841i
\(708\) 0 0
\(709\) 18.3992 + 13.3678i 0.690996 + 0.502038i 0.876987 0.480513i \(-0.159550\pi\)
−0.185991 + 0.982551i \(0.559550\pi\)
\(710\) 0 0
\(711\) 2.30902 7.10642i 0.0865949 0.266512i
\(712\) 0 0
\(713\) −32.6525 + 23.7234i −1.22284 + 0.888449i
\(714\) 0 0
\(715\) 4.47214 + 1.00406i 0.167248 + 0.0375496i
\(716\) 0 0
\(717\) 7.25329 5.26982i 0.270879 0.196805i
\(718\) 0 0
\(719\) 3.42705 10.5474i 0.127807 0.393351i −0.866595 0.499013i \(-0.833696\pi\)
0.994402 + 0.105662i \(0.0336961\pi\)
\(720\) 0 0
\(721\) 0.454915 + 0.330515i 0.0169419 + 0.0123090i
\(722\) 0 0
\(723\) 3.61803 + 11.1352i 0.134556 + 0.414121i
\(724\) 0 0
\(725\) −19.8328 −0.736572
\(726\) 0 0
\(727\) 11.0557 0.410034 0.205017 0.978758i \(-0.434275\pi\)
0.205017 + 0.978758i \(0.434275\pi\)
\(728\) 0 0
\(729\) −2.62868 8.09024i −0.0973584 0.299638i
\(730\) 0 0
\(731\) −41.1246 29.8788i −1.52105 1.10511i
\(732\) 0 0
\(733\) −4.95492 + 15.2497i −0.183014 + 0.563259i −0.999908 0.0135280i \(-0.995694\pi\)
0.816895 + 0.576787i \(0.195694\pi\)
\(734\) 0 0
\(735\) 5.35410 3.88998i 0.197489 0.143484i
\(736\) 0 0
\(737\) 17.8885 + 4.01623i 0.658933 + 0.147940i
\(738\) 0 0
\(739\) −12.0172 + 8.73102i −0.442061 + 0.321176i −0.786453 0.617650i \(-0.788085\pi\)
0.344393 + 0.938826i \(0.388085\pi\)
\(740\) 0 0
\(741\) 0.302439 0.930812i 0.0111104 0.0341942i
\(742\) 0 0
\(743\) −11.0729 8.04497i −0.406227 0.295141i 0.365846 0.930676i \(-0.380780\pi\)
−0.772073 + 0.635534i \(0.780780\pi\)
\(744\) 0 0
\(745\) 5.57295 + 17.1518i 0.204177 + 0.628392i
\(746\) 0 0
\(747\) −30.4164 −1.11288
\(748\) 0 0
\(749\) 9.32624 0.340773
\(750\) 0 0
\(751\) 3.80902 + 11.7229i 0.138993 + 0.427776i 0.996190 0.0872126i \(-0.0277960\pi\)
−0.857197 + 0.514989i \(0.827796\pi\)
\(752\) 0 0
\(753\) −4.19098 3.04493i −0.152728 0.110963i
\(754\) 0 0
\(755\) 4.16312 12.8128i 0.151511 0.466304i
\(756\) 0 0
\(757\) 34.1074 24.7805i 1.23965 0.900662i 0.242079 0.970257i \(-0.422171\pi\)
0.997575 + 0.0695951i \(0.0221707\pi\)
\(758\) 0 0
\(759\) −0.763932 8.16348i −0.0277290 0.296316i
\(760\) 0 0
\(761\) 25.4894 18.5191i 0.923988 0.671317i −0.0205251 0.999789i \(-0.506534\pi\)
0.944514 + 0.328472i \(0.106534\pi\)
\(762\) 0 0
\(763\) 0.562306 1.73060i 0.0203568 0.0626519i
\(764\) 0 0
\(765\) 16.6353 + 12.0862i 0.601449 + 0.436978i
\(766\) 0 0
\(767\) 1.21885 + 3.75123i 0.0440100 + 0.135449i
\(768\) 0 0
\(769\) −44.2492 −1.59567 −0.797834 0.602877i \(-0.794021\pi\)
−0.797834 + 0.602877i \(0.794021\pi\)
\(770\) 0 0
\(771\) 10.8541 0.390901
\(772\) 0 0
\(773\) 11.6287 + 35.7894i 0.418254 + 1.28725i 0.909307 + 0.416125i \(0.136612\pi\)
−0.491053 + 0.871130i \(0.663388\pi\)
\(774\) 0 0
\(775\) 19.4443 + 14.1271i 0.698459 + 0.507460i
\(776\) 0 0
\(777\) 0.871323 2.68166i 0.0312585 0.0962039i
\(778\) 0 0
\(779\) −11.0729 + 8.04497i −0.396730 + 0.288241i
\(780\) 0 0
\(781\) −13.3435 15.1639i −0.477466 0.542607i
\(782\) 0 0
\(783\) 23.3885 16.9928i 0.835838 0.607272i
\(784\) 0 0
\(785\) 8.16312 25.1235i 0.291354 0.896696i
\(786\) 0 0
\(787\) 2.78115 + 2.02063i 0.0991374 + 0.0720275i 0.636250 0.771483i \(-0.280485\pi\)
−0.537112 + 0.843511i \(0.680485\pi\)
\(788\) 0 0
\(789\) 3.70820 + 11.4127i 0.132016 + 0.406302i
\(790\) 0 0
\(791\) 1.32624 0.0471556
\(792\) 0 0
\(793\) 4.14590 0.147225
\(794\) 0 0
\(795\) 0.500000 + 1.53884i 0.0177332 + 0.0545771i
\(796\) 0 0
\(797\) −35.9615 26.1276i −1.27382 0.925485i −0.274474 0.961595i \(-0.588504\pi\)
−0.999348 + 0.0361092i \(0.988504\pi\)
\(798\) 0 0
\(799\) −14.3435 + 44.1446i −0.507435 + 1.56172i
\(800\) 0 0
\(801\) 9.47214 6.88191i 0.334681 0.243160i
\(802\) 0 0
\(803\) 16.6631 28.1154i 0.588029 0.992172i
\(804\) 0 0
\(805\) −3.23607 + 2.35114i −0.114056 + 0.0828668i
\(806\) 0 0
\(807\) 2.30902 7.10642i 0.0812812 0.250158i
\(808\) 0 0
\(809\) 31.9615 + 23.2214i 1.12371 + 0.816420i 0.984767 0.173880i \(-0.0556306\pi\)
0.138939 + 0.990301i \(0.455631\pi\)
\(810\) 0 0
\(811\) 0.0795268 + 0.244758i 0.00279256 + 0.00859463i 0.952443 0.304717i \(-0.0985617\pi\)
−0.949651 + 0.313311i \(0.898562\pi\)
\(812\) 0 0
\(813\) 17.6869 0.620307
\(814\) 0 0
\(815\) 25.5623 0.895409
\(816\) 0 0
\(817\) −6.00000 18.4661i −0.209913 0.646047i
\(818\) 0 0
\(819\) −1.11803 0.812299i −0.0390673 0.0283840i
\(820\) 0 0
\(821\) 8.16970 25.1437i 0.285124 0.877523i −0.701237 0.712928i \(-0.747368\pi\)
0.986361 0.164594i \(-0.0526315\pi\)
\(822\) 0 0
\(823\) 23.7254 17.2375i 0.827016 0.600863i −0.0916973 0.995787i \(-0.529229\pi\)
0.918714 + 0.394924i \(0.129229\pi\)
\(824\) 0 0
\(825\) −4.48278 + 1.93487i −0.156070 + 0.0673635i
\(826\) 0 0
\(827\) −23.7254 + 17.2375i −0.825014 + 0.599408i −0.918144 0.396246i \(-0.870313\pi\)
0.0931304 + 0.995654i \(0.470313\pi\)
\(828\) 0 0
\(829\) −3.71885 + 11.4454i −0.129161 + 0.397516i −0.994636 0.103435i \(-0.967017\pi\)
0.865475 + 0.500952i \(0.167017\pi\)
\(830\) 0 0
\(831\) −2.80902 2.04087i −0.0974437 0.0707970i
\(832\) 0 0
\(833\) −9.92705 30.5523i −0.343952 1.05858i
\(834\) 0 0
\(835\) −2.14590 −0.0742619
\(836\) 0 0
\(837\) −35.0344 −1.21097
\(838\) 0 0
\(839\) −14.8435 45.6835i −0.512453 1.57717i −0.787869 0.615843i \(-0.788815\pi\)
0.275416 0.961325i \(-0.411185\pi\)
\(840\) 0 0
\(841\) −32.6246 23.7032i −1.12499 0.817351i
\(842\) 0 0
\(843\) −1.25329 + 3.85723i −0.0431656 + 0.132850i
\(844\) 0 0
\(845\) 16.0623 11.6699i 0.552560 0.401458i
\(846\) 0 0
\(847\) 4.66312 4.94704i 0.160227 0.169982i
\(848\) 0 0
\(849\) 5.39919 3.92274i 0.185300 0.134628i
\(850\) 0 0
\(851\) 9.12461 28.0827i 0.312788 0.962661i
\(852\) 0 0
\(853\) −35.6697 25.9156i −1.22131 0.887332i −0.225099 0.974336i \(-0.572271\pi\)
−0.996208 + 0.0870043i \(0.972271\pi\)
\(854\) 0 0
\(855\) 2.42705 + 7.46969i 0.0830034 + 0.255458i
\(856\) 0 0
\(857\) 18.3607 0.627189 0.313594 0.949557i \(-0.398467\pi\)
0.313594 + 0.949557i \(0.398467\pi\)
\(858\) 0 0
\(859\) −21.8885 −0.746827 −0.373414 0.927665i \(-0.621813\pi\)
−0.373414 + 0.927665i \(0.621813\pi\)
\(860\) 0 0
\(861\) −0.871323 2.68166i −0.0296946 0.0913906i
\(862\) 0 0
\(863\) 20.6353 + 14.9924i 0.702432 + 0.510347i 0.880723 0.473631i \(-0.157057\pi\)
−0.178291 + 0.983978i \(0.557057\pi\)
\(864\) 0 0
\(865\) −1.07295 + 3.30220i −0.0364814 + 0.112278i
\(866\) 0 0
\(867\) −3.28115 + 2.38390i −0.111434 + 0.0809614i
\(868\) 0 0
\(869\) −8.69098 + 3.75123i −0.294821 + 0.127252i
\(870\) 0 0
\(871\) −3.81966 + 2.77515i −0.129424 + 0.0940322i
\(872\) 0 0
\(873\) −2.69098 + 8.28199i −0.0910760 + 0.280303i
\(874\) 0 0
\(875\) 5.97214 + 4.33901i 0.201895 + 0.146685i
\(876\) 0 0
\(877\) −14.8435 45.6835i −0.501228 1.54262i −0.807021 0.590523i \(-0.798921\pi\)
0.305793 0.952098i \(-0.401079\pi\)
\(878\) 0 0
\(879\) −5.90983 −0.199334
\(880\) 0 0
\(881\) 40.4721 1.36354 0.681770 0.731566i \(-0.261210\pi\)
0.681770 + 0.731566i \(0.261210\pi\)
\(882\) 0 0
\(883\) 1.89919 + 5.84510i 0.0639127 + 0.196703i 0.977914 0.209009i \(-0.0670237\pi\)
−0.914001 + 0.405712i \(0.867024\pi\)
\(884\) 0 0
\(885\) 3.73607 + 2.71441i 0.125587 + 0.0912440i
\(886\) 0 0
\(887\) −14.3926 + 44.2959i −0.483257 + 1.48731i 0.351234 + 0.936288i \(0.385762\pi\)
−0.834490 + 0.551023i \(0.814238\pi\)
\(888\) 0 0
\(889\) −10.6631 + 7.74721i −0.357630 + 0.259833i
\(890\) 0 0
\(891\) −9.65248 + 16.2865i −0.323370 + 0.545617i
\(892\) 0 0
\(893\) −14.3435 + 10.4211i −0.479986 + 0.348730i
\(894\) 0 0
\(895\) −4.63525 + 14.2658i −0.154939 + 0.476855i
\(896\) 0 0
\(897\) 1.70820 + 1.24108i 0.0570353 + 0.0414385i
\(898\) 0 0
\(899\) 25.9615 + 79.9013i 0.865864 + 2.66486i
\(900\) 0 0
\(901\) 7.85410 0.261658
\(902\) 0 0
\(903\) 4.00000 0.133112
\(904\) 0 0
\(905\) −12.1353 37.3485i −0.403390 1.24151i
\(906\) 0 0
\(907\) 5.07295 + 3.68571i 0.168445 + 0.122382i 0.668814 0.743430i \(-0.266802\pi\)
−0.500369 + 0.865812i \(0.666802\pi\)
\(908\) 0 0
\(909\) −6.54508 + 20.1437i −0.217087 + 0.668124i
\(910\) 0 0
\(911\) 0.0172209 0.0125117i 0.000570555 0.000414532i −0.587500 0.809224i \(-0.699888\pi\)
0.588070 + 0.808810i \(0.299888\pi\)
\(912\) 0 0
\(913\) 25.4549 + 28.9277i 0.842435 + 0.957368i
\(914\) 0 0
\(915\) 3.92705 2.85317i 0.129824 0.0943229i
\(916\) 0 0
\(917\) 1.52786 4.70228i 0.0504545 0.155283i
\(918\) 0 0
\(919\) −13.2533 9.62908i −0.437186 0.317634i 0.347330 0.937743i \(-0.387088\pi\)
−0.784516 + 0.620109i \(0.787088\pi\)
\(920\) 0 0
\(921\) −0.360680 1.11006i −0.0118848 0.0365777i
\(922\) 0 0
\(923\) 5.20163 0.171214
\(924\) 0 0
\(925\) −17.5836 −0.578145
\(926\) 0 0
\(927\) 0.736068 + 2.26538i 0.0241756 + 0.0744050i
\(928\) 0 0
\(929\) 27.9615 + 20.3152i 0.917387 + 0.666521i 0.942872 0.333155i \(-0.108113\pi\)
−0.0254854 + 0.999675i \(0.508113\pi\)
\(930\) 0 0
\(931\) 3.79180 11.6699i 0.124271 0.382467i
\(932\) 0 0
\(933\) −0.635255 + 0.461540i −0.0207973 + 0.0151101i
\(934\) 0 0
\(935\) −2.42705 25.9358i −0.0793731 0.848191i
\(936\) 0 0
\(937\) 15.0172 10.9106i 0.490591 0.356435i −0.314820 0.949151i \(-0.601944\pi\)
0.805412 + 0.592716i \(0.201944\pi\)
\(938\) 0 0
\(939\) 2.81559 8.66551i 0.0918835 0.282788i
\(940\) 0 0
\(941\) 3.45492 + 2.51014i 0.112627 + 0.0818283i 0.642673 0.766141i \(-0.277825\pi\)
−0.530046 + 0.847969i \(0.677825\pi\)
\(942\) 0 0
\(943\) −9.12461 28.0827i −0.297138 0.914497i
\(944\) 0 0
\(945\) −3.47214 −0.112949
\(946\) 0 0
\(947\) −34.8328 −1.13191 −0.565957 0.824435i \(-0.691493\pi\)
−0.565957 + 0.824435i \(0.691493\pi\)
\(948\) 0 0
\(949\) 2.60081 + 8.00448i 0.0844260 + 0.259836i
\(950\) 0 0
\(951\) 7.66312 + 5.56758i 0.248494 + 0.180541i
\(952\) 0 0
\(953\) 5.24671 16.1477i 0.169958 0.523076i −0.829410 0.558641i \(-0.811323\pi\)
0.999367 + 0.0355649i \(0.0113231\pi\)
\(954\) 0 0
\(955\) 28.6074 20.7845i 0.925713 0.672570i
\(956\) 0 0
\(957\) −16.6525 3.73871i −0.538298 0.120855i
\(958\) 0 0
\(959\) 1.28115 0.930812i 0.0413706 0.0300575i
\(960\) 0 0
\(961\) 21.8820 67.3458i 0.705870 2.17244i
\(962\) 0 0
\(963\) 31.9615 + 23.2214i 1.02994 + 0.748299i
\(964\) 0 0
\(965\) −4.80902 14.8006i −0.154808 0.476449i
\(966\) 0 0
\(967\) 29.3050 0.942384 0.471192 0.882031i \(-0.343824\pi\)
0.471192 + 0.882031i \(0.343824\pi\)
\(968\) 0 0
\(969\) −5.56231 −0.178687
\(970\) 0 0
\(971\) −5.51722 16.9803i −0.177056 0.544922i 0.822665 0.568526i \(-0.192486\pi\)
−0.999721 + 0.0236034i \(0.992486\pi\)
\(972\) 0 0
\(973\) −8.63525 6.27388i −0.276834 0.201131i
\(974\) 0 0
\(975\) 0.388544 1.19581i 0.0124434 0.0382967i
\(976\) 0 0
\(977\) −41.8156 + 30.3808i −1.33780 + 0.971968i −0.338278 + 0.941046i \(0.609844\pi\)
−0.999522 + 0.0309218i \(0.990156\pi\)
\(978\) 0 0
\(979\) −14.4721 3.24920i −0.462531 0.103845i
\(980\) 0 0
\(981\) 6.23607 4.53077i 0.199102 0.144656i
\(982\) 0 0
\(983\) 0.954915 2.93893i 0.0304571 0.0937372i −0.934672 0.355510i \(-0.884307\pi\)
0.965129 + 0.261773i \(0.0843072\pi\)
\(984\) 0 0
\(985\) −11.0902 8.05748i −0.353362 0.256733i
\(986\) 0 0
\(987\) −1.12868 3.47371i −0.0359262 0.110569i
\(988\) 0 0
\(989\) 41.8885 1.33198
\(990\) 0 0
\(991\) −44.9443 −1.42770 −0.713851 0.700298i \(-0.753051\pi\)
−0.713851 + 0.700298i \(0.753051\pi\)
\(992\) 0 0
\(993\) 1.70820 + 5.25731i 0.0542082 + 0.166836i
\(994\) 0 0
\(995\) −31.8885 23.1684i −1.01093 0.734487i
\(996\) 0 0
\(997\) 15.3369 47.2021i 0.485724 1.49490i −0.345206 0.938527i \(-0.612191\pi\)
0.830930 0.556377i \(-0.187809\pi\)
\(998\) 0 0
\(999\) 20.7361 15.0656i 0.656060 0.476656i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.2.m.g.641.1 4
4.3 odd 2 704.2.m.b.641.1 4
8.3 odd 2 88.2.i.a.25.1 4
8.5 even 2 176.2.m.a.113.1 4
11.2 odd 10 7744.2.a.cc.1.2 2
11.4 even 5 inner 704.2.m.g.257.1 4
11.9 even 5 7744.2.a.cb.1.2 2
24.11 even 2 792.2.r.b.289.1 4
44.15 odd 10 704.2.m.b.257.1 4
44.31 odd 10 7744.2.a.cr.1.1 2
44.35 even 10 7744.2.a.cq.1.1 2
88.3 odd 10 968.2.i.d.753.1 4
88.13 odd 10 1936.2.a.u.1.1 2
88.19 even 10 968.2.i.c.753.1 4
88.27 odd 10 968.2.i.d.9.1 4
88.35 even 10 968.2.a.h.1.2 2
88.37 even 10 176.2.m.a.81.1 4
88.43 even 2 968.2.i.k.729.1 4
88.51 even 10 968.2.i.k.81.1 4
88.53 even 10 1936.2.a.t.1.1 2
88.59 odd 10 88.2.i.a.81.1 yes 4
88.75 odd 10 968.2.a.i.1.2 2
88.83 even 10 968.2.i.c.9.1 4
264.35 odd 10 8712.2.a.bm.1.2 2
264.59 even 10 792.2.r.b.433.1 4
264.251 even 10 8712.2.a.bp.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.i.a.25.1 4 8.3 odd 2
88.2.i.a.81.1 yes 4 88.59 odd 10
176.2.m.a.81.1 4 88.37 even 10
176.2.m.a.113.1 4 8.5 even 2
704.2.m.b.257.1 4 44.15 odd 10
704.2.m.b.641.1 4 4.3 odd 2
704.2.m.g.257.1 4 11.4 even 5 inner
704.2.m.g.641.1 4 1.1 even 1 trivial
792.2.r.b.289.1 4 24.11 even 2
792.2.r.b.433.1 4 264.59 even 10
968.2.a.h.1.2 2 88.35 even 10
968.2.a.i.1.2 2 88.75 odd 10
968.2.i.c.9.1 4 88.83 even 10
968.2.i.c.753.1 4 88.19 even 10
968.2.i.d.9.1 4 88.27 odd 10
968.2.i.d.753.1 4 88.3 odd 10
968.2.i.k.81.1 4 88.51 even 10
968.2.i.k.729.1 4 88.43 even 2
1936.2.a.t.1.1 2 88.53 even 10
1936.2.a.u.1.1 2 88.13 odd 10
7744.2.a.cb.1.2 2 11.9 even 5
7744.2.a.cc.1.2 2 11.2 odd 10
7744.2.a.cq.1.1 2 44.35 even 10
7744.2.a.cr.1.1 2 44.31 odd 10
8712.2.a.bm.1.2 2 264.35 odd 10
8712.2.a.bp.1.2 2 264.251 even 10