Properties

Label 702.2.h.i
Level $702$
Weight $2$
Character orbit 702.h
Analytic conductor $5.605$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(55,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.55"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,0,-2,2,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{37})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 10x^{2} + 9x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 1) q^{2} - \beta_{2} q^{4} + \beta_{3} q^{5} + (2 \beta_{2} - \beta_1) q^{7} + q^{8} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{10} + ( - \beta_{3} + 4 \beta_{2} - \beta_1 - 3) q^{11}+ \cdots + ( - 6 \beta_{2} + 3 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} + 2 q^{5} + 3 q^{7} + 4 q^{8} - q^{10} - 7 q^{11} + 10 q^{13} - 6 q^{14} - 2 q^{16} + 5 q^{17} - q^{20} - 7 q^{22} - 6 q^{23} + 18 q^{25} + 4 q^{26} + 3 q^{28} - 6 q^{29} + 8 q^{31}+ \cdots - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 10x^{2} + 9x + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 10\nu^{2} - 10\nu + 81 ) / 90 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 19 ) / 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 9\beta_{2} + \beta _1 - 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 10\beta_{3} - 19 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(-\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
1.77069 3.06693i
−1.27069 + 2.20090i
1.77069 + 3.06693i
−1.27069 2.20090i
−0.500000 0.866025i 0 −0.500000 + 0.866025i −2.54138 0 −0.770691 + 1.33488i 1.00000 0 1.27069 + 2.20090i
55.2 −0.500000 0.866025i 0 −0.500000 + 0.866025i 3.54138 0 2.27069 3.93295i 1.00000 0 −1.77069 3.06693i
217.1 −0.500000 + 0.866025i 0 −0.500000 0.866025i −2.54138 0 −0.770691 1.33488i 1.00000 0 1.27069 2.20090i
217.2 −0.500000 + 0.866025i 0 −0.500000 0.866025i 3.54138 0 2.27069 + 3.93295i 1.00000 0 −1.77069 + 3.06693i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 702.2.h.i 4
3.b odd 2 1 702.2.h.j yes 4
13.c even 3 1 inner 702.2.h.i 4
13.c even 3 1 9126.2.a.bz 2
13.e even 6 1 9126.2.a.bq 2
39.h odd 6 1 9126.2.a.ca 2
39.i odd 6 1 702.2.h.j yes 4
39.i odd 6 1 9126.2.a.bp 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
702.2.h.i 4 1.a even 1 1 trivial
702.2.h.i 4 13.c even 3 1 inner
702.2.h.j yes 4 3.b odd 2 1
702.2.h.j yes 4 39.i odd 6 1
9126.2.a.bp 2 39.i odd 6 1
9126.2.a.bq 2 13.e even 6 1
9126.2.a.bz 2 13.c even 3 1
9126.2.a.ca 2 39.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(702, [\chi])\):

\( T_{5}^{2} - T_{5} - 9 \) Copy content Toggle raw display
\( T_{7}^{4} - 3T_{7}^{3} + 16T_{7}^{2} + 21T_{7} + 49 \) Copy content Toggle raw display
\( T_{11}^{4} + 7T_{11}^{3} + 46T_{11}^{2} + 21T_{11} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - T - 9)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 3 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$11$ \( T^{4} + 7 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$13$ \( (T^{2} - 5 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 5 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$19$ \( T^{4} + 37T^{2} + 1369 \) Copy content Toggle raw display
$23$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$31$ \( (T - 2)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 3 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$41$ \( T^{4} + 4 T^{3} + \cdots + 1089 \) Copy content Toggle raw display
$43$ \( T^{4} - 6 T^{3} + \cdots + 784 \) Copy content Toggle raw display
$47$ \( (T^{2} + 2 T - 36)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 16 T + 27)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 11 T^{3} + \cdots + 441 \) Copy content Toggle raw display
$61$ \( T^{4} - 9 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$67$ \( T^{4} + T^{3} + \cdots + 6889 \) Copy content Toggle raw display
$71$ \( T^{4} - 7 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$73$ \( (T^{2} - T - 83)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 7 T - 71)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} + 4 T^{3} + \cdots + 1089 \) Copy content Toggle raw display
$97$ \( T^{4} - 6 T^{3} + \cdots + 784 \) Copy content Toggle raw display
show more
show less