Properties

Label 704.2.a
Level $704$
Weight $2$
Character orbit 704.a
Rep. character $\chi_{704}(1,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $16$
Sturm bound $192$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 704.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 16 \)
Sturm bound: \(192\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(704))\).

Total New Old
Modular forms 108 20 88
Cusp forms 85 20 65
Eisenstein series 23 0 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(11\)FrickeDim
\(+\)\(+\)\(+\)\(4\)
\(+\)\(-\)\(-\)\(7\)
\(-\)\(+\)\(-\)\(6\)
\(-\)\(-\)\(+\)\(3\)
Plus space\(+\)\(7\)
Minus space\(-\)\(13\)

Trace form

\( 20 q + 20 q^{9} + O(q^{10}) \) \( 20 q + 20 q^{9} + 16 q^{13} - 8 q^{17} + 16 q^{21} + 12 q^{25} + 16 q^{37} - 8 q^{41} + 24 q^{45} + 20 q^{49} + 24 q^{53} - 16 q^{61} - 8 q^{69} + 8 q^{73} - 12 q^{81} - 32 q^{85} - 24 q^{89} - 8 q^{93} - 8 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(704))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 11
704.2.a.a 704.a 1.a $1$ $5.621$ \(\Q\) None 352.2.a.a \(0\) \(-3\) \(-1\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-q^{5}+6q^{9}+q^{11}+6q^{13}+\cdots\)
704.2.a.b 704.a 1.a $1$ $5.621$ \(\Q\) None 88.2.a.a \(0\) \(-3\) \(3\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+3q^{5}+2q^{7}+6q^{9}-q^{11}+\cdots\)
704.2.a.c 704.a 1.a $1$ $5.621$ \(\Q\) None 11.2.a.a \(0\) \(-1\) \(-1\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+2q^{7}-2q^{9}+q^{11}-4q^{13}+\cdots\)
704.2.a.d 704.a 1.a $1$ $5.621$ \(\Q\) None 352.2.a.c \(0\) \(-1\) \(-1\) \(4\) $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+4q^{7}-2q^{9}-q^{11}+2q^{13}+\cdots\)
704.2.a.e 704.a 1.a $1$ $5.621$ \(\Q\) None 352.2.a.b \(0\) \(-1\) \(3\) \(-4\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+3q^{5}-4q^{7}-2q^{9}-q^{11}+\cdots\)
704.2.a.f 704.a 1.a $1$ $5.621$ \(\Q\) None 44.2.a.a \(0\) \(-1\) \(3\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+3q^{5}+2q^{7}-2q^{9}+q^{11}+\cdots\)
704.2.a.g 704.a 1.a $1$ $5.621$ \(\Q\) None 352.2.a.c \(0\) \(1\) \(-1\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-4q^{7}-2q^{9}+q^{11}+2q^{13}+\cdots\)
704.2.a.h 704.a 1.a $1$ $5.621$ \(\Q\) None 11.2.a.a \(0\) \(1\) \(-1\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-2q^{7}-2q^{9}-q^{11}-4q^{13}+\cdots\)
704.2.a.i 704.a 1.a $1$ $5.621$ \(\Q\) None 44.2.a.a \(0\) \(1\) \(3\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+3q^{5}-2q^{7}-2q^{9}-q^{11}+\cdots\)
704.2.a.j 704.a 1.a $1$ $5.621$ \(\Q\) None 352.2.a.b \(0\) \(1\) \(3\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+3q^{5}+4q^{7}-2q^{9}+q^{11}+\cdots\)
704.2.a.k 704.a 1.a $1$ $5.621$ \(\Q\) None 352.2.a.a \(0\) \(3\) \(-1\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-q^{5}+6q^{9}-q^{11}+6q^{13}+\cdots\)
704.2.a.l 704.a 1.a $1$ $5.621$ \(\Q\) None 88.2.a.a \(0\) \(3\) \(3\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+3q^{5}-2q^{7}+6q^{9}+q^{11}+\cdots\)
704.2.a.m 704.a 1.a $2$ $5.621$ \(\Q(\sqrt{17}) \) None 88.2.a.b \(0\) \(-1\) \(-3\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+(-2+\beta )q^{5}-2\beta q^{7}+(1+\beta )q^{9}+\cdots\)
704.2.a.n 704.a 1.a $2$ $5.621$ \(\Q(\sqrt{17}) \) None 352.2.a.g \(0\) \(-1\) \(-3\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+(-2+\beta )q^{5}+(1+\beta )q^{9}-q^{11}+\cdots\)
704.2.a.o 704.a 1.a $2$ $5.621$ \(\Q(\sqrt{17}) \) None 352.2.a.g \(0\) \(1\) \(-3\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+(-2+\beta )q^{5}+(1+\beta )q^{9}+q^{11}+\cdots\)
704.2.a.p 704.a 1.a $2$ $5.621$ \(\Q(\sqrt{17}) \) None 88.2.a.b \(0\) \(1\) \(-3\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+(-2+\beta )q^{5}+2\beta q^{7}+(1+\beta )q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(704))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(704)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(352))\)\(^{\oplus 2}\)