Properties

Label 702.2.bc.a.683.7
Level $702$
Weight $2$
Character 702.683
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(305,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.305"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([2, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bc (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 683.7
Character \(\chi\) \(=\) 702.683
Dual form 702.2.bc.a.665.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.965926 - 0.258819i) q^{2} +(0.866025 + 0.500000i) q^{4} +(3.60132 + 0.964970i) q^{5} +(-2.35233 + 2.35233i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-3.22885 - 1.86418i) q^{10} +(1.64094 - 6.12407i) q^{11} +(3.47507 + 0.961205i) q^{13} +(2.88100 - 1.66335i) q^{14} +(0.500000 + 0.866025i) q^{16} +(1.38308 + 2.39556i) q^{17} +(0.703205 - 2.62440i) q^{19} +(2.63635 + 2.63635i) q^{20} +(-3.17005 + 5.49069i) q^{22} -0.183009 q^{23} +(7.70819 + 4.45033i) q^{25} +(-3.10788 - 1.82787i) q^{26} +(-3.21334 + 0.861011i) q^{28} +(0.821481 - 0.474282i) q^{29} +(-0.573581 + 2.14063i) q^{31} +(-0.258819 - 0.965926i) q^{32} +(-0.715935 - 2.67190i) q^{34} +(-10.7414 + 6.20155i) q^{35} +(1.96458 + 7.33191i) q^{37} +(-1.35849 + 2.35297i) q^{38} +(-1.86418 - 3.22885i) q^{40} +(-1.66875 + 1.66875i) q^{41} +3.66698i q^{43} +(4.48313 - 4.48313i) q^{44} +(0.176773 + 0.0473661i) q^{46} +(5.15065 - 1.38011i) q^{47} -4.06688i q^{49} +(-6.29371 - 6.29371i) q^{50} +(2.52889 + 2.56996i) q^{52} -3.43327i q^{53} +(11.8191 - 20.4712i) q^{55} +3.32669 q^{56} +(-0.916243 + 0.245507i) q^{58} +(-4.52756 + 1.21315i) q^{59} -8.27980 q^{61} +(1.10807 - 1.91924i) q^{62} +1.00000i q^{64} +(11.5873 + 6.81494i) q^{65} +(5.28097 + 5.28097i) q^{67} +2.76616i q^{68} +(11.9805 - 3.21016i) q^{70} +(11.7943 + 3.16027i) q^{71} +(2.16027 - 2.16027i) q^{73} -7.59055i q^{74} +(1.92119 - 1.92119i) q^{76} +(10.5458 + 18.2658i) q^{77} +(6.31331 - 10.9350i) q^{79} +(0.964970 + 3.60132i) q^{80} +(2.04380 - 1.17999i) q^{82} +(-1.74879 - 6.52658i) q^{83} +(2.66926 + 9.96181i) q^{85} +(0.949085 - 3.54203i) q^{86} +(-5.49069 + 3.17005i) q^{88} +(0.643808 - 0.172508i) q^{89} +(-10.4356 + 5.91342i) q^{91} +(-0.158490 - 0.0915043i) q^{92} -5.33235 q^{94} +(5.06492 - 8.77271i) q^{95} +(4.14023 + 4.14023i) q^{97} +(-1.05259 + 3.92830i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 8 q^{7} + 24 q^{11} + 28 q^{16} - 8 q^{19} - 4 q^{28} - 4 q^{31} + 24 q^{35} - 4 q^{37} - 36 q^{38} + 48 q^{41} + 36 q^{47} + 24 q^{50} + 8 q^{52} + 36 q^{65} + 28 q^{67} + 24 q^{71} + 28 q^{73}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.965926 0.258819i −0.683013 0.183013i
\(3\) 0 0
\(4\) 0.866025 + 0.500000i 0.433013 + 0.250000i
\(5\) 3.60132 + 0.964970i 1.61056 + 0.431548i 0.948209 0.317648i \(-0.102893\pi\)
0.662349 + 0.749195i \(0.269560\pi\)
\(6\) 0 0
\(7\) −2.35233 + 2.35233i −0.889096 + 0.889096i −0.994436 0.105340i \(-0.966407\pi\)
0.105340 + 0.994436i \(0.466407\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) −3.22885 1.86418i −1.02105 0.589505i
\(11\) 1.64094 6.12407i 0.494762 1.84648i −0.0366000 0.999330i \(-0.511653\pi\)
0.531362 0.847145i \(-0.321681\pi\)
\(12\) 0 0
\(13\) 3.47507 + 0.961205i 0.963810 + 0.266590i
\(14\) 2.88100 1.66335i 0.769980 0.444548i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 1.38308 + 2.39556i 0.335446 + 0.581010i 0.983570 0.180525i \(-0.0577797\pi\)
−0.648124 + 0.761534i \(0.724446\pi\)
\(18\) 0 0
\(19\) 0.703205 2.62440i 0.161326 0.602078i −0.837154 0.546967i \(-0.815782\pi\)
0.998480 0.0551104i \(-0.0175511\pi\)
\(20\) 2.63635 + 2.63635i 0.589505 + 0.589505i
\(21\) 0 0
\(22\) −3.17005 + 5.49069i −0.675857 + 1.17062i
\(23\) −0.183009 −0.0381599 −0.0190800 0.999818i \(-0.506074\pi\)
−0.0190800 + 0.999818i \(0.506074\pi\)
\(24\) 0 0
\(25\) 7.70819 + 4.45033i 1.54164 + 0.890065i
\(26\) −3.10788 1.82787i −0.609505 0.358474i
\(27\) 0 0
\(28\) −3.21334 + 0.861011i −0.607264 + 0.162716i
\(29\) 0.821481 0.474282i 0.152545 0.0880720i −0.421784 0.906696i \(-0.638596\pi\)
0.574330 + 0.818624i \(0.305263\pi\)
\(30\) 0 0
\(31\) −0.573581 + 2.14063i −0.103018 + 0.384469i −0.998113 0.0614072i \(-0.980441\pi\)
0.895095 + 0.445876i \(0.147108\pi\)
\(32\) −0.258819 0.965926i −0.0457532 0.170753i
\(33\) 0 0
\(34\) −0.715935 2.67190i −0.122782 0.458228i
\(35\) −10.7414 + 6.20155i −1.81563 + 1.04825i
\(36\) 0 0
\(37\) 1.96458 + 7.33191i 0.322975 + 1.20536i 0.916332 + 0.400419i \(0.131136\pi\)
−0.593357 + 0.804939i \(0.702198\pi\)
\(38\) −1.35849 + 2.35297i −0.220376 + 0.381702i
\(39\) 0 0
\(40\) −1.86418 3.22885i −0.294753 0.510526i
\(41\) −1.66875 + 1.66875i −0.260615 + 0.260615i −0.825304 0.564689i \(-0.808996\pi\)
0.564689 + 0.825304i \(0.308996\pi\)
\(42\) 0 0
\(43\) 3.66698i 0.559209i 0.960115 + 0.279605i \(0.0902034\pi\)
−0.960115 + 0.279605i \(0.909797\pi\)
\(44\) 4.48313 4.48313i 0.675857 0.675857i
\(45\) 0 0
\(46\) 0.176773 + 0.0473661i 0.0260637 + 0.00698375i
\(47\) 5.15065 1.38011i 0.751300 0.201310i 0.137205 0.990543i \(-0.456188\pi\)
0.614095 + 0.789232i \(0.289521\pi\)
\(48\) 0 0
\(49\) 4.06688i 0.580983i
\(50\) −6.29371 6.29371i −0.890065 0.890065i
\(51\) 0 0
\(52\) 2.52889 + 2.56996i 0.350694 + 0.356389i
\(53\) 3.43327i 0.471596i −0.971802 0.235798i \(-0.924230\pi\)
0.971802 0.235798i \(-0.0757704\pi\)
\(54\) 0 0
\(55\) 11.8191 20.4712i 1.59368 2.76034i
\(56\) 3.32669 0.444548
\(57\) 0 0
\(58\) −0.916243 + 0.245507i −0.120309 + 0.0322366i
\(59\) −4.52756 + 1.21315i −0.589438 + 0.157939i −0.541196 0.840896i \(-0.682028\pi\)
−0.0482414 + 0.998836i \(0.515362\pi\)
\(60\) 0 0
\(61\) −8.27980 −1.06012 −0.530060 0.847960i \(-0.677831\pi\)
−0.530060 + 0.847960i \(0.677831\pi\)
\(62\) 1.10807 1.91924i 0.140725 0.243744i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 11.5873 + 6.81494i 1.43723 + 0.845289i
\(66\) 0 0
\(67\) 5.28097 + 5.28097i 0.645174 + 0.645174i 0.951823 0.306649i \(-0.0992078\pi\)
−0.306649 + 0.951823i \(0.599208\pi\)
\(68\) 2.76616i 0.335446i
\(69\) 0 0
\(70\) 11.9805 3.21016i 1.43194 0.383687i
\(71\) 11.7943 + 3.16027i 1.39972 + 0.375055i 0.878245 0.478210i \(-0.158714\pi\)
0.521478 + 0.853265i \(0.325381\pi\)
\(72\) 0 0
\(73\) 2.16027 2.16027i 0.252841 0.252841i −0.569294 0.822134i \(-0.692783\pi\)
0.822134 + 0.569294i \(0.192783\pi\)
\(74\) 7.59055i 0.882384i
\(75\) 0 0
\(76\) 1.92119 1.92119i 0.220376 0.220376i
\(77\) 10.5458 + 18.2658i 1.20180 + 2.08158i
\(78\) 0 0
\(79\) 6.31331 10.9350i 0.710302 1.23028i −0.254441 0.967088i \(-0.581892\pi\)
0.964744 0.263191i \(-0.0847751\pi\)
\(80\) 0.964970 + 3.60132i 0.107887 + 0.402639i
\(81\) 0 0
\(82\) 2.04380 1.17999i 0.225700 0.130308i
\(83\) −1.74879 6.52658i −0.191955 0.716385i −0.993034 0.117827i \(-0.962407\pi\)
0.801079 0.598558i \(-0.204259\pi\)
\(84\) 0 0
\(85\) 2.66926 + 9.96181i 0.289522 + 1.08051i
\(86\) 0.949085 3.54203i 0.102342 0.381947i
\(87\) 0 0
\(88\) −5.49069 + 3.17005i −0.585309 + 0.337928i
\(89\) 0.643808 0.172508i 0.0682435 0.0182858i −0.224536 0.974466i \(-0.572087\pi\)
0.292779 + 0.956180i \(0.405420\pi\)
\(90\) 0 0
\(91\) −10.4356 + 5.91342i −1.09394 + 0.619895i
\(92\) −0.158490 0.0915043i −0.0165237 0.00953998i
\(93\) 0 0
\(94\) −5.33235 −0.549990
\(95\) 5.06492 8.77271i 0.519650 0.900061i
\(96\) 0 0
\(97\) 4.14023 + 4.14023i 0.420377 + 0.420377i 0.885334 0.464957i \(-0.153930\pi\)
−0.464957 + 0.885334i \(0.653930\pi\)
\(98\) −1.05259 + 3.92830i −0.106327 + 0.396819i
\(99\) 0 0
\(100\) 4.45033 + 7.70819i 0.445033 + 0.770819i
\(101\) 4.67593 + 8.09895i 0.465272 + 0.805875i 0.999214 0.0396462i \(-0.0126231\pi\)
−0.533942 + 0.845521i \(0.679290\pi\)
\(102\) 0 0
\(103\) −0.256212 + 0.147924i −0.0252453 + 0.0145754i −0.512570 0.858646i \(-0.671306\pi\)
0.487324 + 0.873221i \(0.337973\pi\)
\(104\) −1.77757 3.13692i −0.174305 0.307600i
\(105\) 0 0
\(106\) −0.888596 + 3.31629i −0.0863081 + 0.322106i
\(107\) −16.2026 9.35458i −1.56636 0.904341i −0.996588 0.0825417i \(-0.973696\pi\)
−0.569777 0.821799i \(-0.692970\pi\)
\(108\) 0 0
\(109\) −7.95895 7.95895i −0.762329 0.762329i 0.214414 0.976743i \(-0.431216\pi\)
−0.976743 + 0.214414i \(0.931216\pi\)
\(110\) −16.7147 + 16.7147i −1.59368 + 1.59368i
\(111\) 0 0
\(112\) −3.21334 0.861011i −0.303632 0.0813579i
\(113\) −6.05263 3.49449i −0.569384 0.328734i 0.187519 0.982261i \(-0.439955\pi\)
−0.756903 + 0.653527i \(0.773289\pi\)
\(114\) 0 0
\(115\) −0.659072 0.176598i −0.0614588 0.0164678i
\(116\) 0.948565 0.0880720
\(117\) 0 0
\(118\) 4.68727 0.431498
\(119\) −8.88860 2.38169i −0.814817 0.218330i
\(120\) 0 0
\(121\) −25.2852 14.5984i −2.29866 1.32713i
\(122\) 7.99767 + 2.14297i 0.724075 + 0.194015i
\(123\) 0 0
\(124\) −1.56705 + 1.56705i −0.140725 + 0.140725i
\(125\) 10.2835 + 10.2835i 0.919782 + 0.919782i
\(126\) 0 0
\(127\) −1.39357 0.804578i −0.123659 0.0713947i 0.436894 0.899513i \(-0.356078\pi\)
−0.560554 + 0.828118i \(0.689412\pi\)
\(128\) 0.258819 0.965926i 0.0228766 0.0853766i
\(129\) 0 0
\(130\) −9.42862 9.58173i −0.826945 0.840374i
\(131\) −8.16562 + 4.71442i −0.713434 + 0.411901i −0.812331 0.583197i \(-0.801802\pi\)
0.0988974 + 0.995098i \(0.468468\pi\)
\(132\) 0 0
\(133\) 4.51927 + 7.82760i 0.391870 + 0.678739i
\(134\) −3.73421 6.46785i −0.322587 0.558737i
\(135\) 0 0
\(136\) 0.715935 2.67190i 0.0613909 0.229114i
\(137\) −11.4753 11.4753i −0.980398 0.980398i 0.0194137 0.999812i \(-0.493820\pi\)
−0.999812 + 0.0194137i \(0.993820\pi\)
\(138\) 0 0
\(139\) −4.44710 + 7.70260i −0.377198 + 0.653326i −0.990653 0.136403i \(-0.956446\pi\)
0.613456 + 0.789729i \(0.289779\pi\)
\(140\) −12.4031 −1.04825
\(141\) 0 0
\(142\) −10.5745 6.10517i −0.887389 0.512334i
\(143\) 11.5888 19.7043i 0.969108 1.64775i
\(144\) 0 0
\(145\) 3.41608 0.915337i 0.283690 0.0760146i
\(146\) −2.64578 + 1.52754i −0.218966 + 0.126420i
\(147\) 0 0
\(148\) −1.96458 + 7.33191i −0.161487 + 0.602679i
\(149\) −6.12277 22.8505i −0.501597 1.87199i −0.489398 0.872060i \(-0.662784\pi\)
−0.0121988 0.999926i \(-0.503883\pi\)
\(150\) 0 0
\(151\) −0.0389086 0.145209i −0.00316634 0.0118169i 0.964325 0.264723i \(-0.0852804\pi\)
−0.967491 + 0.252906i \(0.918614\pi\)
\(152\) −2.35297 + 1.35849i −0.190851 + 0.110188i
\(153\) 0 0
\(154\) −5.45890 20.3729i −0.439890 1.64169i
\(155\) −4.13129 + 7.15561i −0.331833 + 0.574752i
\(156\) 0 0
\(157\) 0.888484 + 1.53890i 0.0709087 + 0.122818i 0.899300 0.437333i \(-0.144077\pi\)
−0.828391 + 0.560150i \(0.810743\pi\)
\(158\) −8.92836 + 8.92836i −0.710302 + 0.710302i
\(159\) 0 0
\(160\) 3.72836i 0.294753i
\(161\) 0.430496 0.430496i 0.0339278 0.0339278i
\(162\) 0 0
\(163\) −5.77944 1.54860i −0.452681 0.121295i 0.0252727 0.999681i \(-0.491955\pi\)
−0.477953 + 0.878385i \(0.658621\pi\)
\(164\) −2.27956 + 0.610806i −0.178004 + 0.0476959i
\(165\) 0 0
\(166\) 6.75681i 0.524430i
\(167\) 12.5881 + 12.5881i 0.974099 + 0.974099i 0.999673 0.0255737i \(-0.00814124\pi\)
−0.0255737 + 0.999673i \(0.508141\pi\)
\(168\) 0 0
\(169\) 11.1522 + 6.68050i 0.857859 + 0.513885i
\(170\) 10.3132i 0.790989i
\(171\) 0 0
\(172\) −1.83349 + 3.17570i −0.139802 + 0.242145i
\(173\) −14.4245 −1.09667 −0.548335 0.836258i \(-0.684738\pi\)
−0.548335 + 0.836258i \(0.684738\pi\)
\(174\) 0 0
\(175\) −28.6008 + 7.66356i −2.16202 + 0.579311i
\(176\) 6.12407 1.64094i 0.461619 0.123690i
\(177\) 0 0
\(178\) −0.666519 −0.0499577
\(179\) −7.51417 + 13.0149i −0.561636 + 0.972782i 0.435718 + 0.900083i \(0.356494\pi\)
−0.997354 + 0.0726986i \(0.976839\pi\)
\(180\) 0 0
\(181\) 7.25012i 0.538897i −0.963015 0.269449i \(-0.913159\pi\)
0.963015 0.269449i \(-0.0868414\pi\)
\(182\) 11.6105 3.01101i 0.860626 0.223191i
\(183\) 0 0
\(184\) 0.129407 + 0.129407i 0.00953998 + 0.00953998i
\(185\) 28.3003i 2.08068i
\(186\) 0 0
\(187\) 16.9401 4.53910i 1.23879 0.331932i
\(188\) 5.15065 + 1.38011i 0.375650 + 0.100655i
\(189\) 0 0
\(190\) −7.16289 + 7.16289i −0.519650 + 0.519650i
\(191\) 3.18481i 0.230445i 0.993340 + 0.115222i \(0.0367581\pi\)
−0.993340 + 0.115222i \(0.963242\pi\)
\(192\) 0 0
\(193\) 10.0288 10.0288i 0.721890 0.721890i −0.247100 0.968990i \(-0.579478\pi\)
0.968990 + 0.247100i \(0.0794777\pi\)
\(194\) −2.92759 5.07073i −0.210189 0.364057i
\(195\) 0 0
\(196\) 2.03344 3.52202i 0.145246 0.251573i
\(197\) −0.0907674 0.338748i −0.00646691 0.0241348i 0.962617 0.270866i \(-0.0873101\pi\)
−0.969084 + 0.246731i \(0.920643\pi\)
\(198\) 0 0
\(199\) −17.1252 + 9.88723i −1.21397 + 0.700887i −0.963622 0.267268i \(-0.913879\pi\)
−0.250350 + 0.968155i \(0.580546\pi\)
\(200\) −2.30366 8.59737i −0.162893 0.607926i
\(201\) 0 0
\(202\) −2.42044 9.03320i −0.170301 0.635574i
\(203\) −0.816725 + 3.04806i −0.0573229 + 0.213932i
\(204\) 0 0
\(205\) −7.62000 + 4.39941i −0.532204 + 0.307268i
\(206\) 0.285767 0.0765711i 0.0199103 0.00533496i
\(207\) 0 0
\(208\) 0.905106 + 3.49010i 0.0627578 + 0.241995i
\(209\) −14.9181 8.61294i −1.03190 0.595770i
\(210\) 0 0
\(211\) −9.27751 −0.638690 −0.319345 0.947639i \(-0.603463\pi\)
−0.319345 + 0.947639i \(0.603463\pi\)
\(212\) 1.71664 2.97330i 0.117899 0.204207i
\(213\) 0 0
\(214\) 13.2294 + 13.2294i 0.904341 + 0.904341i
\(215\) −3.53853 + 13.2060i −0.241326 + 0.900639i
\(216\) 0 0
\(217\) −3.68622 6.38472i −0.250237 0.433423i
\(218\) 5.62783 + 9.74768i 0.381165 + 0.660196i
\(219\) 0 0
\(220\) 20.4712 11.8191i 1.38017 0.796842i
\(221\) 2.50367 + 9.65417i 0.168415 + 0.649409i
\(222\) 0 0
\(223\) 4.00521 14.9476i 0.268209 1.00097i −0.692048 0.721851i \(-0.743291\pi\)
0.960257 0.279117i \(-0.0900418\pi\)
\(224\) 2.88100 + 1.66335i 0.192495 + 0.111137i
\(225\) 0 0
\(226\) 4.94195 + 4.94195i 0.328734 + 0.328734i
\(227\) 5.20029 5.20029i 0.345156 0.345156i −0.513146 0.858301i \(-0.671520\pi\)
0.858301 + 0.513146i \(0.171520\pi\)
\(228\) 0 0
\(229\) 23.9064 + 6.40571i 1.57978 + 0.423301i 0.938858 0.344304i \(-0.111885\pi\)
0.640923 + 0.767605i \(0.278552\pi\)
\(230\) 0.590908 + 0.341161i 0.0389633 + 0.0224955i
\(231\) 0 0
\(232\) −0.916243 0.245507i −0.0601543 0.0161183i
\(233\) −18.0279 −1.18105 −0.590525 0.807019i \(-0.701079\pi\)
−0.590525 + 0.807019i \(0.701079\pi\)
\(234\) 0 0
\(235\) 19.8809 1.29689
\(236\) −4.52756 1.21315i −0.294719 0.0789697i
\(237\) 0 0
\(238\) 7.96930 + 4.60108i 0.516573 + 0.298244i
\(239\) −27.5256 7.37545i −1.78048 0.477078i −0.789809 0.613353i \(-0.789820\pi\)
−0.990671 + 0.136275i \(0.956487\pi\)
\(240\) 0 0
\(241\) 5.67035 5.67035i 0.365259 0.365259i −0.500486 0.865745i \(-0.666845\pi\)
0.865745 + 0.500486i \(0.166845\pi\)
\(242\) 20.6453 + 20.6453i 1.32713 + 1.32713i
\(243\) 0 0
\(244\) −7.17052 4.13990i −0.459045 0.265030i
\(245\) 3.92442 14.6461i 0.250722 0.935706i
\(246\) 0 0
\(247\) 4.96626 8.44402i 0.315996 0.537280i
\(248\) 1.91924 1.10807i 0.121872 0.0703627i
\(249\) 0 0
\(250\) −7.27151 12.5946i −0.459891 0.796554i
\(251\) −3.03917 5.26399i −0.191830 0.332260i 0.754026 0.656844i \(-0.228109\pi\)
−0.945857 + 0.324584i \(0.894776\pi\)
\(252\) 0 0
\(253\) −0.300306 + 1.12076i −0.0188801 + 0.0704614i
\(254\) 1.13784 + 1.13784i 0.0713947 + 0.0713947i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 0.638781 0.0398461 0.0199230 0.999802i \(-0.493658\pi\)
0.0199230 + 0.999802i \(0.493658\pi\)
\(258\) 0 0
\(259\) −21.8684 12.6257i −1.35883 0.784524i
\(260\) 6.62741 + 11.6955i 0.411015 + 0.725327i
\(261\) 0 0
\(262\) 9.10757 2.44037i 0.562667 0.150766i
\(263\) 4.87985 2.81738i 0.300905 0.173727i −0.341945 0.939720i \(-0.611086\pi\)
0.642849 + 0.765993i \(0.277752\pi\)
\(264\) 0 0
\(265\) 3.31300 12.3643i 0.203516 0.759533i
\(266\) −2.33934 8.73055i −0.143434 0.535305i
\(267\) 0 0
\(268\) 1.93297 + 7.21395i 0.118075 + 0.440662i
\(269\) −17.6754 + 10.2049i −1.07769 + 0.622202i −0.930271 0.366873i \(-0.880428\pi\)
−0.147415 + 0.989075i \(0.547095\pi\)
\(270\) 0 0
\(271\) 5.54365 + 20.6892i 0.336753 + 1.25678i 0.901956 + 0.431827i \(0.142131\pi\)
−0.565204 + 0.824951i \(0.691202\pi\)
\(272\) −1.38308 + 2.39556i −0.0838615 + 0.145252i
\(273\) 0 0
\(274\) 8.11424 + 14.0543i 0.490199 + 0.849049i
\(275\) 39.9027 39.9027i 2.40623 2.40623i
\(276\) 0 0
\(277\) 4.82222i 0.289739i 0.989451 + 0.144869i \(0.0462762\pi\)
−0.989451 + 0.144869i \(0.953724\pi\)
\(278\) 6.28914 6.28914i 0.377198 0.377198i
\(279\) 0 0
\(280\) 11.9805 + 3.21016i 0.715970 + 0.191844i
\(281\) 3.64034 0.975427i 0.217165 0.0581891i −0.148596 0.988898i \(-0.547475\pi\)
0.365761 + 0.930709i \(0.380809\pi\)
\(282\) 0 0
\(283\) 12.5997i 0.748977i 0.927232 + 0.374489i \(0.122182\pi\)
−0.927232 + 0.374489i \(0.877818\pi\)
\(284\) 8.63401 + 8.63401i 0.512334 + 0.512334i
\(285\) 0 0
\(286\) −16.2938 + 16.0334i −0.963473 + 0.948077i
\(287\) 7.85090i 0.463424i
\(288\) 0 0
\(289\) 4.67418 8.09592i 0.274952 0.476231i
\(290\) −3.53659 −0.207676
\(291\) 0 0
\(292\) 2.95098 0.790714i 0.172693 0.0462730i
\(293\) 28.7098 7.69277i 1.67724 0.449416i 0.710195 0.704005i \(-0.248607\pi\)
0.967050 + 0.254588i \(0.0819400\pi\)
\(294\) 0 0
\(295\) −17.4758 −1.01748
\(296\) 3.79528 6.57361i 0.220596 0.382083i
\(297\) 0 0
\(298\) 23.6566i 1.37039i
\(299\) −0.635967 0.175909i −0.0367789 0.0101731i
\(300\) 0 0
\(301\) −8.62594 8.62594i −0.497191 0.497191i
\(302\) 0.150331i 0.00865059i
\(303\) 0 0
\(304\) 2.62440 0.703205i 0.150519 0.0403315i
\(305\) −29.8182 7.98976i −1.70738 0.457492i
\(306\) 0 0
\(307\) −22.9539 + 22.9539i −1.31005 + 1.31005i −0.388674 + 0.921376i \(0.627067\pi\)
−0.921376 + 0.388674i \(0.872933\pi\)
\(308\) 21.0916i 1.20180i
\(309\) 0 0
\(310\) 5.84253 5.84253i 0.331833 0.331833i
\(311\) −11.8059 20.4483i −0.669449 1.15952i −0.978058 0.208331i \(-0.933197\pi\)
0.308610 0.951189i \(-0.400136\pi\)
\(312\) 0 0
\(313\) 8.71521 15.0952i 0.492613 0.853230i −0.507351 0.861739i \(-0.669375\pi\)
0.999964 + 0.00850920i \(0.00270860\pi\)
\(314\) −0.459913 1.71642i −0.0259544 0.0968631i
\(315\) 0 0
\(316\) 10.9350 6.31331i 0.615140 0.355151i
\(317\) −0.162090 0.604929i −0.00910389 0.0339762i 0.961224 0.275767i \(-0.0889319\pi\)
−0.970328 + 0.241791i \(0.922265\pi\)
\(318\) 0 0
\(319\) −1.55654 5.80907i −0.0871493 0.325246i
\(320\) −0.964970 + 3.60132i −0.0539435 + 0.201320i
\(321\) 0 0
\(322\) −0.527248 + 0.304407i −0.0293824 + 0.0169639i
\(323\) 7.25949 1.94518i 0.403929 0.108232i
\(324\) 0 0
\(325\) 22.5088 + 22.8743i 1.24856 + 1.26884i
\(326\) 5.18170 + 2.99166i 0.286988 + 0.165693i
\(327\) 0 0
\(328\) 2.35997 0.130308
\(329\) −8.86954 + 15.3625i −0.488994 + 0.846962i
\(330\) 0 0
\(331\) −21.8617 21.8617i −1.20163 1.20163i −0.973671 0.227958i \(-0.926795\pi\)
−0.227958 0.973671i \(-0.573205\pi\)
\(332\) 1.74879 6.52658i 0.0959774 0.358192i
\(333\) 0 0
\(334\) −8.90116 15.4173i −0.487050 0.843595i
\(335\) 13.9225 + 24.1144i 0.760666 + 1.31751i
\(336\) 0 0
\(337\) −7.79004 + 4.49758i −0.424350 + 0.244999i −0.696937 0.717132i \(-0.745454\pi\)
0.272586 + 0.962131i \(0.412121\pi\)
\(338\) −9.04313 9.33926i −0.491881 0.507989i
\(339\) 0 0
\(340\) −2.66926 + 9.96181i −0.144761 + 0.540255i
\(341\) 12.1682 + 7.02529i 0.658943 + 0.380441i
\(342\) 0 0
\(343\) −6.89966 6.89966i −0.372547 0.372547i
\(344\) 2.59295 2.59295i 0.139802 0.139802i
\(345\) 0 0
\(346\) 13.9330 + 3.73332i 0.749040 + 0.200705i
\(347\) −6.43324 3.71423i −0.345354 0.199390i 0.317283 0.948331i \(-0.397230\pi\)
−0.662637 + 0.748940i \(0.730563\pi\)
\(348\) 0 0
\(349\) −34.8605 9.34084i −1.86604 0.500004i −1.00000 2.82454e-5i \(-0.999991\pi\)
−0.866040 0.499976i \(-0.833342\pi\)
\(350\) 29.6097 1.58271
\(351\) 0 0
\(352\) −6.34010 −0.337928
\(353\) 2.96901 + 0.795543i 0.158024 + 0.0423425i 0.336964 0.941518i \(-0.390600\pi\)
−0.178940 + 0.983860i \(0.557267\pi\)
\(354\) 0 0
\(355\) 39.4254 + 22.7622i 2.09248 + 1.20809i
\(356\) 0.643808 + 0.172508i 0.0341217 + 0.00914289i
\(357\) 0 0
\(358\) 10.6266 10.6266i 0.561636 0.561636i
\(359\) 9.73682 + 9.73682i 0.513890 + 0.513890i 0.915716 0.401826i \(-0.131624\pi\)
−0.401826 + 0.915716i \(0.631624\pi\)
\(360\) 0 0
\(361\) 10.0615 + 5.80903i 0.529554 + 0.305738i
\(362\) −1.87647 + 7.00308i −0.0986250 + 0.368074i
\(363\) 0 0
\(364\) −11.9942 0.0966037i −0.628665 0.00506341i
\(365\) 9.86442 5.69522i 0.516327 0.298102i
\(366\) 0 0
\(367\) 7.93848 + 13.7499i 0.414385 + 0.717736i 0.995364 0.0961826i \(-0.0306633\pi\)
−0.580978 + 0.813919i \(0.697330\pi\)
\(368\) −0.0915043 0.158490i −0.00476999 0.00826187i
\(369\) 0 0
\(370\) 7.32466 27.3360i 0.380791 1.42113i
\(371\) 8.07618 + 8.07618i 0.419294 + 0.419294i
\(372\) 0 0
\(373\) 0.362643 0.628115i 0.0187769 0.0325226i −0.856484 0.516173i \(-0.827356\pi\)
0.875261 + 0.483651i \(0.160689\pi\)
\(374\) −17.5377 −0.906854
\(375\) 0 0
\(376\) −4.61795 2.66617i −0.238153 0.137497i
\(377\) 3.31058 0.858551i 0.170504 0.0442176i
\(378\) 0 0
\(379\) −2.92733 + 0.784375i −0.150367 + 0.0402906i −0.333217 0.942850i \(-0.608134\pi\)
0.182850 + 0.983141i \(0.441468\pi\)
\(380\) 8.77271 5.06492i 0.450030 0.259825i
\(381\) 0 0
\(382\) 0.824290 3.07629i 0.0421744 0.157397i
\(383\) 0.508512 + 1.89779i 0.0259837 + 0.0969727i 0.977700 0.210006i \(-0.0673485\pi\)
−0.951716 + 0.306979i \(0.900682\pi\)
\(384\) 0 0
\(385\) 20.3527 + 75.9574i 1.03727 + 3.87115i
\(386\) −12.2827 + 7.09144i −0.625175 + 0.360945i
\(387\) 0 0
\(388\) 1.51543 + 5.65566i 0.0769343 + 0.287123i
\(389\) 11.5891 20.0729i 0.587591 1.01774i −0.406956 0.913448i \(-0.633410\pi\)
0.994547 0.104289i \(-0.0332568\pi\)
\(390\) 0 0
\(391\) −0.253115 0.438409i −0.0128006 0.0221713i
\(392\) −2.87572 + 2.87572i −0.145246 + 0.145246i
\(393\) 0 0
\(394\) 0.350698i 0.0176679i
\(395\) 33.2881 33.2881i 1.67491 1.67491i
\(396\) 0 0
\(397\) −3.81012 1.02092i −0.191224 0.0512384i 0.161936 0.986801i \(-0.448226\pi\)
−0.353160 + 0.935563i \(0.614893\pi\)
\(398\) 19.1007 5.11801i 0.957430 0.256543i
\(399\) 0 0
\(400\) 8.90065i 0.445033i
\(401\) 15.7326 + 15.7326i 0.785651 + 0.785651i 0.980778 0.195127i \(-0.0625120\pi\)
−0.195127 + 0.980778i \(0.562512\pi\)
\(402\) 0 0
\(403\) −4.05082 + 6.88751i −0.201786 + 0.343091i
\(404\) 9.35186i 0.465272i
\(405\) 0 0
\(406\) 1.57779 2.73282i 0.0783045 0.135627i
\(407\) 48.1249 2.38546
\(408\) 0 0
\(409\) 27.3204 7.32049i 1.35091 0.361975i 0.490439 0.871476i \(-0.336837\pi\)
0.860470 + 0.509501i \(0.170170\pi\)
\(410\) 8.49901 2.27730i 0.419736 0.112468i
\(411\) 0 0
\(412\) −0.295848 −0.0145754
\(413\) 7.79655 13.5040i 0.383643 0.664490i
\(414\) 0 0
\(415\) 25.1918i 1.23662i
\(416\) 0.0290390 3.60543i 0.00142375 0.176771i
\(417\) 0 0
\(418\) 12.1805 + 12.1805i 0.595770 + 0.595770i
\(419\) 11.2240i 0.548326i −0.961683 0.274163i \(-0.911599\pi\)
0.961683 0.274163i \(-0.0884008\pi\)
\(420\) 0 0
\(421\) 0.958636 0.256866i 0.0467211 0.0125189i −0.235383 0.971903i \(-0.575634\pi\)
0.282104 + 0.959384i \(0.408968\pi\)
\(422\) 8.96138 + 2.40120i 0.436233 + 0.116888i
\(423\) 0 0
\(424\) −2.42769 + 2.42769i −0.117899 + 0.117899i
\(425\) 24.6206i 1.19428i
\(426\) 0 0
\(427\) 19.4768 19.4768i 0.942548 0.942548i
\(428\) −9.35458 16.2026i −0.452171 0.783182i
\(429\) 0 0
\(430\) 6.83591 11.8401i 0.329657 0.570982i
\(431\) −1.41740 5.28983i −0.0682740 0.254802i 0.923350 0.383959i \(-0.125440\pi\)
−0.991624 + 0.129157i \(0.958773\pi\)
\(432\) 0 0
\(433\) −14.9131 + 8.61010i −0.716680 + 0.413775i −0.813529 0.581524i \(-0.802457\pi\)
0.0968497 + 0.995299i \(0.469123\pi\)
\(434\) 1.90813 + 7.12122i 0.0915930 + 0.341830i
\(435\) 0 0
\(436\) −2.91318 10.8721i −0.139516 0.520681i
\(437\) −0.128693 + 0.480287i −0.00615620 + 0.0229752i
\(438\) 0 0
\(439\) −4.45830 + 2.57400i −0.212783 + 0.122850i −0.602604 0.798040i \(-0.705870\pi\)
0.389821 + 0.920891i \(0.372537\pi\)
\(440\) −22.8327 + 6.11801i −1.08851 + 0.291664i
\(441\) 0 0
\(442\) 0.0803264 9.97320i 0.00382074 0.474377i
\(443\) −19.9015 11.4901i −0.945547 0.545912i −0.0538522 0.998549i \(-0.517150\pi\)
−0.891695 + 0.452637i \(0.850483\pi\)
\(444\) 0 0
\(445\) 2.48502 0.117801
\(446\) −7.73747 + 13.4017i −0.366380 + 0.634589i
\(447\) 0 0
\(448\) −2.35233 2.35233i −0.111137 0.111137i
\(449\) −4.11231 + 15.3473i −0.194072 + 0.724286i 0.798433 + 0.602083i \(0.205662\pi\)
−0.992505 + 0.122203i \(0.961004\pi\)
\(450\) 0 0
\(451\) 7.48123 + 12.9579i 0.352277 + 0.610162i
\(452\) −3.49449 6.05263i −0.164367 0.284692i
\(453\) 0 0
\(454\) −6.36903 + 3.67716i −0.298913 + 0.172578i
\(455\) −43.2880 + 11.2261i −2.02937 + 0.526288i
\(456\) 0 0
\(457\) 6.71190 25.0491i 0.313969 1.17175i −0.610976 0.791649i \(-0.709223\pi\)
0.924945 0.380100i \(-0.124111\pi\)
\(458\) −21.4339 12.3749i −1.00154 0.578240i
\(459\) 0 0
\(460\) −0.482474 0.482474i −0.0224955 0.0224955i
\(461\) 1.18882 1.18882i 0.0553688 0.0553688i −0.678880 0.734249i \(-0.737534\pi\)
0.734249 + 0.678880i \(0.237534\pi\)
\(462\) 0 0
\(463\) −16.7848 4.49747i −0.780055 0.209015i −0.153246 0.988188i \(-0.548973\pi\)
−0.626809 + 0.779173i \(0.715639\pi\)
\(464\) 0.821481 + 0.474282i 0.0381363 + 0.0220180i
\(465\) 0 0
\(466\) 17.4137 + 4.66597i 0.806672 + 0.216147i
\(467\) −0.582570 −0.0269581 −0.0134791 0.999909i \(-0.504291\pi\)
−0.0134791 + 0.999909i \(0.504291\pi\)
\(468\) 0 0
\(469\) −24.8452 −1.14724
\(470\) −19.2035 5.14556i −0.885791 0.237347i
\(471\) 0 0
\(472\) 4.05930 + 2.34364i 0.186844 + 0.107875i
\(473\) 22.4568 + 6.01729i 1.03257 + 0.276675i
\(474\) 0 0
\(475\) 17.0998 17.0998i 0.784595 0.784595i
\(476\) −6.50691 6.50691i −0.298244 0.298244i
\(477\) 0 0
\(478\) 24.6787 + 14.2483i 1.12878 + 0.651701i
\(479\) 2.02458 7.55584i 0.0925055 0.345235i −0.904124 0.427270i \(-0.859475\pi\)
0.996629 + 0.0820351i \(0.0261420\pi\)
\(480\) 0 0
\(481\) −0.220422 + 27.3672i −0.0100504 + 1.24784i
\(482\) −6.94473 + 4.00954i −0.316324 + 0.182630i
\(483\) 0 0
\(484\) −14.5984 25.2852i −0.663565 1.14933i
\(485\) 10.9151 + 18.9055i 0.495629 + 0.858454i
\(486\) 0 0
\(487\) 1.40502 5.24359i 0.0636674 0.237610i −0.926758 0.375659i \(-0.877416\pi\)
0.990425 + 0.138049i \(0.0440831\pi\)
\(488\) 5.85470 + 5.85470i 0.265030 + 0.265030i
\(489\) 0 0
\(490\) −7.58139 + 13.1314i −0.342492 + 0.593214i
\(491\) −2.40308 −0.108449 −0.0542247 0.998529i \(-0.517269\pi\)
−0.0542247 + 0.998529i \(0.517269\pi\)
\(492\) 0 0
\(493\) 2.27235 + 1.31194i 0.102341 + 0.0590868i
\(494\) −6.98252 + 6.87094i −0.314158 + 0.309138i
\(495\) 0 0
\(496\) −2.14063 + 0.573581i −0.0961172 + 0.0257545i
\(497\) −35.1780 + 20.3100i −1.57795 + 0.911028i
\(498\) 0 0
\(499\) 1.61344 6.02143i 0.0722273 0.269556i −0.920363 0.391065i \(-0.872107\pi\)
0.992590 + 0.121509i \(0.0387734\pi\)
\(500\) 3.76401 + 14.0475i 0.168332 + 0.628222i
\(501\) 0 0
\(502\) 1.57319 + 5.87122i 0.0702148 + 0.262045i
\(503\) −11.8442 + 6.83823i −0.528105 + 0.304901i −0.740244 0.672338i \(-0.765290\pi\)
0.212140 + 0.977239i \(0.431957\pi\)
\(504\) 0 0
\(505\) 9.02426 + 33.6790i 0.401574 + 1.49870i
\(506\) 0.580146 1.00484i 0.0257907 0.0446707i
\(507\) 0 0
\(508\) −0.804578 1.39357i −0.0356974 0.0618297i
\(509\) −5.61611 + 5.61611i −0.248930 + 0.248930i −0.820531 0.571602i \(-0.806322\pi\)
0.571602 + 0.820531i \(0.306322\pi\)
\(510\) 0 0
\(511\) 10.1633i 0.449599i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) −0.617015 0.165329i −0.0272154 0.00729234i
\(515\) −1.06544 + 0.285484i −0.0469490 + 0.0125799i
\(516\) 0 0
\(517\) 33.8076i 1.48686i
\(518\) 17.8555 + 17.8555i 0.784524 + 0.784524i
\(519\) 0 0
\(520\) −3.37456 13.0123i −0.147984 0.570629i
\(521\) 40.0151i 1.75309i −0.481316 0.876547i \(-0.659841\pi\)
0.481316 0.876547i \(-0.340159\pi\)
\(522\) 0 0
\(523\) 5.07493 8.79004i 0.221911 0.384362i −0.733477 0.679714i \(-0.762104\pi\)
0.955388 + 0.295353i \(0.0954371\pi\)
\(524\) −9.42885 −0.411901
\(525\) 0 0
\(526\) −5.44277 + 1.45838i −0.237316 + 0.0635886i
\(527\) −5.92133 + 1.58662i −0.257937 + 0.0691141i
\(528\) 0 0
\(529\) −22.9665 −0.998544
\(530\) −6.40023 + 11.0855i −0.278008 + 0.481525i
\(531\) 0 0
\(532\) 9.03853i 0.391870i
\(533\) −7.40304 + 4.19501i −0.320661 + 0.181706i
\(534\) 0 0
\(535\) −49.3238 49.3238i −2.13245 2.13245i
\(536\) 7.46843i 0.322587i
\(537\) 0 0
\(538\) 19.7143 5.28243i 0.849944 0.227742i
\(539\) −24.9058 6.67350i −1.07277 0.287448i
\(540\) 0 0
\(541\) 24.3541 24.3541i 1.04706 1.04706i 0.0482280 0.998836i \(-0.484643\pi\)
0.998836 0.0482280i \(-0.0153574\pi\)
\(542\) 21.4190i 0.920026i
\(543\) 0 0
\(544\) 1.95597 1.95597i 0.0838615 0.0838615i
\(545\) −20.9826 36.3429i −0.898794 1.55676i
\(546\) 0 0
\(547\) −3.38921 + 5.87029i −0.144912 + 0.250996i −0.929340 0.369224i \(-0.879623\pi\)
0.784428 + 0.620220i \(0.212957\pi\)
\(548\) −4.20024 15.6755i −0.179425 0.669624i
\(549\) 0 0
\(550\) −48.8707 + 28.2155i −2.08385 + 1.20311i
\(551\) −0.667035 2.48941i −0.0284167 0.106052i
\(552\) 0 0
\(553\) 10.8717 + 40.5736i 0.462310 + 1.72536i
\(554\) 1.24808 4.65790i 0.0530259 0.197895i
\(555\) 0 0
\(556\) −7.70260 + 4.44710i −0.326663 + 0.188599i
\(557\) −41.9906 + 11.2513i −1.77920 + 0.476734i −0.990437 0.137967i \(-0.955943\pi\)
−0.788760 + 0.614701i \(0.789277\pi\)
\(558\) 0 0
\(559\) −3.52472 + 12.7430i −0.149080 + 0.538972i
\(560\) −10.7414 6.20155i −0.453907 0.262063i
\(561\) 0 0
\(562\) −3.76876 −0.158976
\(563\) −0.819395 + 1.41923i −0.0345334 + 0.0598136i −0.882776 0.469795i \(-0.844328\pi\)
0.848242 + 0.529609i \(0.177661\pi\)
\(564\) 0 0
\(565\) −18.4254 18.4254i −0.775161 0.775161i
\(566\) 3.26105 12.1704i 0.137072 0.511561i
\(567\) 0 0
\(568\) −6.10517 10.5745i −0.256167 0.443694i
\(569\) −1.54435 2.67489i −0.0647424 0.112137i 0.831837 0.555020i \(-0.187289\pi\)
−0.896580 + 0.442882i \(0.853956\pi\)
\(570\) 0 0
\(571\) −5.59791 + 3.23195i −0.234265 + 0.135253i −0.612538 0.790441i \(-0.709851\pi\)
0.378273 + 0.925694i \(0.376518\pi\)
\(572\) 19.8884 11.2700i 0.831574 0.471221i
\(573\) 0 0
\(574\) −2.03196 + 7.58339i −0.0848125 + 0.316525i
\(575\) −1.41067 0.814448i −0.0588288 0.0339648i
\(576\) 0 0
\(577\) 32.0507 + 32.0507i 1.33429 + 1.33429i 0.901492 + 0.432795i \(0.142473\pi\)
0.432795 + 0.901492i \(0.357527\pi\)
\(578\) −6.61029 + 6.61029i −0.274952 + 0.274952i
\(579\) 0 0
\(580\) 3.41608 + 0.915337i 0.141845 + 0.0380073i
\(581\) 19.4664 + 11.2389i 0.807601 + 0.466269i
\(582\) 0 0
\(583\) −21.0256 5.63379i −0.870791 0.233328i
\(584\) −3.05508 −0.126420
\(585\) 0 0
\(586\) −29.7226 −1.22783
\(587\) 21.8823 + 5.86335i 0.903181 + 0.242007i 0.680382 0.732858i \(-0.261814\pi\)
0.222799 + 0.974864i \(0.428481\pi\)
\(588\) 0 0
\(589\) 5.21452 + 3.01060i 0.214861 + 0.124050i
\(590\) 16.8803 + 4.52308i 0.694953 + 0.186212i
\(591\) 0 0
\(592\) −5.36733 + 5.36733i −0.220596 + 0.220596i
\(593\) 14.2009 + 14.2009i 0.583160 + 0.583160i 0.935770 0.352610i \(-0.114706\pi\)
−0.352610 + 0.935770i \(0.614706\pi\)
\(594\) 0 0
\(595\) −29.7124 17.1545i −1.21809 0.703265i
\(596\) 6.12277 22.8505i 0.250799 0.935993i
\(597\) 0 0
\(598\) 0.568769 + 0.334515i 0.0232587 + 0.0136793i
\(599\) 8.75479 5.05458i 0.357711 0.206525i −0.310365 0.950617i \(-0.600451\pi\)
0.668076 + 0.744093i \(0.267118\pi\)
\(600\) 0 0
\(601\) 7.72707 + 13.3837i 0.315194 + 0.545931i 0.979479 0.201548i \(-0.0645972\pi\)
−0.664285 + 0.747479i \(0.731264\pi\)
\(602\) 6.09946 + 10.5646i 0.248595 + 0.430580i
\(603\) 0 0
\(604\) 0.0389086 0.145209i 0.00158317 0.00590846i
\(605\) −76.9730 76.9730i −3.12940 3.12940i
\(606\) 0 0
\(607\) 14.1563 24.5194i 0.574586 0.995213i −0.421500 0.906828i \(-0.638496\pi\)
0.996086 0.0883842i \(-0.0281703\pi\)
\(608\) −2.71697 −0.110188
\(609\) 0 0
\(610\) 26.7342 + 15.4350i 1.08244 + 0.624946i
\(611\) 19.2254 + 0.154846i 0.777778 + 0.00626440i
\(612\) 0 0
\(613\) −10.9069 + 2.92249i −0.440524 + 0.118038i −0.472262 0.881458i \(-0.656562\pi\)
0.0317379 + 0.999496i \(0.489896\pi\)
\(614\) 28.1127 16.2309i 1.13454 0.655025i
\(615\) 0 0
\(616\) 5.45890 20.3729i 0.219945 0.820847i
\(617\) 9.90643 + 36.9713i 0.398818 + 1.48841i 0.815179 + 0.579209i \(0.196638\pi\)
−0.416361 + 0.909199i \(0.636695\pi\)
\(618\) 0 0
\(619\) −6.82214 25.4606i −0.274205 1.02335i −0.956372 0.292150i \(-0.905629\pi\)
0.682168 0.731196i \(-0.261037\pi\)
\(620\) −7.15561 + 4.13129i −0.287376 + 0.165917i
\(621\) 0 0
\(622\) 6.11116 + 22.8072i 0.245035 + 0.914484i
\(623\) −1.10865 + 1.92024i −0.0444172 + 0.0769328i
\(624\) 0 0
\(625\) 4.85917 + 8.41632i 0.194367 + 0.336653i
\(626\) −12.3252 + 12.3252i −0.492613 + 0.492613i
\(627\) 0 0
\(628\) 1.77697i 0.0709087i
\(629\) −14.8469 + 14.8469i −0.591984 + 0.591984i
\(630\) 0 0
\(631\) 38.1709 + 10.2279i 1.51956 + 0.407165i 0.919597 0.392863i \(-0.128515\pi\)
0.599963 + 0.800028i \(0.295182\pi\)
\(632\) −12.1964 + 3.26801i −0.485146 + 0.129994i
\(633\) 0 0
\(634\) 0.626268i 0.0248723i
\(635\) −4.24229 4.24229i −0.168350 0.168350i
\(636\) 0 0
\(637\) 3.90910 14.1327i 0.154884 0.559957i
\(638\) 6.01399i 0.238096i
\(639\) 0 0
\(640\) 1.86418 3.22885i 0.0736881 0.127632i
\(641\) 33.6899 1.33067 0.665335 0.746545i \(-0.268289\pi\)
0.665335 + 0.746545i \(0.268289\pi\)
\(642\) 0 0
\(643\) −22.2328 + 5.95725i −0.876775 + 0.234931i −0.669015 0.743249i \(-0.733284\pi\)
−0.207760 + 0.978180i \(0.566617\pi\)
\(644\) 0.588069 0.157572i 0.0231731 0.00620923i
\(645\) 0 0
\(646\) −7.51558 −0.295697
\(647\) −3.32926 + 5.76644i −0.130887 + 0.226702i −0.924019 0.382348i \(-0.875116\pi\)
0.793132 + 0.609050i \(0.208449\pi\)
\(648\) 0 0
\(649\) 29.7178i 1.16652i
\(650\) −15.8215 27.9206i −0.620571 1.09514i
\(651\) 0 0
\(652\) −4.23084 4.23084i −0.165693 0.165693i
\(653\) 21.1724i 0.828539i 0.910154 + 0.414270i \(0.135963\pi\)
−0.910154 + 0.414270i \(0.864037\pi\)
\(654\) 0 0
\(655\) −33.9563 + 9.09855i −1.32678 + 0.355510i
\(656\) −2.27956 0.610806i −0.0890018 0.0238480i
\(657\) 0 0
\(658\) 12.5434 12.5434i 0.488994 0.488994i
\(659\) 39.5999i 1.54259i 0.636477 + 0.771296i \(0.280391\pi\)
−0.636477 + 0.771296i \(0.719609\pi\)
\(660\) 0 0
\(661\) 17.5774 17.5774i 0.683682 0.683682i −0.277146 0.960828i \(-0.589388\pi\)
0.960828 + 0.277146i \(0.0893884\pi\)
\(662\) 15.4586 + 26.7750i 0.600815 + 1.04064i
\(663\) 0 0
\(664\) −3.37840 + 5.85157i −0.131108 + 0.227085i
\(665\) 8.72191 + 32.5506i 0.338221 + 1.26226i
\(666\) 0 0
\(667\) −0.150338 + 0.0867978i −0.00582112 + 0.00336082i
\(668\) 4.60758 + 17.1957i 0.178273 + 0.665322i
\(669\) 0 0
\(670\) −7.20681 26.8962i −0.278423 1.03909i
\(671\) −13.5866 + 50.7060i −0.524506 + 1.95748i
\(672\) 0 0
\(673\) −7.01709 + 4.05132i −0.270489 + 0.156167i −0.629110 0.777316i \(-0.716580\pi\)
0.358621 + 0.933483i \(0.383247\pi\)
\(674\) 8.68866 2.32812i 0.334675 0.0896758i
\(675\) 0 0
\(676\) 6.31781 + 11.3616i 0.242993 + 0.436983i
\(677\) 1.64864 + 0.951842i 0.0633623 + 0.0365822i 0.531346 0.847155i \(-0.321686\pi\)
−0.467984 + 0.883737i \(0.655020\pi\)
\(678\) 0 0
\(679\) −19.4784 −0.747511
\(680\) 5.15661 8.93152i 0.197747 0.342508i
\(681\) 0 0
\(682\) −9.93526 9.93526i −0.380441 0.380441i
\(683\) −1.49884 + 5.59375i −0.0573515 + 0.214039i −0.988655 0.150206i \(-0.952006\pi\)
0.931303 + 0.364245i \(0.118673\pi\)
\(684\) 0 0
\(685\) −30.2528 52.3993i −1.15590 2.00208i
\(686\) 4.87879 + 8.45032i 0.186273 + 0.322635i
\(687\) 0 0
\(688\) −3.17570 + 1.83349i −0.121072 + 0.0699012i
\(689\) 3.30008 11.9308i 0.125723 0.454529i
\(690\) 0 0
\(691\) −12.2505 + 45.7194i −0.466030 + 1.73925i 0.187421 + 0.982280i \(0.439987\pi\)
−0.653451 + 0.756968i \(0.726680\pi\)
\(692\) −12.4919 7.21223i −0.474872 0.274168i
\(693\) 0 0
\(694\) 5.25272 + 5.25272i 0.199390 + 0.199390i
\(695\) −23.4482 + 23.4482i −0.889440 + 0.889440i
\(696\) 0 0
\(697\) −6.30562 1.68959i −0.238842 0.0639976i
\(698\) 31.2551 + 18.0451i 1.18302 + 0.683018i
\(699\) 0 0
\(700\) −28.6008 7.66356i −1.08101 0.289655i
\(701\) 28.7797 1.08700 0.543498 0.839411i \(-0.317100\pi\)
0.543498 + 0.839411i \(0.317100\pi\)
\(702\) 0 0
\(703\) 20.6233 0.777824
\(704\) 6.12407 + 1.64094i 0.230809 + 0.0618452i
\(705\) 0 0
\(706\) −2.66194 1.53687i −0.100183 0.0578409i
\(707\) −30.0507 8.05205i −1.13017 0.302829i
\(708\) 0 0
\(709\) 22.9651 22.9651i 0.862473 0.862473i −0.129152 0.991625i \(-0.541225\pi\)
0.991625 + 0.129152i \(0.0412254\pi\)
\(710\) −32.1907 32.1907i −1.20809 1.20809i
\(711\) 0 0
\(712\) −0.577222 0.333259i −0.0216323 0.0124894i
\(713\) 0.104970 0.391754i 0.00393117 0.0146713i
\(714\) 0 0
\(715\) 60.7491 59.7784i 2.27189 2.23558i
\(716\) −13.0149 + 7.51417i −0.486391 + 0.280818i
\(717\) 0 0
\(718\) −6.88497 11.9251i −0.256945 0.445042i
\(719\) −13.4021 23.2131i −0.499813 0.865701i 0.500187 0.865917i \(-0.333265\pi\)
−1.00000 0.000215949i \(0.999931\pi\)
\(720\) 0 0
\(721\) 0.254728 0.950659i 0.00948658 0.0354044i
\(722\) −8.21520 8.21520i −0.305738 0.305738i
\(723\) 0 0
\(724\) 3.62506 6.27879i 0.134724 0.233349i
\(725\) 8.44284 0.313559
\(726\) 0 0
\(727\) 2.56179 + 1.47905i 0.0950116 + 0.0548550i 0.546753 0.837294i \(-0.315864\pi\)
−0.451741 + 0.892149i \(0.649197\pi\)
\(728\) 11.5605 + 3.19763i 0.428460 + 0.118512i
\(729\) 0 0
\(730\) −11.0023 + 2.94806i −0.407214 + 0.109113i
\(731\) −8.78449 + 5.07173i −0.324906 + 0.187585i
\(732\) 0 0
\(733\) −12.5601 + 46.8751i −0.463920 + 1.73137i 0.196527 + 0.980498i \(0.437034\pi\)
−0.660447 + 0.750873i \(0.729633\pi\)
\(734\) −4.10926 15.3360i −0.151676 0.566061i
\(735\) 0 0
\(736\) 0.0473661 + 0.176773i 0.00174594 + 0.00651593i
\(737\) 41.0068 23.6753i 1.51050 0.872090i
\(738\) 0 0
\(739\) −10.8543 40.5087i −0.399281 1.49014i −0.814365 0.580354i \(-0.802914\pi\)
0.415084 0.909783i \(-0.363752\pi\)
\(740\) −14.1501 + 24.5088i −0.520170 + 0.900960i
\(741\) 0 0
\(742\) −5.71072 9.89126i −0.209647 0.363119i
\(743\) −28.9049 + 28.9049i −1.06042 + 1.06042i −0.0623634 + 0.998054i \(0.519864\pi\)
−0.998054 + 0.0623634i \(0.980136\pi\)
\(744\) 0 0
\(745\) 88.2002i 3.23140i
\(746\) −0.512854 + 0.512854i −0.0187769 + 0.0187769i
\(747\) 0 0
\(748\) 16.9401 + 4.53910i 0.619393 + 0.165966i
\(749\) 60.1188 16.1088i 2.19669 0.588602i
\(750\) 0 0
\(751\) 26.3667i 0.962135i 0.876683 + 0.481068i \(0.159751\pi\)
−0.876683 + 0.481068i \(0.840249\pi\)
\(752\) 3.77054 + 3.77054i 0.137497 + 0.137497i
\(753\) 0 0
\(754\) −3.41999 0.0275454i −0.124549 0.00100314i
\(755\) 0.560489i 0.0203983i
\(756\) 0 0
\(757\) −5.99038 + 10.3756i −0.217724 + 0.377109i −0.954112 0.299451i \(-0.903197\pi\)
0.736388 + 0.676560i \(0.236530\pi\)
\(758\) 3.03059 0.110076
\(759\) 0 0
\(760\) −9.78468 + 2.62180i −0.354928 + 0.0951026i
\(761\) 11.9700 3.20735i 0.433911 0.116266i −0.0352503 0.999379i \(-0.511223\pi\)
0.469162 + 0.883112i \(0.344556\pi\)
\(762\) 0 0
\(763\) 37.4441 1.35557
\(764\) −1.59241 + 2.75813i −0.0576112 + 0.0997856i
\(765\) 0 0
\(766\) 1.96474i 0.0709889i
\(767\) −16.8996 0.136114i −0.610211 0.00491478i
\(768\) 0 0
\(769\) 3.34750 + 3.34750i 0.120714 + 0.120714i 0.764883 0.644169i \(-0.222797\pi\)
−0.644169 + 0.764883i \(0.722797\pi\)
\(770\) 78.6369i 2.83388i
\(771\) 0 0
\(772\) 13.6996 3.67080i 0.493060 0.132115i
\(773\) 26.0869 + 6.98997i 0.938281 + 0.251412i 0.695382 0.718640i \(-0.255235\pi\)
0.242899 + 0.970052i \(0.421902\pi\)
\(774\) 0 0
\(775\) −13.9478 + 13.9478i −0.501019 + 0.501019i
\(776\) 5.85517i 0.210189i
\(777\) 0 0
\(778\) −16.3895 + 16.3895i −0.587591 + 0.587591i
\(779\) 3.20599 + 5.55294i 0.114867 + 0.198955i
\(780\) 0 0
\(781\) 38.7074 67.0431i 1.38506 2.39899i
\(782\) 0.131022 + 0.488982i 0.00468534 + 0.0174859i
\(783\) 0 0
\(784\) 3.52202 2.03344i 0.125786 0.0726228i
\(785\) 1.71472 + 6.39942i 0.0612010 + 0.228405i
\(786\) 0 0
\(787\) 9.26059 + 34.5610i 0.330104 + 1.23197i 0.909080 + 0.416622i \(0.136786\pi\)
−0.578976 + 0.815345i \(0.696547\pi\)
\(788\) 0.0907674 0.338748i 0.00323345 0.0120674i
\(789\) 0 0
\(790\) −40.7695 + 23.5383i −1.45051 + 0.837454i
\(791\) 22.4579 6.01759i 0.798513 0.213961i
\(792\) 0 0
\(793\) −28.7728 7.95858i −1.02175 0.282617i
\(794\) 3.41606 + 1.97226i 0.121231 + 0.0699930i
\(795\) 0 0
\(796\) −19.7745 −0.700887
\(797\) −2.86188 + 4.95693i −0.101373 + 0.175583i −0.912251 0.409633i \(-0.865657\pi\)
0.810878 + 0.585216i \(0.198990\pi\)
\(798\) 0 0
\(799\) 10.4299 + 10.4299i 0.368984 + 0.368984i
\(800\) 2.30366 8.59737i 0.0814466 0.303963i
\(801\) 0 0
\(802\) −11.1247 19.2685i −0.392825 0.680393i
\(803\) −9.68477 16.7745i −0.341768 0.591960i
\(804\) 0 0
\(805\) 1.96577 1.13494i 0.0692842 0.0400013i
\(806\) 5.69541 5.60440i 0.200612 0.197406i
\(807\) 0 0
\(808\) 2.42044 9.03320i 0.0851507 0.317787i
\(809\) −31.6723 18.2860i −1.11354 0.642903i −0.173796 0.984782i \(-0.555603\pi\)
−0.939744 + 0.341879i \(0.888937\pi\)
\(810\) 0 0
\(811\) 13.4164 + 13.4164i 0.471115 + 0.471115i 0.902275 0.431160i \(-0.141896\pi\)
−0.431160 + 0.902275i \(0.641896\pi\)
\(812\) −2.23133 + 2.23133i −0.0783045 + 0.0783045i
\(813\) 0 0
\(814\) −46.4850 12.4556i −1.62930 0.436570i
\(815\) −19.3192 11.1540i −0.676724 0.390707i
\(816\) 0 0
\(817\) 9.62361 + 2.57864i 0.336687 + 0.0902151i
\(818\) −28.2842 −0.988934
\(819\) 0 0
\(820\) −8.79882 −0.307268
\(821\) −2.96745 0.795127i −0.103565 0.0277501i 0.206664 0.978412i \(-0.433739\pi\)
−0.310229 + 0.950662i \(0.600406\pi\)
\(822\) 0 0
\(823\) 39.1048 + 22.5772i 1.36311 + 0.786990i 0.990036 0.140812i \(-0.0449714\pi\)
0.373071 + 0.927803i \(0.378305\pi\)
\(824\) 0.285767 + 0.0765711i 0.00995517 + 0.00266748i
\(825\) 0 0
\(826\) −11.0260 + 11.0260i −0.383643 + 0.383643i
\(827\) 9.71124 + 9.71124i 0.337693 + 0.337693i 0.855498 0.517806i \(-0.173251\pi\)
−0.517806 + 0.855498i \(0.673251\pi\)
\(828\) 0 0
\(829\) −11.7657 6.79293i −0.408639 0.235928i 0.281566 0.959542i \(-0.409146\pi\)
−0.690205 + 0.723614i \(0.742480\pi\)
\(830\) −6.52012 + 24.3334i −0.226317 + 0.844625i
\(831\) 0 0
\(832\) −0.961205 + 3.47507i −0.0333238 + 0.120476i
\(833\) 9.74247 5.62482i 0.337557 0.194888i
\(834\) 0 0
\(835\) 33.1867 + 57.4810i 1.14847 + 1.98921i
\(836\) −8.61294 14.9181i −0.297885 0.515952i
\(837\) 0 0
\(838\) −2.90497 + 10.8415i −0.100351 + 0.374514i
\(839\) 31.4296 + 31.4296i 1.08507 + 1.08507i 0.996028 + 0.0890420i \(0.0283805\pi\)
0.0890420 + 0.996028i \(0.471619\pi\)
\(840\) 0 0
\(841\) −14.0501 + 24.3355i −0.484487 + 0.839155i
\(842\) −0.992453 −0.0342022
\(843\) 0 0
\(844\) −8.03456 4.63875i −0.276561 0.159672i
\(845\) 33.7160 + 34.8201i 1.15987 + 1.19785i
\(846\) 0 0
\(847\) 93.8193 25.1388i 3.22367 0.863780i
\(848\) 2.97330 1.71664i 0.102104 0.0589495i
\(849\) 0 0
\(850\) 6.37228 23.7817i 0.218568 0.815705i
\(851\) −0.359535 1.34180i −0.0123247 0.0459964i
\(852\) 0 0
\(853\) 4.11168 + 15.3450i 0.140781 + 0.525403i 0.999907 + 0.0136383i \(0.00434133\pi\)
−0.859126 + 0.511765i \(0.828992\pi\)
\(854\) −23.8541 + 13.7722i −0.816270 + 0.471274i
\(855\) 0 0
\(856\) 4.84229 + 18.0717i 0.165506 + 0.617676i
\(857\) −11.7570 + 20.3638i −0.401613 + 0.695614i −0.993921 0.110098i \(-0.964884\pi\)
0.592308 + 0.805712i \(0.298217\pi\)
\(858\) 0 0
\(859\) −4.23525 7.33567i −0.144505 0.250290i 0.784683 0.619897i \(-0.212826\pi\)
−0.929188 + 0.369607i \(0.879492\pi\)
\(860\) −9.66743 + 9.66743i −0.329657 + 0.329657i
\(861\) 0 0
\(862\) 5.47643i 0.186528i
\(863\) 4.48332 4.48332i 0.152614 0.152614i −0.626670 0.779284i \(-0.715583\pi\)
0.779284 + 0.626670i \(0.215583\pi\)
\(864\) 0 0
\(865\) −51.9470 13.9192i −1.76625 0.473266i
\(866\) 16.6334 4.45692i 0.565227 0.151452i
\(867\) 0 0
\(868\) 7.37243i 0.250237i
\(869\) −56.6067 56.6067i −1.92025 1.92025i
\(870\) 0 0
\(871\) 13.2756 + 23.4278i 0.449828 + 0.793822i
\(872\) 11.2557i 0.381165i
\(873\) 0 0
\(874\) 0.248615 0.430614i 0.00840952 0.0145657i
\(875\) −48.3802 −1.63555
\(876\) 0 0
\(877\) 12.3035 3.29672i 0.415461 0.111322i −0.0450327 0.998986i \(-0.514339\pi\)
0.460493 + 0.887663i \(0.347673\pi\)
\(878\) 4.97259 1.33240i 0.167817 0.0449664i
\(879\) 0 0
\(880\) 23.6382 0.796842
\(881\) −28.5401 + 49.4329i −0.961541 + 1.66544i −0.242907 + 0.970050i \(0.578101\pi\)
−0.718634 + 0.695389i \(0.755232\pi\)
\(882\) 0 0
\(883\) 35.3145i 1.18843i 0.804307 + 0.594214i \(0.202537\pi\)
−0.804307 + 0.594214i \(0.797463\pi\)
\(884\) −2.65884 + 9.61259i −0.0894266 + 0.323306i
\(885\) 0 0
\(886\) 16.2495 + 16.2495i 0.545912 + 0.545912i
\(887\) 38.4986i 1.29266i −0.763059 0.646328i \(-0.776304\pi\)
0.763059 0.646328i \(-0.223696\pi\)
\(888\) 0 0
\(889\) 5.17076 1.38550i 0.173422 0.0464682i
\(890\) −2.40035 0.643171i −0.0804598 0.0215591i
\(891\) 0 0
\(892\) 10.9424 10.9424i 0.366380 0.366380i
\(893\) 14.4879i 0.484818i
\(894\) 0 0
\(895\) −39.6199 + 39.6199i −1.32435 + 1.32435i
\(896\) 1.66335 + 2.88100i 0.0555685 + 0.0962474i
\(897\) 0 0
\(898\) 7.94437 13.7601i 0.265107 0.459179i
\(899\) 0.544079 + 2.03053i 0.0181460 + 0.0677219i
\(900\) 0 0
\(901\) 8.22462 4.74849i 0.274002 0.158195i
\(902\) −3.87257 14.4526i −0.128942 0.481220i
\(903\) 0 0
\(904\) 1.80888 + 6.75083i 0.0601625 + 0.224529i
\(905\) 6.99615 26.1100i 0.232560 0.867925i
\(906\) 0 0
\(907\) 32.8532 18.9678i 1.09087 0.629815i 0.157064 0.987588i \(-0.449797\pi\)
0.933809 + 0.357773i \(0.116464\pi\)
\(908\) 7.10373 1.90344i 0.235746 0.0631678i
\(909\) 0 0
\(910\) 44.7186 + 0.360173i 1.48241 + 0.0119396i
\(911\) 36.1297 + 20.8595i 1.19703 + 0.691107i 0.959892 0.280369i \(-0.0904568\pi\)
0.237140 + 0.971476i \(0.423790\pi\)
\(912\) 0 0
\(913\) −42.8388 −1.41776
\(914\) −12.9664 + 22.4584i −0.428890 + 0.742859i
\(915\) 0 0
\(916\) 17.5007 + 17.5007i 0.578240 + 0.578240i
\(917\) 8.11834 30.2981i 0.268091 1.00053i
\(918\) 0 0
\(919\) −16.7214 28.9624i −0.551590 0.955381i −0.998160 0.0606329i \(-0.980688\pi\)
0.446570 0.894748i \(-0.352645\pi\)
\(920\) 0.341161 + 0.590908i 0.0112477 + 0.0194817i
\(921\) 0 0
\(922\) −1.45600 + 0.840621i −0.0479508 + 0.0276844i
\(923\) 37.9482 + 22.3188i 1.24908 + 0.734634i
\(924\) 0 0
\(925\) −17.4860 + 65.2588i −0.574937 + 2.14570i
\(926\) 15.0488 + 8.68844i 0.494535 + 0.285520i
\(927\) 0 0
\(928\) −0.670737 0.670737i −0.0220180 0.0220180i
\(929\) 7.83681 7.83681i 0.257117 0.257117i −0.566763 0.823881i \(-0.691805\pi\)
0.823881 + 0.566763i \(0.191805\pi\)
\(930\) 0 0
\(931\) −10.6731 2.85985i −0.349797 0.0937277i
\(932\) −15.6127 9.01397i −0.511409 0.295262i
\(933\) 0 0
\(934\) 0.562720 + 0.150780i 0.0184128 + 0.00493368i
\(935\) 65.3869 2.13838
\(936\) 0 0
\(937\) −10.8175 −0.353392 −0.176696 0.984265i \(-0.556541\pi\)
−0.176696 + 0.984265i \(0.556541\pi\)
\(938\) 23.9986 + 6.43040i 0.783581 + 0.209960i
\(939\) 0 0
\(940\) 17.2174 + 9.94045i 0.561569 + 0.324222i
\(941\) −12.7176 3.40767i −0.414582 0.111087i 0.0454978 0.998964i \(-0.485513\pi\)
−0.460080 + 0.887877i \(0.652179\pi\)
\(942\) 0 0
\(943\) 0.305396 0.305396i 0.00994507 0.00994507i
\(944\) −3.31440 3.31440i −0.107875 0.107875i
\(945\) 0 0
\(946\) −20.1342 11.6245i −0.654621 0.377945i
\(947\) −13.1139 + 48.9419i −0.426146 + 1.59040i 0.335263 + 0.942125i \(0.391175\pi\)
−0.761409 + 0.648272i \(0.775492\pi\)
\(948\) 0 0
\(949\) 9.58355 5.43062i 0.311095 0.176285i
\(950\) −20.9429 + 12.0914i −0.679479 + 0.392297i
\(951\) 0 0
\(952\) 4.60108 + 7.96930i 0.149122 + 0.258287i
\(953\) −12.0254 20.8285i −0.389540 0.674702i 0.602848 0.797856i \(-0.294033\pi\)
−0.992388 + 0.123154i \(0.960699\pi\)
\(954\) 0 0
\(955\) −3.07325 + 11.4695i −0.0994480 + 0.371145i
\(956\) −20.1501 20.1501i −0.651701 0.651701i
\(957\) 0 0
\(958\) −3.91119 + 6.77438i −0.126365 + 0.218870i
\(959\) 53.9871 1.74334
\(960\) 0 0
\(961\) 22.5935 + 13.0443i 0.728822 + 0.420785i
\(962\) 7.29607 26.3777i 0.235235 0.850450i
\(963\) 0 0
\(964\) 7.74584 2.07549i 0.249477 0.0668471i
\(965\) 45.7944 26.4394i 1.47417 0.851115i
\(966\) 0 0
\(967\) −8.54089 + 31.8750i −0.274656 + 1.02503i 0.681415 + 0.731897i \(0.261365\pi\)
−0.956071 + 0.293134i \(0.905302\pi\)
\(968\) 7.55670 + 28.2020i 0.242882 + 0.906446i
\(969\) 0 0
\(970\) −5.65007 21.0863i −0.181413 0.677042i
\(971\) −1.82907 + 1.05601i −0.0586976 + 0.0338891i −0.529062 0.848583i \(-0.677456\pi\)
0.470364 + 0.882472i \(0.344123\pi\)
\(972\) 0 0
\(973\) −7.65800 28.5800i −0.245504 0.916234i
\(974\) −2.71428 + 4.70128i −0.0869712 + 0.150639i
\(975\) 0 0
\(976\) −4.13990 7.17052i −0.132515 0.229523i
\(977\) 28.9129 28.9129i 0.925007 0.925007i −0.0723711 0.997378i \(-0.523057\pi\)
0.997378 + 0.0723711i \(0.0230566\pi\)
\(978\) 0 0
\(979\) 4.22579i 0.135057i
\(980\) 10.7217 10.7217i 0.342492 0.342492i
\(981\) 0 0
\(982\) 2.32119 + 0.621962i 0.0740723 + 0.0198476i
\(983\) −19.9648 + 5.34955i −0.636777 + 0.170624i −0.562743 0.826632i \(-0.690254\pi\)
−0.0740342 + 0.997256i \(0.523587\pi\)
\(984\) 0 0
\(985\) 1.30753i 0.0416613i
\(986\) −1.85536 1.85536i −0.0590868 0.0590868i
\(987\) 0 0
\(988\) 8.52292 4.82961i 0.271150 0.153650i
\(989\) 0.671089i 0.0213394i
\(990\) 0 0
\(991\) −13.1411 + 22.7610i −0.417439 + 0.723026i −0.995681 0.0928392i \(-0.970406\pi\)
0.578242 + 0.815866i \(0.303739\pi\)
\(992\) 2.21615 0.0703627
\(993\) 0 0
\(994\) 39.2359 10.5132i 1.24449 0.333460i
\(995\) −71.2141 + 19.0818i −2.25764 + 0.604933i
\(996\) 0 0
\(997\) −57.4068 −1.81809 −0.909045 0.416697i \(-0.863188\pi\)
−0.909045 + 0.416697i \(0.863188\pi\)
\(998\) −3.11692 + 5.39866i −0.0986644 + 0.170892i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bc.a.683.7 56
3.2 odd 2 234.2.z.a.137.9 yes 56
9.4 even 3 234.2.y.a.59.10 56
9.5 odd 6 702.2.bb.a.449.7 56
13.2 odd 12 702.2.bb.a.197.7 56
39.2 even 12 234.2.y.a.119.10 yes 56
117.41 even 12 inner 702.2.bc.a.665.7 56
117.67 odd 12 234.2.z.a.41.9 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.y.a.59.10 56 9.4 even 3
234.2.y.a.119.10 yes 56 39.2 even 12
234.2.z.a.41.9 yes 56 117.67 odd 12
234.2.z.a.137.9 yes 56 3.2 odd 2
702.2.bb.a.197.7 56 13.2 odd 12
702.2.bb.a.449.7 56 9.5 odd 6
702.2.bc.a.665.7 56 117.41 even 12 inner
702.2.bc.a.683.7 56 1.1 even 1 trivial