Properties

Label 702.2.t.a.181.3
Level $702$
Weight $2$
Character 702.181
Analytic conductor $5.605$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(181,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.181");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 181.3
Character \(\chi\) \(=\) 702.181
Dual form 702.2.t.a.415.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(-0.515076 + 0.297379i) q^{5} +(-1.45217 - 0.838409i) q^{7} -1.00000i q^{8} +0.594758 q^{10} +(0.416337 + 0.240372i) q^{11} +(-2.27160 + 2.79997i) q^{13} +(0.838409 + 1.45217i) q^{14} +(-0.500000 + 0.866025i) q^{16} +2.09349 q^{17} +0.480744i q^{19} +(-0.515076 - 0.297379i) q^{20} +(-0.240372 - 0.416337i) q^{22} +(1.83339 + 3.17553i) q^{23} +(-2.32313 + 4.02378i) q^{25} +(3.36725 - 1.28905i) q^{26} -1.67682i q^{28} +(-1.23339 + 2.13629i) q^{29} +(-0.993791 + 0.573765i) q^{31} +(0.866025 - 0.500000i) q^{32} +(-1.81302 - 1.04675i) q^{34} +0.997301 q^{35} +3.65012i q^{37} +(0.240372 - 0.416337i) q^{38} +(0.297379 + 0.515076i) q^{40} +(-8.58235 + 4.95502i) q^{41} +(-3.45822 + 5.98981i) q^{43} +0.480744i q^{44} -3.66679i q^{46} +(5.40488 + 3.12051i) q^{47} +(-2.09414 - 3.62716i) q^{49} +(4.02378 - 2.32313i) q^{50} +(-3.56065 - 0.567277i) q^{52} +5.08592 q^{53} -0.285927 q^{55} +(-0.838409 + 1.45217i) q^{56} +(2.13629 - 1.23339i) q^{58} +(-8.13185 + 4.69493i) q^{59} +(-3.90635 + 6.76599i) q^{61} +1.14753 q^{62} -1.00000 q^{64} +(0.337393 - 2.11772i) q^{65} +(12.4551 - 7.19096i) q^{67} +(1.04675 + 1.81302i) q^{68} +(-0.863688 - 0.498651i) q^{70} +6.51028i q^{71} +5.91514i q^{73} +(1.82506 - 3.16110i) q^{74} +(-0.416337 + 0.240372i) q^{76} +(-0.403061 - 0.698121i) q^{77} +(1.02895 - 1.78219i) q^{79} -0.594758i q^{80} +9.91005 q^{82} +(9.57834 + 5.53006i) q^{83} +(-1.07831 + 0.622560i) q^{85} +(5.98981 - 3.45822i) q^{86} +(0.240372 - 0.416337i) q^{88} -9.48720i q^{89} +(5.64626 - 2.16150i) q^{91} +(-1.83339 + 3.17553i) q^{92} +(-3.12051 - 5.40488i) q^{94} +(-0.142963 - 0.247620i) q^{95} +(8.41374 + 4.85767i) q^{97} +4.18828i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 14 q^{4} + 2 q^{13} - 8 q^{14} - 14 q^{16} - 16 q^{17} + 8 q^{23} + 14 q^{25} - 8 q^{26} + 16 q^{29} + 68 q^{35} - 4 q^{43} + 10 q^{49} - 2 q^{52} + 120 q^{53} + 8 q^{56} + 28 q^{61} - 68 q^{62}+ \cdots - 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −0.515076 + 0.297379i −0.230349 + 0.132992i −0.610733 0.791837i \(-0.709125\pi\)
0.380384 + 0.924829i \(0.375792\pi\)
\(6\) 0 0
\(7\) −1.45217 0.838409i −0.548868 0.316889i 0.199798 0.979837i \(-0.435972\pi\)
−0.748665 + 0.662948i \(0.769305\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.594758 0.188079
\(11\) 0.416337 + 0.240372i 0.125530 + 0.0724750i 0.561450 0.827510i \(-0.310244\pi\)
−0.435920 + 0.899985i \(0.643577\pi\)
\(12\) 0 0
\(13\) −2.27160 + 2.79997i −0.630028 + 0.776572i
\(14\) 0.838409 + 1.45217i 0.224074 + 0.388108i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.09349 0.507746 0.253873 0.967238i \(-0.418295\pi\)
0.253873 + 0.967238i \(0.418295\pi\)
\(18\) 0 0
\(19\) 0.480744i 0.110290i 0.998478 + 0.0551452i \(0.0175622\pi\)
−0.998478 + 0.0551452i \(0.982438\pi\)
\(20\) −0.515076 0.297379i −0.115174 0.0664960i
\(21\) 0 0
\(22\) −0.240372 0.416337i −0.0512475 0.0887633i
\(23\) 1.83339 + 3.17553i 0.382289 + 0.662144i 0.991389 0.130950i \(-0.0418026\pi\)
−0.609100 + 0.793093i \(0.708469\pi\)
\(24\) 0 0
\(25\) −2.32313 + 4.02378i −0.464626 + 0.804756i
\(26\) 3.36725 1.28905i 0.660372 0.252803i
\(27\) 0 0
\(28\) 1.67682i 0.316889i
\(29\) −1.23339 + 2.13629i −0.229035 + 0.396700i −0.957522 0.288359i \(-0.906890\pi\)
0.728488 + 0.685059i \(0.240224\pi\)
\(30\) 0 0
\(31\) −0.993791 + 0.573765i −0.178490 + 0.103051i −0.586583 0.809889i \(-0.699527\pi\)
0.408093 + 0.912940i \(0.366194\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0 0
\(34\) −1.81302 1.04675i −0.310930 0.179515i
\(35\) 0.997301 0.168575
\(36\) 0 0
\(37\) 3.65012i 0.600076i 0.953927 + 0.300038i \(0.0969994\pi\)
−0.953927 + 0.300038i \(0.903001\pi\)
\(38\) 0.240372 0.416337i 0.0389935 0.0675388i
\(39\) 0 0
\(40\) 0.297379 + 0.515076i 0.0470198 + 0.0814406i
\(41\) −8.58235 + 4.95502i −1.34034 + 0.773845i −0.986857 0.161597i \(-0.948336\pi\)
−0.353481 + 0.935442i \(0.615002\pi\)
\(42\) 0 0
\(43\) −3.45822 + 5.98981i −0.527374 + 0.913438i 0.472117 + 0.881536i \(0.343490\pi\)
−0.999491 + 0.0319023i \(0.989843\pi\)
\(44\) 0.480744i 0.0724750i
\(45\) 0 0
\(46\) 3.66679i 0.540638i
\(47\) 5.40488 + 3.12051i 0.788383 + 0.455173i 0.839393 0.543525i \(-0.182911\pi\)
−0.0510099 + 0.998698i \(0.516244\pi\)
\(48\) 0 0
\(49\) −2.09414 3.62716i −0.299163 0.518165i
\(50\) 4.02378 2.32313i 0.569049 0.328540i
\(51\) 0 0
\(52\) −3.56065 0.567277i −0.493773 0.0786671i
\(53\) 5.08592 0.698605 0.349302 0.937010i \(-0.386419\pi\)
0.349302 + 0.937010i \(0.386419\pi\)
\(54\) 0 0
\(55\) −0.285927 −0.0385544
\(56\) −0.838409 + 1.45217i −0.112037 + 0.194054i
\(57\) 0 0
\(58\) 2.13629 1.23339i 0.280509 0.161952i
\(59\) −8.13185 + 4.69493i −1.05868 + 0.611227i −0.925066 0.379807i \(-0.875991\pi\)
−0.133611 + 0.991034i \(0.542657\pi\)
\(60\) 0 0
\(61\) −3.90635 + 6.76599i −0.500157 + 0.866297i 0.499843 + 0.866116i \(0.333391\pi\)
−1.00000 0.000180927i \(0.999942\pi\)
\(62\) 1.14753 0.145737
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0.337393 2.11772i 0.0418484 0.262671i
\(66\) 0 0
\(67\) 12.4551 7.19096i 1.52163 0.878516i 0.521960 0.852970i \(-0.325201\pi\)
0.999674 0.0255454i \(-0.00813225\pi\)
\(68\) 1.04675 + 1.81302i 0.126936 + 0.219860i
\(69\) 0 0
\(70\) −0.863688 0.498651i −0.103231 0.0596002i
\(71\) 6.51028i 0.772628i 0.922367 + 0.386314i \(0.126252\pi\)
−0.922367 + 0.386314i \(0.873748\pi\)
\(72\) 0 0
\(73\) 5.91514i 0.692315i 0.938176 + 0.346157i \(0.112514\pi\)
−0.938176 + 0.346157i \(0.887486\pi\)
\(74\) 1.82506 3.16110i 0.212159 0.367470i
\(75\) 0 0
\(76\) −0.416337 + 0.240372i −0.0477571 + 0.0275726i
\(77\) −0.403061 0.698121i −0.0459330 0.0795583i
\(78\) 0 0
\(79\) 1.02895 1.78219i 0.115766 0.200512i −0.802320 0.596894i \(-0.796401\pi\)
0.918086 + 0.396382i \(0.129734\pi\)
\(80\) 0.594758i 0.0664960i
\(81\) 0 0
\(82\) 9.91005 1.09438
\(83\) 9.57834 + 5.53006i 1.05136 + 0.607003i 0.923030 0.384729i \(-0.125705\pi\)
0.128330 + 0.991732i \(0.459038\pi\)
\(84\) 0 0
\(85\) −1.07831 + 0.622560i −0.116959 + 0.0675261i
\(86\) 5.98981 3.45822i 0.645898 0.372909i
\(87\) 0 0
\(88\) 0.240372 0.416337i 0.0256238 0.0443817i
\(89\) 9.48720i 1.00564i −0.864391 0.502821i \(-0.832296\pi\)
0.864391 0.502821i \(-0.167704\pi\)
\(90\) 0 0
\(91\) 5.64626 2.16150i 0.591889 0.226586i
\(92\) −1.83339 + 3.17553i −0.191144 + 0.331072i
\(93\) 0 0
\(94\) −3.12051 5.40488i −0.321856 0.557471i
\(95\) −0.142963 0.247620i −0.0146677 0.0254053i
\(96\) 0 0
\(97\) 8.41374 + 4.85767i 0.854286 + 0.493222i 0.862095 0.506747i \(-0.169152\pi\)
−0.00780887 + 0.999970i \(0.502486\pi\)
\(98\) 4.18828i 0.423080i
\(99\) 0 0
\(100\) −4.64626 −0.464626
\(101\) −2.89748 + 5.01858i −0.288310 + 0.499367i −0.973406 0.229085i \(-0.926427\pi\)
0.685097 + 0.728452i \(0.259760\pi\)
\(102\) 0 0
\(103\) −0.857037 1.48443i −0.0844463 0.146265i 0.820709 0.571347i \(-0.193579\pi\)
−0.905155 + 0.425081i \(0.860245\pi\)
\(104\) 2.79997 + 2.27160i 0.274560 + 0.222749i
\(105\) 0 0
\(106\) −4.40453 2.54296i −0.427806 0.246994i
\(107\) −14.1021 −1.36330 −0.681651 0.731678i \(-0.738738\pi\)
−0.681651 + 0.731678i \(0.738738\pi\)
\(108\) 0 0
\(109\) 18.3474i 1.75736i 0.477413 + 0.878679i \(0.341575\pi\)
−0.477413 + 0.878679i \(0.658425\pi\)
\(110\) 0.247620 + 0.142963i 0.0236096 + 0.0136310i
\(111\) 0 0
\(112\) 1.45217 0.838409i 0.137217 0.0792222i
\(113\) −10.1390 17.5612i −0.953793 1.65202i −0.737107 0.675776i \(-0.763809\pi\)
−0.216686 0.976241i \(-0.569525\pi\)
\(114\) 0 0
\(115\) −1.88867 1.09043i −0.176120 0.101683i
\(116\) −2.46678 −0.229035
\(117\) 0 0
\(118\) 9.38985 0.864406
\(119\) −3.04010 1.75520i −0.278685 0.160899i
\(120\) 0 0
\(121\) −5.38444 9.32613i −0.489495 0.847830i
\(122\) 6.76599 3.90635i 0.612564 0.353664i
\(123\) 0 0
\(124\) −0.993791 0.573765i −0.0892450 0.0515256i
\(125\) 5.73719i 0.513150i
\(126\) 0 0
\(127\) 18.5473 1.64581 0.822904 0.568180i \(-0.192352\pi\)
0.822904 + 0.568180i \(0.192352\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −1.35105 + 1.66531i −0.118495 + 0.146057i
\(131\) −2.32256 4.02280i −0.202923 0.351474i 0.746546 0.665334i \(-0.231711\pi\)
−0.949469 + 0.313861i \(0.898378\pi\)
\(132\) 0 0
\(133\) 0.403061 0.698121i 0.0349498 0.0605348i
\(134\) −14.3819 −1.24241
\(135\) 0 0
\(136\) 2.09349i 0.179515i
\(137\) −11.2762 6.51034i −0.963395 0.556216i −0.0661784 0.997808i \(-0.521081\pi\)
−0.897216 + 0.441592i \(0.854414\pi\)
\(138\) 0 0
\(139\) −5.09027 8.81661i −0.431751 0.747815i 0.565273 0.824904i \(-0.308771\pi\)
−0.997024 + 0.0770888i \(0.975437\pi\)
\(140\) 0.498651 + 0.863688i 0.0421437 + 0.0729950i
\(141\) 0 0
\(142\) 3.25514 5.63807i 0.273165 0.473136i
\(143\) −1.61879 + 0.619702i −0.135370 + 0.0518221i
\(144\) 0 0
\(145\) 1.46714i 0.121839i
\(146\) 2.95757 5.12266i 0.244770 0.423955i
\(147\) 0 0
\(148\) −3.16110 + 1.82506i −0.259841 + 0.150019i
\(149\) −4.54901 + 2.62637i −0.372669 + 0.215161i −0.674624 0.738162i \(-0.735694\pi\)
0.301955 + 0.953322i \(0.402361\pi\)
\(150\) 0 0
\(151\) 10.3258 + 5.96162i 0.840304 + 0.485150i 0.857367 0.514705i \(-0.172098\pi\)
−0.0170637 + 0.999854i \(0.505432\pi\)
\(152\) 0.480744 0.0389935
\(153\) 0 0
\(154\) 0.806121i 0.0649591i
\(155\) 0.341252 0.591065i 0.0274100 0.0474755i
\(156\) 0 0
\(157\) −6.19540 10.7307i −0.494446 0.856406i 0.505533 0.862807i \(-0.331296\pi\)
−0.999980 + 0.00640095i \(0.997962\pi\)
\(158\) −1.78219 + 1.02895i −0.141784 + 0.0818588i
\(159\) 0 0
\(160\) −0.297379 + 0.515076i −0.0235099 + 0.0407203i
\(161\) 6.14853i 0.484572i
\(162\) 0 0
\(163\) 21.3629i 1.67327i −0.547760 0.836635i \(-0.684519\pi\)
0.547760 0.836635i \(-0.315481\pi\)
\(164\) −8.58235 4.95502i −0.670169 0.386922i
\(165\) 0 0
\(166\) −5.53006 9.57834i −0.429216 0.743423i
\(167\) 12.7614 7.36778i 0.987504 0.570136i 0.0829768 0.996551i \(-0.473557\pi\)
0.904527 + 0.426416i \(0.140224\pi\)
\(168\) 0 0
\(169\) −2.67968 12.7208i −0.206129 0.978525i
\(170\) 1.24512 0.0954964
\(171\) 0 0
\(172\) −6.91644 −0.527374
\(173\) 5.82435 10.0881i 0.442817 0.766982i −0.555080 0.831797i \(-0.687312\pi\)
0.997897 + 0.0648152i \(0.0206458\pi\)
\(174\) 0 0
\(175\) 6.74715 3.89547i 0.510037 0.294470i
\(176\) −0.416337 + 0.240372i −0.0313826 + 0.0181187i
\(177\) 0 0
\(178\) −4.74360 + 8.21616i −0.355548 + 0.615827i
\(179\) 0.896158 0.0669820 0.0334910 0.999439i \(-0.489337\pi\)
0.0334910 + 0.999439i \(0.489337\pi\)
\(180\) 0 0
\(181\) 1.42191 0.105689 0.0528447 0.998603i \(-0.483171\pi\)
0.0528447 + 0.998603i \(0.483171\pi\)
\(182\) −5.97056 0.951220i −0.442567 0.0705091i
\(183\) 0 0
\(184\) 3.17553 1.83339i 0.234103 0.135160i
\(185\) −1.08547 1.88009i −0.0798053 0.138227i
\(186\) 0 0
\(187\) 0.871597 + 0.503217i 0.0637375 + 0.0367989i
\(188\) 6.24102i 0.455173i
\(189\) 0 0
\(190\) 0.285927i 0.0207433i
\(191\) −7.42036 + 12.8524i −0.536918 + 0.929970i 0.462150 + 0.886802i \(0.347078\pi\)
−0.999068 + 0.0431677i \(0.986255\pi\)
\(192\) 0 0
\(193\) −12.2175 + 7.05376i −0.879433 + 0.507741i −0.870471 0.492219i \(-0.836186\pi\)
−0.00896136 + 0.999960i \(0.502853\pi\)
\(194\) −4.85767 8.41374i −0.348761 0.604071i
\(195\) 0 0
\(196\) 2.09414 3.62716i 0.149581 0.259083i
\(197\) 0.442517i 0.0315280i 0.999876 + 0.0157640i \(0.00501805\pi\)
−0.999876 + 0.0157640i \(0.994982\pi\)
\(198\) 0 0
\(199\) −13.2925 −0.942282 −0.471141 0.882058i \(-0.656158\pi\)
−0.471141 + 0.882058i \(0.656158\pi\)
\(200\) 4.02378 + 2.32313i 0.284524 + 0.164270i
\(201\) 0 0
\(202\) 5.01858 2.89748i 0.353106 0.203866i
\(203\) 3.58217 2.06817i 0.251419 0.145157i
\(204\) 0 0
\(205\) 2.94704 5.10442i 0.205830 0.356508i
\(206\) 1.71407i 0.119425i
\(207\) 0 0
\(208\) −1.28905 3.36725i −0.0893793 0.233477i
\(209\) −0.115558 + 0.200152i −0.00799329 + 0.0138448i
\(210\) 0 0
\(211\) 4.82032 + 8.34904i 0.331845 + 0.574772i 0.982874 0.184281i \(-0.0589957\pi\)
−0.651029 + 0.759053i \(0.725662\pi\)
\(212\) 2.54296 + 4.40453i 0.174651 + 0.302505i
\(213\) 0 0
\(214\) 12.2128 + 7.05105i 0.834848 + 0.482000i
\(215\) 4.11361i 0.280546i
\(216\) 0 0
\(217\) 1.92420 0.130623
\(218\) 9.17368 15.8893i 0.621320 1.07616i
\(219\) 0 0
\(220\) −0.142963 0.247620i −0.00963859 0.0166945i
\(221\) −4.75557 + 5.86171i −0.319894 + 0.394301i
\(222\) 0 0
\(223\) −20.0340 11.5666i −1.34158 0.774559i −0.354537 0.935042i \(-0.615362\pi\)
−0.987039 + 0.160482i \(0.948695\pi\)
\(224\) −1.67682 −0.112037
\(225\) 0 0
\(226\) 20.2779i 1.34887i
\(227\) 11.5239 + 6.65331i 0.764866 + 0.441595i 0.831040 0.556213i \(-0.187746\pi\)
−0.0661743 + 0.997808i \(0.521079\pi\)
\(228\) 0 0
\(229\) −0.700965 + 0.404702i −0.0463211 + 0.0267435i −0.522982 0.852344i \(-0.675180\pi\)
0.476661 + 0.879087i \(0.341847\pi\)
\(230\) 1.09043 + 1.88867i 0.0719005 + 0.124535i
\(231\) 0 0
\(232\) 2.13629 + 1.23339i 0.140254 + 0.0809760i
\(233\) 15.4712 1.01355 0.506776 0.862078i \(-0.330837\pi\)
0.506776 + 0.862078i \(0.330837\pi\)
\(234\) 0 0
\(235\) −3.71190 −0.242138
\(236\) −8.13185 4.69493i −0.529338 0.305614i
\(237\) 0 0
\(238\) 1.75520 + 3.04010i 0.113773 + 0.197060i
\(239\) 25.2511 14.5788i 1.63336 0.943021i 0.650313 0.759666i \(-0.274638\pi\)
0.983047 0.183355i \(-0.0586958\pi\)
\(240\) 0 0
\(241\) −13.5054 7.79735i −0.869959 0.502271i −0.00262472 0.999997i \(-0.500835\pi\)
−0.867335 + 0.497725i \(0.834169\pi\)
\(242\) 10.7689i 0.692250i
\(243\) 0 0
\(244\) −7.81270 −0.500157
\(245\) 2.15728 + 1.24551i 0.137824 + 0.0795725i
\(246\) 0 0
\(247\) −1.34607 1.09206i −0.0856484 0.0694860i
\(248\) 0.573765 + 0.993791i 0.0364341 + 0.0631058i
\(249\) 0 0
\(250\) −2.86860 + 4.96856i −0.181426 + 0.314239i
\(251\) 2.79495 0.176416 0.0882079 0.996102i \(-0.471886\pi\)
0.0882079 + 0.996102i \(0.471886\pi\)
\(252\) 0 0
\(253\) 1.76279i 0.110825i
\(254\) −16.0624 9.27366i −1.00785 0.581881i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 10.4798 + 18.1515i 0.653712 + 1.13226i 0.982215 + 0.187759i \(0.0601225\pi\)
−0.328503 + 0.944503i \(0.606544\pi\)
\(258\) 0 0
\(259\) 3.06029 5.30059i 0.190157 0.329362i
\(260\) 2.00270 0.766671i 0.124202 0.0475469i
\(261\) 0 0
\(262\) 4.64513i 0.286977i
\(263\) 7.92418 13.7251i 0.488626 0.846325i −0.511288 0.859409i \(-0.670832\pi\)
0.999914 + 0.0130839i \(0.00416487\pi\)
\(264\) 0 0
\(265\) −2.61963 + 1.51245i −0.160923 + 0.0929088i
\(266\) −0.698121 + 0.403061i −0.0428046 + 0.0247132i
\(267\) 0 0
\(268\) 12.4551 + 7.19096i 0.760817 + 0.439258i
\(269\) −18.9028 −1.15252 −0.576261 0.817266i \(-0.695489\pi\)
−0.576261 + 0.817266i \(0.695489\pi\)
\(270\) 0 0
\(271\) 9.63804i 0.585469i −0.956194 0.292735i \(-0.905435\pi\)
0.956194 0.292735i \(-0.0945653\pi\)
\(272\) −1.04675 + 1.81302i −0.0634682 + 0.109930i
\(273\) 0 0
\(274\) 6.51034 + 11.2762i 0.393304 + 0.681223i
\(275\) −1.93441 + 1.11683i −0.116649 + 0.0673475i
\(276\) 0 0
\(277\) −1.35010 + 2.33844i −0.0811197 + 0.140503i −0.903731 0.428100i \(-0.859183\pi\)
0.822611 + 0.568604i \(0.192516\pi\)
\(278\) 10.1805i 0.610588i
\(279\) 0 0
\(280\) 0.997301i 0.0596002i
\(281\) 9.34820 + 5.39719i 0.557667 + 0.321969i 0.752208 0.658925i \(-0.228989\pi\)
−0.194542 + 0.980894i \(0.562322\pi\)
\(282\) 0 0
\(283\) 14.6088 + 25.3032i 0.868403 + 1.50412i 0.863628 + 0.504129i \(0.168187\pi\)
0.00477479 + 0.999989i \(0.498480\pi\)
\(284\) −5.63807 + 3.25514i −0.334558 + 0.193157i
\(285\) 0 0
\(286\) 1.71176 + 0.272715i 0.101219 + 0.0161260i
\(287\) 16.6173 0.980891
\(288\) 0 0
\(289\) −12.6173 −0.742194
\(290\) −0.733568 + 1.27058i −0.0430766 + 0.0746109i
\(291\) 0 0
\(292\) −5.12266 + 2.95757i −0.299781 + 0.173079i
\(293\) −20.5199 + 11.8472i −1.19879 + 0.692120i −0.960285 0.279022i \(-0.909990\pi\)
−0.238502 + 0.971142i \(0.576656\pi\)
\(294\) 0 0
\(295\) 2.79235 4.83649i 0.162577 0.281591i
\(296\) 3.65012 0.212159
\(297\) 0 0
\(298\) 5.25274 0.304283
\(299\) −13.0561 2.08008i −0.755055 0.120294i
\(300\) 0 0
\(301\) 10.0438 5.79881i 0.578917 0.334238i
\(302\) −5.96162 10.3258i −0.343053 0.594184i
\(303\) 0 0
\(304\) −0.416337 0.240372i −0.0238786 0.0137863i
\(305\) 4.64667i 0.266067i
\(306\) 0 0
\(307\) 6.55237i 0.373963i −0.982363 0.186982i \(-0.940129\pi\)
0.982363 0.186982i \(-0.0598705\pi\)
\(308\) 0.403061 0.698121i 0.0229665 0.0397792i
\(309\) 0 0
\(310\) −0.591065 + 0.341252i −0.0335702 + 0.0193818i
\(311\) 12.7115 + 22.0169i 0.720802 + 1.24847i 0.960679 + 0.277663i \(0.0895597\pi\)
−0.239876 + 0.970803i \(0.577107\pi\)
\(312\) 0 0
\(313\) −0.590728 + 1.02317i −0.0333899 + 0.0578331i −0.882237 0.470805i \(-0.843964\pi\)
0.848848 + 0.528638i \(0.177297\pi\)
\(314\) 12.3908i 0.699253i
\(315\) 0 0
\(316\) 2.05790 0.115766
\(317\) 24.2009 + 13.9724i 1.35926 + 0.784769i 0.989524 0.144368i \(-0.0461151\pi\)
0.369735 + 0.929137i \(0.379448\pi\)
\(318\) 0 0
\(319\) −1.02701 + 0.592945i −0.0575016 + 0.0331985i
\(320\) 0.515076 0.297379i 0.0287936 0.0166240i
\(321\) 0 0
\(322\) −3.07427 + 5.32479i −0.171322 + 0.296739i
\(323\) 1.00643i 0.0559995i
\(324\) 0 0
\(325\) −5.98925 15.6451i −0.332224 0.867835i
\(326\) −10.6814 + 18.5008i −0.591591 + 1.02466i
\(327\) 0 0
\(328\) 4.95502 + 8.58235i 0.273595 + 0.473881i
\(329\) −5.23253 9.06301i −0.288479 0.499660i
\(330\) 0 0
\(331\) 21.3503 + 12.3266i 1.17352 + 0.677530i 0.954506 0.298193i \(-0.0963838\pi\)
0.219010 + 0.975723i \(0.429717\pi\)
\(332\) 11.0601i 0.607003i
\(333\) 0 0
\(334\) −14.7356 −0.806294
\(335\) −4.27688 + 7.40778i −0.233671 + 0.404730i
\(336\) 0 0
\(337\) 7.63940 + 13.2318i 0.416145 + 0.720784i 0.995548 0.0942571i \(-0.0300476\pi\)
−0.579403 + 0.815041i \(0.696714\pi\)
\(338\) −4.03974 + 12.3564i −0.219733 + 0.672099i
\(339\) 0 0
\(340\) −1.07831 0.622560i −0.0584794 0.0337631i
\(341\) −0.551669 −0.0298745
\(342\) 0 0
\(343\) 18.7607i 1.01298i
\(344\) 5.98981 + 3.45822i 0.322949 + 0.186455i
\(345\) 0 0
\(346\) −10.0881 + 5.82435i −0.542338 + 0.313119i
\(347\) −0.607688 1.05255i −0.0326224 0.0565036i 0.849253 0.527986i \(-0.177053\pi\)
−0.881876 + 0.471482i \(0.843719\pi\)
\(348\) 0 0
\(349\) −3.30094 1.90580i −0.176695 0.102015i 0.409044 0.912515i \(-0.365862\pi\)
−0.585739 + 0.810500i \(0.699196\pi\)
\(350\) −7.79094 −0.416443
\(351\) 0 0
\(352\) 0.480744 0.0256238
\(353\) −17.3353 10.0086i −0.922667 0.532702i −0.0381819 0.999271i \(-0.512157\pi\)
−0.884485 + 0.466569i \(0.845490\pi\)
\(354\) 0 0
\(355\) −1.93602 3.35329i −0.102753 0.177974i
\(356\) 8.21616 4.74360i 0.435455 0.251410i
\(357\) 0 0
\(358\) −0.776096 0.448079i −0.0410179 0.0236817i
\(359\) 9.96717i 0.526047i 0.964789 + 0.263024i \(0.0847197\pi\)
−0.964789 + 0.263024i \(0.915280\pi\)
\(360\) 0 0
\(361\) 18.7689 0.987836
\(362\) −1.23141 0.710953i −0.0647213 0.0373669i
\(363\) 0 0
\(364\) 4.69504 + 3.80906i 0.246087 + 0.199649i
\(365\) −1.75904 3.04675i −0.0920723 0.159474i
\(366\) 0 0
\(367\) −7.16334 + 12.4073i −0.373923 + 0.647654i −0.990165 0.139903i \(-0.955321\pi\)
0.616242 + 0.787557i \(0.288654\pi\)
\(368\) −3.66679 −0.191144
\(369\) 0 0
\(370\) 2.17094i 0.112862i
\(371\) −7.38560 4.26408i −0.383441 0.221380i
\(372\) 0 0
\(373\) 13.9877 + 24.2275i 0.724257 + 1.25445i 0.959279 + 0.282460i \(0.0911505\pi\)
−0.235022 + 0.971990i \(0.575516\pi\)
\(374\) −0.503217 0.871597i −0.0260207 0.0450692i
\(375\) 0 0
\(376\) 3.12051 5.40488i 0.160928 0.278736i
\(377\) −3.17979 8.30625i −0.163768 0.427794i
\(378\) 0 0
\(379\) 4.05068i 0.208069i −0.994574 0.104035i \(-0.966825\pi\)
0.994574 0.104035i \(-0.0331753\pi\)
\(380\) 0.142963 0.247620i 0.00733387 0.0127026i
\(381\) 0 0
\(382\) 12.8524 7.42036i 0.657588 0.379659i
\(383\) 27.1033 15.6481i 1.38492 0.799581i 0.392179 0.919889i \(-0.371721\pi\)
0.992737 + 0.120308i \(0.0383882\pi\)
\(384\) 0 0
\(385\) 0.415213 + 0.239724i 0.0211612 + 0.0122174i
\(386\) 14.1075 0.718054
\(387\) 0 0
\(388\) 9.71535i 0.493222i
\(389\) −7.66964 + 13.2842i −0.388866 + 0.673536i −0.992297 0.123879i \(-0.960467\pi\)
0.603431 + 0.797415i \(0.293800\pi\)
\(390\) 0 0
\(391\) 3.83819 + 6.64794i 0.194106 + 0.336201i
\(392\) −3.62716 + 2.09414i −0.183199 + 0.105770i
\(393\) 0 0
\(394\) 0.221259 0.383231i 0.0111468 0.0193069i
\(395\) 1.22395i 0.0615837i
\(396\) 0 0
\(397\) 24.1832i 1.21372i −0.794808 0.606860i \(-0.792429\pi\)
0.794808 0.606860i \(-0.207571\pi\)
\(398\) 11.5117 + 6.64626i 0.577028 + 0.333147i
\(399\) 0 0
\(400\) −2.32313 4.02378i −0.116157 0.201189i
\(401\) −24.8876 + 14.3689i −1.24283 + 0.717548i −0.969669 0.244421i \(-0.921402\pi\)
−0.273160 + 0.961969i \(0.588069\pi\)
\(402\) 0 0
\(403\) 0.650967 4.08595i 0.0324270 0.203536i
\(404\) −5.79495 −0.288310
\(405\) 0 0
\(406\) −4.13634 −0.205283
\(407\) −0.877388 + 1.51968i −0.0434905 + 0.0753278i
\(408\) 0 0
\(409\) −25.9100 + 14.9591i −1.28117 + 0.739682i −0.977062 0.212956i \(-0.931691\pi\)
−0.304105 + 0.952638i \(0.598357\pi\)
\(410\) −5.10442 + 2.94704i −0.252090 + 0.145544i
\(411\) 0 0
\(412\) 0.857037 1.48443i 0.0422232 0.0731327i
\(413\) 15.7451 0.774764
\(414\) 0 0
\(415\) −6.57809 −0.322906
\(416\) −0.567277 + 3.56065i −0.0278130 + 0.174575i
\(417\) 0 0
\(418\) 0.200152 0.115558i 0.00978974 0.00565211i
\(419\) 12.2858 + 21.2796i 0.600200 + 1.03958i 0.992790 + 0.119863i \(0.0382457\pi\)
−0.392590 + 0.919713i \(0.628421\pi\)
\(420\) 0 0
\(421\) 24.6735 + 14.2452i 1.20251 + 0.694271i 0.961113 0.276155i \(-0.0890603\pi\)
0.241399 + 0.970426i \(0.422394\pi\)
\(422\) 9.64064i 0.469299i
\(423\) 0 0
\(424\) 5.08592i 0.246994i
\(425\) −4.86345 + 8.42375i −0.235912 + 0.408612i
\(426\) 0 0
\(427\) 11.3453 6.55024i 0.549040 0.316988i
\(428\) −7.05105 12.2128i −0.340825 0.590327i
\(429\) 0 0
\(430\) −2.05681 + 3.56249i −0.0991880 + 0.171799i
\(431\) 7.13767i 0.343809i −0.985114 0.171905i \(-0.945008\pi\)
0.985114 0.171905i \(-0.0549921\pi\)
\(432\) 0 0
\(433\) −7.85282 −0.377382 −0.188691 0.982036i \(-0.560424\pi\)
−0.188691 + 0.982036i \(0.560424\pi\)
\(434\) −1.66641 0.962100i −0.0799901 0.0461823i
\(435\) 0 0
\(436\) −15.8893 + 9.17368i −0.760959 + 0.439340i
\(437\) −1.52662 + 0.881394i −0.0730281 + 0.0421628i
\(438\) 0 0
\(439\) 2.07427 3.59274i 0.0989994 0.171472i −0.812271 0.583280i \(-0.801769\pi\)
0.911271 + 0.411808i \(0.135102\pi\)
\(440\) 0.285927i 0.0136310i
\(441\) 0 0
\(442\) 7.04930 2.69861i 0.335301 0.128360i
\(443\) 8.92349 15.4559i 0.423968 0.734334i −0.572356 0.820006i \(-0.693970\pi\)
0.996323 + 0.0856716i \(0.0273036\pi\)
\(444\) 0 0
\(445\) 2.82130 + 4.88663i 0.133742 + 0.231648i
\(446\) 11.5666 + 20.0340i 0.547696 + 0.948638i
\(447\) 0 0
\(448\) 1.45217 + 0.838409i 0.0686084 + 0.0396111i
\(449\) 19.7308i 0.931152i −0.885008 0.465576i \(-0.845847\pi\)
0.885008 0.465576i \(-0.154153\pi\)
\(450\) 0 0
\(451\) −4.76420 −0.224337
\(452\) 10.1390 17.5612i 0.476896 0.826009i
\(453\) 0 0
\(454\) −6.65331 11.5239i −0.312255 0.540842i
\(455\) −2.26547 + 2.79242i −0.106207 + 0.130910i
\(456\) 0 0
\(457\) −31.4762 18.1728i −1.47240 0.850088i −0.472877 0.881128i \(-0.656784\pi\)
−0.999518 + 0.0310408i \(0.990118\pi\)
\(458\) 0.809405 0.0378210
\(459\) 0 0
\(460\) 2.18085i 0.101683i
\(461\) 19.8630 + 11.4679i 0.925112 + 0.534114i 0.885262 0.465092i \(-0.153979\pi\)
0.0398498 + 0.999206i \(0.487312\pi\)
\(462\) 0 0
\(463\) −25.6143 + 14.7884i −1.19040 + 0.687277i −0.958397 0.285438i \(-0.907861\pi\)
−0.232002 + 0.972715i \(0.574528\pi\)
\(464\) −1.23339 2.13629i −0.0572586 0.0991749i
\(465\) 0 0
\(466\) −13.3984 7.73559i −0.620671 0.358344i
\(467\) 12.5970 0.582920 0.291460 0.956583i \(-0.405859\pi\)
0.291460 + 0.956583i \(0.405859\pi\)
\(468\) 0 0
\(469\) −24.1159 −1.11357
\(470\) 3.21460 + 1.85595i 0.148278 + 0.0856086i
\(471\) 0 0
\(472\) 4.69493 + 8.13185i 0.216101 + 0.374299i
\(473\) −2.87957 + 1.66252i −0.132403 + 0.0764428i
\(474\) 0 0
\(475\) −1.93441 1.11683i −0.0887568 0.0512438i
\(476\) 3.51040i 0.160899i
\(477\) 0 0
\(478\) −29.1575 −1.33363
\(479\) −11.0404 6.37417i −0.504448 0.291243i 0.226101 0.974104i \(-0.427402\pi\)
−0.730549 + 0.682861i \(0.760736\pi\)
\(480\) 0 0
\(481\) −10.2202 8.29161i −0.466003 0.378065i
\(482\) 7.79735 + 13.5054i 0.355159 + 0.615154i
\(483\) 0 0
\(484\) 5.38444 9.32613i 0.244747 0.423915i
\(485\) −5.77828 −0.262378
\(486\) 0 0
\(487\) 20.8054i 0.942782i 0.881924 + 0.471391i \(0.156248\pi\)
−0.881924 + 0.471391i \(0.843752\pi\)
\(488\) 6.76599 + 3.90635i 0.306282 + 0.176832i
\(489\) 0 0
\(490\) −1.24551 2.15728i −0.0562663 0.0974561i
\(491\) −7.37362 12.7715i −0.332767 0.576369i 0.650286 0.759689i \(-0.274649\pi\)
−0.983053 + 0.183320i \(0.941316\pi\)
\(492\) 0 0
\(493\) −2.58209 + 4.47231i −0.116291 + 0.201423i
\(494\) 0.619702 + 1.61879i 0.0278817 + 0.0728326i
\(495\) 0 0
\(496\) 1.14753i 0.0515256i
\(497\) 5.45828 9.45402i 0.244837 0.424071i
\(498\) 0 0
\(499\) 25.7627 14.8741i 1.15330 0.665856i 0.203608 0.979053i \(-0.434733\pi\)
0.949688 + 0.313197i \(0.101400\pi\)
\(500\) 4.96856 2.86860i 0.222201 0.128288i
\(501\) 0 0
\(502\) −2.42050 1.39748i −0.108032 0.0623724i
\(503\) 26.1270 1.16495 0.582473 0.812850i \(-0.302085\pi\)
0.582473 + 0.812850i \(0.302085\pi\)
\(504\) 0 0
\(505\) 3.44660i 0.153372i
\(506\) 0.881394 1.52662i 0.0391827 0.0678665i
\(507\) 0 0
\(508\) 9.27366 + 16.0624i 0.411452 + 0.712656i
\(509\) −15.4810 + 8.93795i −0.686182 + 0.396168i −0.802180 0.597082i \(-0.796327\pi\)
0.115998 + 0.993249i \(0.462993\pi\)
\(510\) 0 0
\(511\) 4.95931 8.58977i 0.219387 0.379989i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 20.9596i 0.924488i
\(515\) 0.882878 + 0.509730i 0.0389042 + 0.0224614i
\(516\) 0 0
\(517\) 1.50017 + 2.59837i 0.0659773 + 0.114276i
\(518\) −5.30059 + 3.06029i −0.232894 + 0.134462i
\(519\) 0 0
\(520\) −2.11772 0.337393i −0.0928683 0.0147956i
\(521\) 13.7904 0.604168 0.302084 0.953281i \(-0.402318\pi\)
0.302084 + 0.953281i \(0.402318\pi\)
\(522\) 0 0
\(523\) −0.523640 −0.0228972 −0.0114486 0.999934i \(-0.503644\pi\)
−0.0114486 + 0.999934i \(0.503644\pi\)
\(524\) 2.32256 4.02280i 0.101462 0.175737i
\(525\) 0 0
\(526\) −13.7251 + 7.92418i −0.598442 + 0.345511i
\(527\) −2.08049 + 1.20117i −0.0906276 + 0.0523239i
\(528\) 0 0
\(529\) 4.77734 8.27459i 0.207710 0.359765i
\(530\) 3.02489 0.131393
\(531\) 0 0
\(532\) 0.806121 0.0349498
\(533\) 5.62174 35.2862i 0.243505 1.52841i
\(534\) 0 0
\(535\) 7.26365 4.19367i 0.314035 0.181308i
\(536\) −7.19096 12.4551i −0.310602 0.537979i
\(537\) 0 0
\(538\) 16.3703 + 9.45139i 0.705773 + 0.407478i
\(539\) 2.01349i 0.0867273i
\(540\) 0 0
\(541\) 11.3636i 0.488558i −0.969705 0.244279i \(-0.921449\pi\)
0.969705 0.244279i \(-0.0785513\pi\)
\(542\) −4.81902 + 8.34679i −0.206995 + 0.358525i
\(543\) 0 0
\(544\) 1.81302 1.04675i 0.0777324 0.0448788i
\(545\) −5.45612 9.45028i −0.233715 0.404806i
\(546\) 0 0
\(547\) 4.14239 7.17484i 0.177116 0.306774i −0.763776 0.645482i \(-0.776657\pi\)
0.940892 + 0.338708i \(0.109990\pi\)
\(548\) 13.0207i 0.556216i
\(549\) 0 0
\(550\) 2.23366 0.0952438
\(551\) −1.02701 0.592945i −0.0437521 0.0252603i
\(552\) 0 0
\(553\) −2.98841 + 1.72536i −0.127080 + 0.0733698i
\(554\) 2.33844 1.35010i 0.0993510 0.0573603i
\(555\) 0 0
\(556\) 5.09027 8.81661i 0.215876 0.373908i
\(557\) 26.7334i 1.13273i 0.824154 + 0.566365i \(0.191651\pi\)
−0.824154 + 0.566365i \(0.808349\pi\)
\(558\) 0 0
\(559\) −8.91562 23.2894i −0.377090 0.985035i
\(560\) −0.498651 + 0.863688i −0.0210718 + 0.0364975i
\(561\) 0 0
\(562\) −5.39719 9.34820i −0.227667 0.394330i
\(563\) 2.36071 + 4.08888i 0.0994922 + 0.172326i 0.911475 0.411356i \(-0.134945\pi\)
−0.811982 + 0.583682i \(0.801611\pi\)
\(564\) 0 0
\(565\) 10.4447 + 6.03023i 0.439410 + 0.253694i
\(566\) 29.2176i 1.22811i
\(567\) 0 0
\(568\) 6.51028 0.273165
\(569\) −21.0546 + 36.4676i −0.882653 + 1.52880i −0.0342730 + 0.999413i \(0.510912\pi\)
−0.848380 + 0.529388i \(0.822422\pi\)
\(570\) 0 0
\(571\) 5.89219 + 10.2056i 0.246581 + 0.427090i 0.962575 0.271016i \(-0.0873597\pi\)
−0.715994 + 0.698106i \(0.754026\pi\)
\(572\) −1.34607 1.09206i −0.0562820 0.0456613i
\(573\) 0 0
\(574\) −14.3910 8.30867i −0.600671 0.346797i
\(575\) −17.0369 −0.710486
\(576\) 0 0
\(577\) 21.5466i 0.896997i 0.893784 + 0.448498i \(0.148041\pi\)
−0.893784 + 0.448498i \(0.851959\pi\)
\(578\) 10.9269 + 6.30865i 0.454499 + 0.262405i
\(579\) 0 0
\(580\) 1.27058 0.733568i 0.0527579 0.0304598i
\(581\) −9.27290 16.0611i −0.384705 0.666328i
\(582\) 0 0
\(583\) 2.11746 + 1.22251i 0.0876961 + 0.0506313i
\(584\) 5.91514 0.244770
\(585\) 0 0
\(586\) 23.6944 0.978805
\(587\) −7.62960 4.40495i −0.314907 0.181812i 0.334213 0.942498i \(-0.391530\pi\)
−0.649120 + 0.760686i \(0.724863\pi\)
\(588\) 0 0
\(589\) −0.275834 0.477759i −0.0113656 0.0196857i
\(590\) −4.83649 + 2.79235i −0.199115 + 0.114959i
\(591\) 0 0
\(592\) −3.16110 1.82506i −0.129920 0.0750095i
\(593\) 26.7483i 1.09842i −0.835685 0.549210i \(-0.814929\pi\)
0.835685 0.549210i \(-0.185071\pi\)
\(594\) 0 0
\(595\) 2.08784 0.0855931
\(596\) −4.54901 2.62637i −0.186335 0.107580i
\(597\) 0 0
\(598\) 10.2669 + 8.32947i 0.419845 + 0.340617i
\(599\) −23.9224 41.4349i −0.977445 1.69298i −0.671620 0.740896i \(-0.734401\pi\)
−0.305825 0.952088i \(-0.598932\pi\)
\(600\) 0 0
\(601\) 10.5193 18.2199i 0.429091 0.743207i −0.567702 0.823234i \(-0.692167\pi\)
0.996793 + 0.0800273i \(0.0255008\pi\)
\(602\) −11.5976 −0.472683
\(603\) 0 0
\(604\) 11.9232i 0.485150i
\(605\) 5.54679 + 3.20244i 0.225509 + 0.130198i
\(606\) 0 0
\(607\) −11.7683 20.3833i −0.477662 0.827334i 0.522011 0.852939i \(-0.325182\pi\)
−0.999672 + 0.0256049i \(0.991849\pi\)
\(608\) 0.240372 + 0.416337i 0.00974838 + 0.0168847i
\(609\) 0 0
\(610\) −2.32333 + 4.02413i −0.0940690 + 0.162932i
\(611\) −21.0151 + 8.04497i −0.850179 + 0.325465i
\(612\) 0 0
\(613\) 40.7009i 1.64390i 0.569563 + 0.821948i \(0.307112\pi\)
−0.569563 + 0.821948i \(0.692888\pi\)
\(614\) −3.27618 + 5.67452i −0.132216 + 0.229005i
\(615\) 0 0
\(616\) −0.698121 + 0.403061i −0.0281281 + 0.0162398i
\(617\) 34.0924 19.6832i 1.37251 0.792417i 0.381264 0.924466i \(-0.375489\pi\)
0.991243 + 0.132049i \(0.0421557\pi\)
\(618\) 0 0
\(619\) 21.1669 + 12.2207i 0.850770 + 0.491192i 0.860911 0.508756i \(-0.169895\pi\)
−0.0101406 + 0.999949i \(0.503228\pi\)
\(620\) 0.682503 0.0274100
\(621\) 0 0
\(622\) 25.4230i 1.01937i
\(623\) −7.95416 + 13.7770i −0.318677 + 0.551964i
\(624\) 0 0
\(625\) −9.90953 17.1638i −0.396381 0.686553i
\(626\) 1.02317 0.590728i 0.0408942 0.0236103i
\(627\) 0 0
\(628\) 6.19540 10.7307i 0.247223 0.428203i
\(629\) 7.64149i 0.304686i
\(630\) 0 0
\(631\) 5.70930i 0.227284i −0.993522 0.113642i \(-0.963748\pi\)
0.993522 0.113642i \(-0.0362516\pi\)
\(632\) −1.78219 1.02895i −0.0708918 0.0409294i
\(633\) 0 0
\(634\) −13.9724 24.2009i −0.554915 0.961141i
\(635\) −9.55327 + 5.51558i −0.379110 + 0.218879i
\(636\) 0 0
\(637\) 14.9130 + 2.37591i 0.590874 + 0.0941372i
\(638\) 1.18589 0.0469498
\(639\) 0 0
\(640\) −0.594758 −0.0235099
\(641\) 19.7411 34.1925i 0.779725 1.35052i −0.152375 0.988323i \(-0.548692\pi\)
0.932100 0.362201i \(-0.117974\pi\)
\(642\) 0 0
\(643\) −25.5467 + 14.7494i −1.00747 + 0.581660i −0.910449 0.413622i \(-0.864263\pi\)
−0.0970167 + 0.995283i \(0.530930\pi\)
\(644\) 5.32479 3.07427i 0.209826 0.121143i
\(645\) 0 0
\(646\) 0.503217 0.871597i 0.0197988 0.0342925i
\(647\) −47.5940 −1.87111 −0.935556 0.353178i \(-0.885101\pi\)
−0.935556 + 0.353178i \(0.885101\pi\)
\(648\) 0 0
\(649\) −4.51412 −0.177195
\(650\) −2.63572 + 16.5437i −0.103381 + 0.648897i
\(651\) 0 0
\(652\) 18.5008 10.6814i 0.724548 0.418318i
\(653\) 6.23738 + 10.8035i 0.244088 + 0.422772i 0.961875 0.273490i \(-0.0881782\pi\)
−0.717787 + 0.696263i \(0.754845\pi\)
\(654\) 0 0
\(655\) 2.39259 + 1.38136i 0.0934863 + 0.0539744i
\(656\) 9.91005i 0.386922i
\(657\) 0 0
\(658\) 10.4651i 0.407970i
\(659\) 1.87306 3.24423i 0.0729639 0.126377i −0.827235 0.561856i \(-0.810088\pi\)
0.900199 + 0.435479i \(0.143421\pi\)
\(660\) 0 0
\(661\) 28.6397 16.5352i 1.11396 0.643143i 0.174105 0.984727i \(-0.444297\pi\)
0.939851 + 0.341584i \(0.110963\pi\)
\(662\) −12.3266 21.3503i −0.479086 0.829801i
\(663\) 0 0
\(664\) 5.53006 9.57834i 0.214608 0.371712i
\(665\) 0.479447i 0.0185922i
\(666\) 0 0
\(667\) −9.04515 −0.350230
\(668\) 12.7614 + 7.36778i 0.493752 + 0.285068i
\(669\) 0 0
\(670\) 7.40778 4.27688i 0.286187 0.165230i
\(671\) −3.25271 + 1.87796i −0.125570 + 0.0724977i
\(672\) 0 0
\(673\) 7.07178 12.2487i 0.272597 0.472152i −0.696929 0.717140i \(-0.745451\pi\)
0.969526 + 0.244988i \(0.0787840\pi\)
\(674\) 15.2788i 0.588518i
\(675\) 0 0
\(676\) 9.67672 8.68108i 0.372181 0.333888i
\(677\) −17.1064 + 29.6291i −0.657451 + 1.13874i 0.323823 + 0.946118i \(0.395032\pi\)
−0.981273 + 0.192620i \(0.938301\pi\)
\(678\) 0 0
\(679\) −8.14544 14.1083i −0.312593 0.541427i
\(680\) 0.622560 + 1.07831i 0.0238741 + 0.0413512i
\(681\) 0 0
\(682\) 0.477759 + 0.275834i 0.0182944 + 0.0105622i
\(683\) 16.3144i 0.624255i 0.950040 + 0.312127i \(0.101042\pi\)
−0.950040 + 0.312127i \(0.898958\pi\)
\(684\) 0 0
\(685\) 7.74416 0.295889
\(686\) 9.38036 16.2473i 0.358144 0.620323i
\(687\) 0 0
\(688\) −3.45822 5.98981i −0.131843 0.228359i
\(689\) −11.5532 + 14.2404i −0.440141 + 0.542517i
\(690\) 0 0
\(691\) −21.9516 12.6738i −0.835078 0.482132i 0.0205104 0.999790i \(-0.493471\pi\)
−0.855588 + 0.517657i \(0.826804\pi\)
\(692\) 11.6487 0.442817
\(693\) 0 0
\(694\) 1.21538i 0.0461350i
\(695\) 5.24375 + 3.02748i 0.198907 + 0.114839i
\(696\) 0 0
\(697\) −17.9671 + 10.3733i −0.680551 + 0.392916i
\(698\) 1.90580 + 3.30094i 0.0721355 + 0.124942i
\(699\) 0 0
\(700\) 6.74715 + 3.89547i 0.255018 + 0.147235i
\(701\) −35.4651 −1.33950 −0.669750 0.742587i \(-0.733599\pi\)
−0.669750 + 0.742587i \(0.733599\pi\)
\(702\) 0 0
\(703\) −1.75478 −0.0661826
\(704\) −0.416337 0.240372i −0.0156913 0.00905937i
\(705\) 0 0
\(706\) 10.0086 + 17.3353i 0.376677 + 0.652424i
\(707\) 8.41524 4.85854i 0.316488 0.182724i
\(708\) 0 0
\(709\) 18.7687 + 10.8361i 0.704874 + 0.406959i 0.809160 0.587588i \(-0.199923\pi\)
−0.104286 + 0.994547i \(0.533256\pi\)
\(710\) 3.87204i 0.145315i
\(711\) 0 0
\(712\) −9.48720 −0.355548
\(713\) −3.64402 2.10387i −0.136470 0.0787907i
\(714\) 0 0
\(715\) 0.649511 0.800587i 0.0242903 0.0299402i
\(716\) 0.448079 + 0.776096i 0.0167455 + 0.0290041i
\(717\) 0 0
\(718\) 4.98359 8.63182i 0.185986 0.322137i
\(719\) −15.4819 −0.577378 −0.288689 0.957423i \(-0.593219\pi\)
−0.288689 + 0.957423i \(0.593219\pi\)
\(720\) 0 0
\(721\) 2.87419i 0.107040i
\(722\) −16.2543 9.38444i −0.604924 0.349253i
\(723\) 0 0
\(724\) 0.710953 + 1.23141i 0.0264224 + 0.0457649i
\(725\) −5.73065 9.92578i −0.212831 0.368634i
\(726\) 0 0
\(727\) 2.73280 4.73335i 0.101354 0.175550i −0.810889 0.585200i \(-0.801016\pi\)
0.912243 + 0.409650i \(0.134349\pi\)
\(728\) −2.16150 5.64626i −0.0801104 0.209264i
\(729\) 0 0
\(730\) 3.51808i 0.130210i
\(731\) −7.23975 + 12.5396i −0.267772 + 0.463794i
\(732\) 0 0
\(733\) 16.5705 9.56700i 0.612046 0.353365i −0.161720 0.986837i \(-0.551704\pi\)
0.773766 + 0.633472i \(0.218371\pi\)
\(734\) 12.4073 7.16334i 0.457960 0.264404i
\(735\) 0 0
\(736\) 3.17553 + 1.83339i 0.117052 + 0.0675798i
\(737\) 6.91403 0.254681
\(738\) 0 0
\(739\) 3.40317i 0.125188i 0.998039 + 0.0625938i \(0.0199373\pi\)
−0.998039 + 0.0625938i \(0.980063\pi\)
\(740\) 1.08547 1.88009i 0.0399027 0.0691134i
\(741\) 0 0
\(742\) 4.26408 + 7.38560i 0.156539 + 0.271134i
\(743\) 19.8454 11.4578i 0.728058 0.420345i −0.0896532 0.995973i \(-0.528576\pi\)
0.817711 + 0.575628i \(0.195243\pi\)
\(744\) 0 0
\(745\) 1.56206 2.70556i 0.0572293 0.0991240i
\(746\) 27.9755i 1.02425i
\(747\) 0 0
\(748\) 1.00643i 0.0367989i
\(749\) 20.4786 + 11.8233i 0.748272 + 0.432015i
\(750\) 0 0
\(751\) 7.68694 + 13.3142i 0.280500 + 0.485841i 0.971508 0.237006i \(-0.0761663\pi\)
−0.691008 + 0.722847i \(0.742833\pi\)
\(752\) −5.40488 + 3.12051i −0.197096 + 0.113793i
\(753\) 0 0
\(754\) −1.39935 + 8.78332i −0.0509612 + 0.319870i
\(755\) −7.09144 −0.258084
\(756\) 0 0
\(757\) 41.9292 1.52394 0.761971 0.647611i \(-0.224232\pi\)
0.761971 + 0.647611i \(0.224232\pi\)
\(758\) −2.02534 + 3.50799i −0.0735637 + 0.127416i
\(759\) 0 0
\(760\) −0.247620 + 0.142963i −0.00898211 + 0.00518583i
\(761\) 2.20005 1.27020i 0.0797518 0.0460447i −0.459594 0.888129i \(-0.652005\pi\)
0.539346 + 0.842085i \(0.318672\pi\)
\(762\) 0 0
\(763\) 15.3826 26.6434i 0.556887 0.964557i
\(764\) −14.8407 −0.536918
\(765\) 0 0
\(766\) −31.2962 −1.13078
\(767\) 5.32664 33.4339i 0.192334 1.20723i
\(768\) 0 0
\(769\) 8.65130 4.99483i 0.311974 0.180118i −0.335836 0.941921i \(-0.609019\pi\)
0.647809 + 0.761802i \(0.275685\pi\)
\(770\) −0.239724 0.415213i −0.00863904 0.0149633i
\(771\) 0 0
\(772\) −12.2175 7.05376i −0.439716 0.253870i
\(773\) 5.76343i 0.207296i 0.994614 + 0.103648i \(0.0330516\pi\)
−0.994614 + 0.103648i \(0.966948\pi\)
\(774\) 0 0
\(775\) 5.33173i 0.191521i
\(776\) 4.85767 8.41374i 0.174380 0.302036i
\(777\) 0 0
\(778\) 13.2842 7.66964i 0.476262 0.274970i
\(779\) −2.38210 4.12592i −0.0853476 0.147826i
\(780\) 0 0
\(781\) −1.56489 + 2.71047i −0.0559962 + 0.0969883i
\(782\) 7.67638i 0.274507i
\(783\) 0 0
\(784\) 4.18828 0.149581
\(785\) 6.38220 + 3.68476i 0.227790 + 0.131515i
\(786\) 0 0
\(787\) −8.20657 + 4.73806i −0.292533 + 0.168894i −0.639083 0.769137i \(-0.720686\pi\)
0.346551 + 0.938031i \(0.387353\pi\)
\(788\) −0.383231 + 0.221259i −0.0136520 + 0.00788201i
\(789\) 0 0
\(790\) 0.611976 1.05997i 0.0217731 0.0377122i
\(791\) 34.0024i 1.20899i
\(792\) 0 0
\(793\) −10.0709 26.3073i −0.357629 0.934199i
\(794\) −12.0916 + 20.9433i −0.429115 + 0.743249i
\(795\) 0 0
\(796\) −6.64626 11.5117i −0.235571 0.408020i
\(797\) −1.54871 2.68245i −0.0548582 0.0950171i 0.837292 0.546756i \(-0.184137\pi\)
−0.892150 + 0.451739i \(0.850804\pi\)
\(798\) 0 0
\(799\) 11.3151 + 6.53276i 0.400298 + 0.231112i
\(800\) 4.64626i 0.164270i
\(801\) 0 0
\(802\) 28.7378 1.01477
\(803\) −1.42184 + 2.46269i −0.0501755 + 0.0869065i
\(804\) 0 0
\(805\) 1.82845 + 3.16696i 0.0644442 + 0.111621i
\(806\) −2.60673 + 3.21305i −0.0918181 + 0.113175i
\(807\) 0 0
\(808\) 5.01858 + 2.89748i 0.176553 + 0.101933i
\(809\) −18.7613 −0.659612 −0.329806 0.944049i \(-0.606983\pi\)
−0.329806 + 0.944049i \(0.606983\pi\)
\(810\) 0 0
\(811\) 35.6282i 1.25108i 0.780193 + 0.625538i \(0.215121\pi\)
−0.780193 + 0.625538i \(0.784879\pi\)
\(812\) 3.58217 + 2.06817i 0.125710 + 0.0725785i
\(813\) 0 0
\(814\) 1.51968 0.877388i 0.0532648 0.0307524i
\(815\) 6.35288 + 11.0035i 0.222532 + 0.385436i
\(816\) 0 0
\(817\) −2.87957 1.66252i −0.100743 0.0581642i
\(818\) 29.9183 1.04607
\(819\) 0 0
\(820\) 5.89408 0.205830
\(821\) 13.3975 + 7.73506i 0.467577 + 0.269956i 0.715225 0.698894i \(-0.246324\pi\)
−0.247648 + 0.968850i \(0.579658\pi\)
\(822\) 0 0
\(823\) 4.04000 + 6.99748i 0.140825 + 0.243917i 0.927808 0.373059i \(-0.121691\pi\)
−0.786982 + 0.616976i \(0.788358\pi\)
\(824\) −1.48443 + 0.857037i −0.0517126 + 0.0298563i
\(825\) 0 0
\(826\) −13.6356 7.87254i −0.474444 0.273921i
\(827\) 27.7387i 0.964569i 0.876015 + 0.482284i \(0.160193\pi\)
−0.876015 + 0.482284i \(0.839807\pi\)
\(828\) 0 0
\(829\) −38.2112 −1.32713 −0.663566 0.748118i \(-0.730958\pi\)
−0.663566 + 0.748118i \(0.730958\pi\)
\(830\) 5.69680 + 3.28905i 0.197739 + 0.114164i
\(831\) 0 0
\(832\) 2.27160 2.79997i 0.0787535 0.0970715i
\(833\) −4.38406 7.59342i −0.151899 0.263096i
\(834\) 0 0
\(835\) −4.38205 + 7.58993i −0.151647 + 0.262660i
\(836\) −0.231115 −0.00799329
\(837\) 0 0
\(838\) 24.5716i 0.848811i
\(839\) −32.5035 18.7659i −1.12215 0.647872i −0.180199 0.983630i \(-0.557674\pi\)
−0.941948 + 0.335758i \(0.891007\pi\)
\(840\) 0 0
\(841\) 11.4575 + 19.8450i 0.395086 + 0.684310i
\(842\) −14.2452 24.6735i −0.490924 0.850305i
\(843\) 0 0
\(844\) −4.82032 + 8.34904i −0.165922 + 0.287386i
\(845\) 5.16314 + 5.75531i 0.177618 + 0.197989i
\(846\) 0 0
\(847\) 18.0575i 0.620462i
\(848\) −2.54296 + 4.40453i −0.0873256 + 0.151252i
\(849\) 0 0
\(850\) 8.42375 4.86345i 0.288932 0.166815i
\(851\) −11.5911 + 6.69211i −0.397337 + 0.229402i
\(852\) 0 0
\(853\) 43.2259 + 24.9565i 1.48003 + 0.854493i 0.999744 0.0226214i \(-0.00720122\pi\)
0.480281 + 0.877114i \(0.340535\pi\)
\(854\) −13.1005 −0.448289
\(855\) 0 0
\(856\) 14.1021i 0.482000i
\(857\) 4.36496 7.56033i 0.149104 0.258256i −0.781792 0.623539i \(-0.785694\pi\)
0.930897 + 0.365283i \(0.119028\pi\)
\(858\) 0 0
\(859\) −15.7588 27.2950i −0.537683 0.931294i −0.999028 0.0440737i \(-0.985966\pi\)
0.461345 0.887221i \(-0.347367\pi\)
\(860\) 3.56249 2.05681i 0.121480 0.0701365i
\(861\) 0 0
\(862\) −3.56883 + 6.18140i −0.121555 + 0.210539i
\(863\) 34.0790i 1.16006i 0.814594 + 0.580031i \(0.196960\pi\)
−0.814594 + 0.580031i \(0.803040\pi\)
\(864\) 0 0
\(865\) 6.92816i 0.235564i
\(866\) 6.80074 + 3.92641i 0.231098 + 0.133425i
\(867\) 0 0
\(868\) 0.962100 + 1.66641i 0.0326558 + 0.0565615i
\(869\) 0.856779 0.494662i 0.0290642 0.0167803i
\(870\) 0 0
\(871\) −8.15853 + 51.2089i −0.276441 + 1.73515i
\(872\) 18.3474 0.621320
\(873\) 0 0
\(874\) 1.76279 0.0596272
\(875\) −4.81012 + 8.33137i −0.162612 + 0.281652i
\(876\) 0 0
\(877\) 7.79128 4.49830i 0.263093 0.151897i −0.362652 0.931925i \(-0.618129\pi\)
0.625745 + 0.780028i \(0.284795\pi\)
\(878\) −3.59274 + 2.07427i −0.121249 + 0.0700031i
\(879\) 0 0
\(880\) 0.142963 0.247620i 0.00481929 0.00834726i
\(881\) 40.3722 1.36017 0.680086 0.733132i \(-0.261942\pi\)
0.680086 + 0.733132i \(0.261942\pi\)
\(882\) 0 0
\(883\) 32.2736 1.08609 0.543046 0.839703i \(-0.317271\pi\)
0.543046 + 0.839703i \(0.317271\pi\)
\(884\) −7.45418 1.18759i −0.250711 0.0399429i
\(885\) 0 0
\(886\) −15.4559 + 8.92349i −0.519253 + 0.299791i
\(887\) 26.8247 + 46.4617i 0.900685 + 1.56003i 0.826607 + 0.562780i \(0.190268\pi\)
0.0740786 + 0.997252i \(0.476398\pi\)
\(888\) 0 0
\(889\) −26.9338 15.5502i −0.903331 0.521538i
\(890\) 5.64259i 0.189140i
\(891\) 0 0
\(892\) 23.1333i 0.774559i
\(893\) −1.50017 + 2.59837i −0.0502012 + 0.0869510i
\(894\) 0 0
\(895\) −0.461589 + 0.266499i −0.0154292 + 0.00890807i
\(896\) −0.838409 1.45217i −0.0280093 0.0485135i
\(897\) 0 0
\(898\) −9.86538 + 17.0873i −0.329212 + 0.570212i
\(899\) 2.83070i 0.0944092i
\(900\) 0 0
\(901\) 10.6473 0.354714
\(902\) 4.12592 + 2.38210i 0.137378 + 0.0793152i
\(903\) 0 0
\(904\) −17.5612 + 10.1390i −0.584076 + 0.337217i
\(905\) −0.732390 + 0.422845i −0.0243455 + 0.0140559i
\(906\) 0 0
\(907\) −22.1018 + 38.2814i −0.733878 + 1.27111i 0.221336 + 0.975198i \(0.428958\pi\)
−0.955214 + 0.295916i \(0.904375\pi\)
\(908\) 13.3066i 0.441595i
\(909\) 0 0
\(910\) 3.35816 1.28557i 0.111322 0.0426162i
\(911\) 27.4816 47.5996i 0.910508 1.57705i 0.0971588 0.995269i \(-0.469025\pi\)
0.813349 0.581776i \(-0.197642\pi\)
\(912\) 0 0
\(913\) 2.65854 + 4.60473i 0.0879850 + 0.152394i
\(914\) 18.1728 + 31.4762i 0.601103 + 1.04114i
\(915\) 0 0
\(916\) −0.700965 0.404702i −0.0231605 0.0133717i
\(917\) 7.78903i 0.257217i
\(918\) 0 0
\(919\) −21.0595 −0.694690 −0.347345 0.937737i \(-0.612917\pi\)
−0.347345 + 0.937737i \(0.612917\pi\)
\(920\) −1.09043 + 1.88867i −0.0359503 + 0.0622677i
\(921\) 0 0
\(922\) −11.4679 19.8630i −0.377676 0.654153i
\(923\) −18.2286 14.7888i −0.600002 0.486778i
\(924\) 0 0
\(925\) −14.6873 8.47971i −0.482915 0.278811i
\(926\) 29.5769 0.971957
\(927\) 0 0
\(928\) 2.46678i 0.0809760i
\(929\) −17.8307 10.2945i −0.585006 0.337753i 0.178115 0.984010i \(-0.443000\pi\)
−0.763120 + 0.646257i \(0.776334\pi\)
\(930\) 0 0
\(931\) 1.74374 1.00675i 0.0571486 0.0329948i
\(932\) 7.73559 + 13.3984i 0.253388 + 0.438881i
\(933\) 0 0
\(934\) −10.9093 6.29851i −0.356964 0.206093i
\(935\) −0.598585 −0.0195758
\(936\) 0 0
\(937\) −23.8463 −0.779023 −0.389512 0.921022i \(-0.627356\pi\)
−0.389512 + 0.921022i \(0.627356\pi\)
\(938\) 20.8849 + 12.0579i 0.681918 + 0.393705i
\(939\) 0 0
\(940\) −1.85595 3.21460i −0.0605344 0.104849i
\(941\) 3.16693 1.82843i 0.103239 0.0596051i −0.447492 0.894288i \(-0.647683\pi\)
0.550731 + 0.834683i \(0.314349\pi\)
\(942\) 0 0
\(943\) −31.4696 18.1690i −1.02479 0.591664i
\(944\) 9.38985i 0.305614i
\(945\) 0 0
\(946\) 3.32504 0.108106
\(947\) −17.6910 10.2139i −0.574879 0.331907i 0.184217 0.982886i \(-0.441025\pi\)
−0.759096 + 0.650979i \(0.774359\pi\)
\(948\) 0 0
\(949\) −16.5622 13.4368i −0.537633 0.436178i
\(950\) 1.11683 + 1.93441i 0.0362348 + 0.0627606i
\(951\) 0 0
\(952\) −1.75520 + 3.04010i −0.0568864 + 0.0985301i
\(953\) 40.9906 1.32782 0.663908 0.747814i \(-0.268896\pi\)
0.663908 + 0.747814i \(0.268896\pi\)
\(954\) 0 0
\(955\) 8.82664i 0.285623i
\(956\) 25.2511 + 14.5788i 0.816680 + 0.471510i
\(957\) 0 0
\(958\) 6.37417 + 11.0404i 0.205940 + 0.356699i
\(959\) 10.9167 + 18.9082i 0.352517 + 0.610578i
\(960\) 0 0
\(961\) −14.8416 + 25.7064i −0.478761 + 0.829238i
\(962\) 4.70518 + 12.2909i 0.151701 + 0.396273i
\(963\) 0 0
\(964\) 15.5947i 0.502271i
\(965\) 4.19528 7.26644i 0.135051 0.233915i
\(966\) 0 0
\(967\) 3.24755 1.87497i 0.104434 0.0602951i −0.446873 0.894597i \(-0.647462\pi\)
0.551307 + 0.834302i \(0.314129\pi\)
\(968\) −9.32613 + 5.38444i −0.299753 + 0.173063i
\(969\) 0 0
\(970\) 5.00414 + 2.88914i 0.160673 + 0.0927648i
\(971\) 48.6853 1.56239 0.781193 0.624289i \(-0.214611\pi\)
0.781193 + 0.624289i \(0.214611\pi\)
\(972\) 0 0
\(973\) 17.0709i 0.547269i
\(974\) 10.4027 18.0180i 0.333324 0.577334i
\(975\) 0 0
\(976\) −3.90635 6.76599i −0.125039 0.216574i
\(977\) 19.1946 11.0820i 0.614091 0.354546i −0.160474 0.987040i \(-0.551302\pi\)
0.774565 + 0.632495i \(0.217969\pi\)
\(978\) 0 0
\(979\) 2.28046 3.94987i 0.0728838 0.126238i
\(980\) 2.49101i 0.0795725i
\(981\) 0 0
\(982\) 14.7472i 0.470604i
\(983\) −48.6127 28.0665i −1.55050 0.895183i −0.998101 0.0616059i \(-0.980378\pi\)
−0.552403 0.833577i \(-0.686289\pi\)
\(984\) 0 0
\(985\) −0.131595 0.227930i −0.00419298 0.00726245i
\(986\) 4.47231 2.58209i 0.142427 0.0822304i
\(987\) 0 0
\(988\) 0.272715 1.71176i 0.00867622 0.0544584i
\(989\) −25.3611 −0.806436
\(990\) 0 0
\(991\) 36.3755 1.15551 0.577753 0.816212i \(-0.303930\pi\)
0.577753 + 0.816212i \(0.303930\pi\)
\(992\) −0.573765 + 0.993791i −0.0182171 + 0.0315529i
\(993\) 0 0
\(994\) −9.45402 + 5.45828i −0.299863 + 0.173126i
\(995\) 6.84666 3.95292i 0.217054 0.125316i
\(996\) 0 0
\(997\) −28.6738 + 49.6644i −0.908107 + 1.57289i −0.0914167 + 0.995813i \(0.529140\pi\)
−0.816691 + 0.577076i \(0.804194\pi\)
\(998\) −29.7482 −0.941662
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.t.a.181.3 28
3.2 odd 2 234.2.t.a.25.14 yes 28
9.2 odd 6 2106.2.b.c.649.5 14
9.4 even 3 inner 702.2.t.a.415.12 28
9.5 odd 6 234.2.t.a.103.7 yes 28
9.7 even 3 2106.2.b.d.649.10 14
13.12 even 2 inner 702.2.t.a.181.12 28
39.38 odd 2 234.2.t.a.25.7 28
117.25 even 6 2106.2.b.d.649.5 14
117.38 odd 6 2106.2.b.c.649.10 14
117.77 odd 6 234.2.t.a.103.14 yes 28
117.103 even 6 inner 702.2.t.a.415.3 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.t.a.25.7 28 39.38 odd 2
234.2.t.a.25.14 yes 28 3.2 odd 2
234.2.t.a.103.7 yes 28 9.5 odd 6
234.2.t.a.103.14 yes 28 117.77 odd 6
702.2.t.a.181.3 28 1.1 even 1 trivial
702.2.t.a.181.12 28 13.12 even 2 inner
702.2.t.a.415.3 28 117.103 even 6 inner
702.2.t.a.415.12 28 9.4 even 3 inner
2106.2.b.c.649.5 14 9.2 odd 6
2106.2.b.c.649.10 14 117.38 odd 6
2106.2.b.d.649.5 14 117.25 even 6
2106.2.b.d.649.10 14 9.7 even 3