Properties

Label 702.2.bc.a.683.2
Level $702$
Weight $2$
Character 702.683
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(305,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.305"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([2, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bc (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 683.2
Character \(\chi\) \(=\) 702.683
Dual form 702.2.bc.a.665.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.965926 - 0.258819i) q^{2} +(0.866025 + 0.500000i) q^{4} +(-1.48652 - 0.398313i) q^{5} +(1.01155 - 1.01155i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(1.33278 + 0.769482i) q^{10} +(-0.128439 + 0.479340i) q^{11} +(3.02688 + 1.95909i) q^{13} +(-1.23890 + 0.715277i) q^{14} +(0.500000 + 0.866025i) q^{16} +(-1.10510 - 1.91408i) q^{17} +(0.805124 - 3.00476i) q^{19} +(-1.08821 - 1.08821i) q^{20} +(0.248125 - 0.429765i) q^{22} +1.77557 q^{23} +(-2.27902 - 1.31580i) q^{25} +(-2.41669 - 2.67575i) q^{26} +(1.38181 - 0.370254i) q^{28} +(4.07958 - 2.35535i) q^{29} +(-0.0814346 + 0.303918i) q^{31} +(-0.258819 - 0.965926i) q^{32} +(0.572040 + 2.13488i) q^{34} +(-1.90661 + 1.10078i) q^{35} +(-2.95350 - 11.0226i) q^{37} +(-1.55538 + 2.69400i) q^{38} +(0.769482 + 1.33278i) q^{40} +(5.69511 - 5.69511i) q^{41} -1.62219i q^{43} +(-0.350901 + 0.350901i) q^{44} +(-1.71507 - 0.459552i) q^{46} +(11.8388 - 3.17219i) q^{47} +4.95352i q^{49} +(1.86082 + 1.86082i) q^{50} +(1.64181 + 3.21006i) q^{52} +2.02719i q^{53} +(0.381855 - 0.661392i) q^{55} -1.43055 q^{56} +(-4.55018 + 1.21922i) q^{58} +(2.70586 - 0.725033i) q^{59} +6.79318 q^{61} +(0.157320 - 0.272485i) q^{62} +1.00000i q^{64} +(-3.71920 - 4.11787i) q^{65} +(-5.60189 - 5.60189i) q^{67} -2.21019i q^{68} +(2.12655 - 0.569808i) q^{70} +(-10.8566 - 2.90902i) q^{71} +(4.45270 - 4.45270i) q^{73} +11.4115i q^{74} +(2.19964 - 2.19964i) q^{76} +(0.354956 + 0.614801i) q^{77} +(4.77307 - 8.26720i) q^{79} +(-0.398313 - 1.48652i) q^{80} +(-6.97505 + 4.02705i) q^{82} +(-2.17883 - 8.13149i) q^{83} +(0.880349 + 3.28551i) q^{85} +(-0.419853 + 1.56691i) q^{86} +(0.429765 - 0.248125i) q^{88} +(-3.41203 + 0.914251i) q^{89} +(5.04357 - 1.08013i) q^{91} +(1.53769 + 0.887787i) q^{92} -12.2564 q^{94} +(-2.39367 + 4.14596i) q^{95} +(5.21001 + 5.21001i) q^{97} +(1.28206 - 4.78473i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 8 q^{7} + 24 q^{11} + 28 q^{16} - 8 q^{19} - 4 q^{28} - 4 q^{31} + 24 q^{35} - 4 q^{37} - 36 q^{38} + 48 q^{41} + 36 q^{47} + 24 q^{50} + 8 q^{52} + 36 q^{65} + 28 q^{67} + 24 q^{71} + 28 q^{73}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.965926 0.258819i −0.683013 0.183013i
\(3\) 0 0
\(4\) 0.866025 + 0.500000i 0.433013 + 0.250000i
\(5\) −1.48652 0.398313i −0.664794 0.178131i −0.0893855 0.995997i \(-0.528490\pi\)
−0.575409 + 0.817866i \(0.695157\pi\)
\(6\) 0 0
\(7\) 1.01155 1.01155i 0.382331 0.382331i −0.489610 0.871941i \(-0.662861\pi\)
0.871941 + 0.489610i \(0.162861\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) 1.33278 + 0.769482i 0.421463 + 0.243332i
\(11\) −0.128439 + 0.479340i −0.0387258 + 0.144527i −0.982582 0.185830i \(-0.940502\pi\)
0.943856 + 0.330357i \(0.107169\pi\)
\(12\) 0 0
\(13\) 3.02688 + 1.95909i 0.839504 + 0.543353i
\(14\) −1.23890 + 0.715277i −0.331109 + 0.191166i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −1.10510 1.91408i −0.268025 0.464233i 0.700327 0.713823i \(-0.253038\pi\)
−0.968352 + 0.249589i \(0.919704\pi\)
\(18\) 0 0
\(19\) 0.805124 3.00476i 0.184708 0.689340i −0.809985 0.586451i \(-0.800525\pi\)
0.994693 0.102889i \(-0.0328086\pi\)
\(20\) −1.08821 1.08821i −0.243332 0.243332i
\(21\) 0 0
\(22\) 0.248125 0.429765i 0.0529004 0.0916262i
\(23\) 1.77557 0.370233 0.185116 0.982717i \(-0.440734\pi\)
0.185116 + 0.982717i \(0.440734\pi\)
\(24\) 0 0
\(25\) −2.27902 1.31580i −0.455805 0.263159i
\(26\) −2.41669 2.67575i −0.473952 0.524757i
\(27\) 0 0
\(28\) 1.38181 0.370254i 0.261137 0.0699715i
\(29\) 4.07958 2.35535i 0.757559 0.437377i −0.0708596 0.997486i \(-0.522574\pi\)
0.828419 + 0.560109i \(0.189241\pi\)
\(30\) 0 0
\(31\) −0.0814346 + 0.303918i −0.0146261 + 0.0545853i −0.972853 0.231423i \(-0.925662\pi\)
0.958227 + 0.286008i \(0.0923285\pi\)
\(32\) −0.258819 0.965926i −0.0457532 0.170753i
\(33\) 0 0
\(34\) 0.572040 + 2.13488i 0.0981040 + 0.366129i
\(35\) −1.90661 + 1.10078i −0.322277 + 0.186067i
\(36\) 0 0
\(37\) −2.95350 11.0226i −0.485553 1.81211i −0.577559 0.816349i \(-0.695995\pi\)
0.0920063 0.995758i \(-0.470672\pi\)
\(38\) −1.55538 + 2.69400i −0.252316 + 0.437024i
\(39\) 0 0
\(40\) 0.769482 + 1.33278i 0.121666 + 0.210731i
\(41\) 5.69511 5.69511i 0.889426 0.889426i −0.105041 0.994468i \(-0.533498\pi\)
0.994468 + 0.105041i \(0.0334975\pi\)
\(42\) 0 0
\(43\) 1.62219i 0.247381i −0.992321 0.123691i \(-0.960527\pi\)
0.992321 0.123691i \(-0.0394731\pi\)
\(44\) −0.350901 + 0.350901i −0.0529004 + 0.0529004i
\(45\) 0 0
\(46\) −1.71507 0.459552i −0.252874 0.0677573i
\(47\) 11.8388 3.17219i 1.72686 0.462711i 0.747406 0.664368i \(-0.231299\pi\)
0.979456 + 0.201656i \(0.0646324\pi\)
\(48\) 0 0
\(49\) 4.95352i 0.707645i
\(50\) 1.86082 + 1.86082i 0.263159 + 0.263159i
\(51\) 0 0
\(52\) 1.64181 + 3.21006i 0.227678 + 0.445155i
\(53\) 2.02719i 0.278456i 0.990260 + 0.139228i \(0.0444621\pi\)
−0.990260 + 0.139228i \(0.955538\pi\)
\(54\) 0 0
\(55\) 0.381855 0.661392i 0.0514893 0.0891821i
\(56\) −1.43055 −0.191166
\(57\) 0 0
\(58\) −4.55018 + 1.21922i −0.597468 + 0.160091i
\(59\) 2.70586 0.725033i 0.352273 0.0943913i −0.0783431 0.996926i \(-0.524963\pi\)
0.430616 + 0.902535i \(0.358296\pi\)
\(60\) 0 0
\(61\) 6.79318 0.869777 0.434888 0.900484i \(-0.356788\pi\)
0.434888 + 0.900484i \(0.356788\pi\)
\(62\) 0.157320 0.272485i 0.0199796 0.0346057i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −3.71920 4.11787i −0.461310 0.510760i
\(66\) 0 0
\(67\) −5.60189 5.60189i −0.684379 0.684379i 0.276604 0.960984i \(-0.410791\pi\)
−0.960984 + 0.276604i \(0.910791\pi\)
\(68\) 2.21019i 0.268025i
\(69\) 0 0
\(70\) 2.12655 0.569808i 0.254172 0.0681051i
\(71\) −10.8566 2.90902i −1.28844 0.345237i −0.451374 0.892335i \(-0.649066\pi\)
−0.837069 + 0.547097i \(0.815733\pi\)
\(72\) 0 0
\(73\) 4.45270 4.45270i 0.521149 0.521149i −0.396769 0.917918i \(-0.629869\pi\)
0.917918 + 0.396769i \(0.129869\pi\)
\(74\) 11.4115i 1.32655i
\(75\) 0 0
\(76\) 2.19964 2.19964i 0.252316 0.252316i
\(77\) 0.354956 + 0.614801i 0.0404510 + 0.0700631i
\(78\) 0 0
\(79\) 4.77307 8.26720i 0.537012 0.930133i −0.462051 0.886853i \(-0.652886\pi\)
0.999063 0.0432790i \(-0.0137805\pi\)
\(80\) −0.398313 1.48652i −0.0445328 0.166199i
\(81\) 0 0
\(82\) −6.97505 + 4.02705i −0.770266 + 0.444713i
\(83\) −2.17883 8.13149i −0.239157 0.892547i −0.976231 0.216734i \(-0.930460\pi\)
0.737073 0.675813i \(-0.236207\pi\)
\(84\) 0 0
\(85\) 0.880349 + 3.28551i 0.0954872 + 0.356363i
\(86\) −0.419853 + 1.56691i −0.0452739 + 0.168965i
\(87\) 0 0
\(88\) 0.429765 0.248125i 0.0458131 0.0264502i
\(89\) −3.41203 + 0.914251i −0.361674 + 0.0969104i −0.435080 0.900392i \(-0.643280\pi\)
0.0734055 + 0.997302i \(0.476613\pi\)
\(90\) 0 0
\(91\) 5.04357 1.08013i 0.528710 0.113228i
\(92\) 1.53769 + 0.887787i 0.160315 + 0.0925582i
\(93\) 0 0
\(94\) −12.2564 −1.26415
\(95\) −2.39367 + 4.14596i −0.245586 + 0.425367i
\(96\) 0 0
\(97\) 5.21001 + 5.21001i 0.528996 + 0.528996i 0.920273 0.391277i \(-0.127967\pi\)
−0.391277 + 0.920273i \(0.627967\pi\)
\(98\) 1.28206 4.78473i 0.129508 0.483331i
\(99\) 0 0
\(100\) −1.31580 2.27902i −0.131580 0.227902i
\(101\) −2.75939 4.77940i −0.274569 0.475568i 0.695457 0.718568i \(-0.255202\pi\)
−0.970026 + 0.243000i \(0.921869\pi\)
\(102\) 0 0
\(103\) −13.0560 + 7.53787i −1.28644 + 0.742729i −0.978018 0.208520i \(-0.933135\pi\)
−0.308426 + 0.951248i \(0.599802\pi\)
\(104\) −0.755042 3.52561i −0.0740379 0.345714i
\(105\) 0 0
\(106\) 0.524676 1.95812i 0.0509610 0.190189i
\(107\) 10.8647 + 6.27276i 1.05033 + 0.606411i 0.922743 0.385416i \(-0.125942\pi\)
0.127591 + 0.991827i \(0.459276\pi\)
\(108\) 0 0
\(109\) −6.92733 6.92733i −0.663518 0.663518i 0.292690 0.956208i \(-0.405450\pi\)
−0.956208 + 0.292690i \(0.905450\pi\)
\(110\) −0.540025 + 0.540025i −0.0514893 + 0.0514893i
\(111\) 0 0
\(112\) 1.38181 + 0.370254i 0.130569 + 0.0349858i
\(113\) 12.3898 + 7.15327i 1.16554 + 0.672923i 0.952625 0.304149i \(-0.0983720\pi\)
0.212912 + 0.977071i \(0.431705\pi\)
\(114\) 0 0
\(115\) −2.63943 0.707234i −0.246128 0.0659499i
\(116\) 4.71069 0.437377
\(117\) 0 0
\(118\) −2.80131 −0.257882
\(119\) −3.05406 0.818333i −0.279965 0.0750165i
\(120\) 0 0
\(121\) 9.31301 + 5.37687i 0.846637 + 0.488806i
\(122\) −6.56170 1.75820i −0.594069 0.159180i
\(123\) 0 0
\(124\) −0.222483 + 0.222483i −0.0199796 + 0.0199796i
\(125\) 8.30479 + 8.30479i 0.742803 + 0.742803i
\(126\) 0 0
\(127\) 2.50743 + 1.44766i 0.222498 + 0.128459i 0.607106 0.794621i \(-0.292330\pi\)
−0.384608 + 0.923080i \(0.625663\pi\)
\(128\) 0.258819 0.965926i 0.0228766 0.0853766i
\(129\) 0 0
\(130\) 2.52668 + 4.94016i 0.221605 + 0.433281i
\(131\) −11.3218 + 6.53662i −0.989186 + 0.571107i −0.905031 0.425346i \(-0.860153\pi\)
−0.0841553 + 0.996453i \(0.526819\pi\)
\(132\) 0 0
\(133\) −2.22505 3.85391i −0.192937 0.334176i
\(134\) 3.96113 + 6.86088i 0.342190 + 0.592690i
\(135\) 0 0
\(136\) −0.572040 + 2.13488i −0.0490520 + 0.183065i
\(137\) −4.60469 4.60469i −0.393405 0.393405i 0.482494 0.875899i \(-0.339731\pi\)
−0.875899 + 0.482494i \(0.839731\pi\)
\(138\) 0 0
\(139\) −8.34095 + 14.4469i −0.707470 + 1.22537i 0.258322 + 0.966059i \(0.416830\pi\)
−0.965793 + 0.259316i \(0.916503\pi\)
\(140\) −2.20157 −0.186067
\(141\) 0 0
\(142\) 9.73378 + 5.61980i 0.816840 + 0.471603i
\(143\) −1.32784 + 1.19928i −0.111039 + 0.100289i
\(144\) 0 0
\(145\) −7.00256 + 1.87633i −0.581531 + 0.155821i
\(146\) −5.45342 + 3.14853i −0.451328 + 0.260575i
\(147\) 0 0
\(148\) 2.95350 11.0226i 0.242776 0.906054i
\(149\) 2.72321 + 10.1632i 0.223094 + 0.832599i 0.983159 + 0.182752i \(0.0585005\pi\)
−0.760065 + 0.649847i \(0.774833\pi\)
\(150\) 0 0
\(151\) 4.44836 + 16.6015i 0.362002 + 1.35101i 0.871440 + 0.490503i \(0.163187\pi\)
−0.509437 + 0.860508i \(0.670146\pi\)
\(152\) −2.69400 + 1.55538i −0.218512 + 0.126158i
\(153\) 0 0
\(154\) −0.183739 0.685722i −0.0148061 0.0552570i
\(155\) 0.242109 0.419345i 0.0194467 0.0336826i
\(156\) 0 0
\(157\) −10.9518 18.9690i −0.874046 1.51389i −0.857775 0.514025i \(-0.828154\pi\)
−0.0162709 0.999868i \(-0.505179\pi\)
\(158\) −6.75014 + 6.75014i −0.537012 + 0.537012i
\(159\) 0 0
\(160\) 1.53896i 0.121666i
\(161\) 1.79609 1.79609i 0.141552 0.141552i
\(162\) 0 0
\(163\) 5.13664 + 1.37636i 0.402333 + 0.107805i 0.454310 0.890844i \(-0.349886\pi\)
−0.0519776 + 0.998648i \(0.516552\pi\)
\(164\) 7.77966 2.08455i 0.607490 0.162776i
\(165\) 0 0
\(166\) 8.41834i 0.653390i
\(167\) −7.67161 7.67161i −0.593647 0.593647i 0.344968 0.938615i \(-0.387890\pi\)
−0.938615 + 0.344968i \(0.887890\pi\)
\(168\) 0 0
\(169\) 5.32396 + 11.8598i 0.409536 + 0.912294i
\(170\) 3.40141i 0.260876i
\(171\) 0 0
\(172\) 0.811094 1.40486i 0.0618453 0.107119i
\(173\) −1.60584 −0.122090 −0.0610448 0.998135i \(-0.519443\pi\)
−0.0610448 + 0.998135i \(0.519443\pi\)
\(174\) 0 0
\(175\) −3.63635 + 0.974358i −0.274882 + 0.0736545i
\(176\) −0.479340 + 0.128439i −0.0361316 + 0.00968144i
\(177\) 0 0
\(178\) 3.53239 0.264764
\(179\) −5.02903 + 8.71053i −0.375887 + 0.651056i −0.990459 0.137805i \(-0.955995\pi\)
0.614572 + 0.788861i \(0.289329\pi\)
\(180\) 0 0
\(181\) 11.9484i 0.888116i 0.895998 + 0.444058i \(0.146462\pi\)
−0.895998 + 0.444058i \(0.853538\pi\)
\(182\) −5.15127 0.262049i −0.381838 0.0194244i
\(183\) 0 0
\(184\) −1.25552 1.25552i −0.0925582 0.0925582i
\(185\) 17.5618i 1.29117i
\(186\) 0 0
\(187\) 1.05943 0.283875i 0.0774735 0.0207590i
\(188\) 11.8388 + 3.17219i 0.863431 + 0.231356i
\(189\) 0 0
\(190\) 3.38516 3.38516i 0.245586 0.245586i
\(191\) 21.8456i 1.58069i 0.612659 + 0.790347i \(0.290100\pi\)
−0.612659 + 0.790347i \(0.709900\pi\)
\(192\) 0 0
\(193\) 9.25729 9.25729i 0.666354 0.666354i −0.290516 0.956870i \(-0.593827\pi\)
0.956870 + 0.290516i \(0.0938269\pi\)
\(194\) −3.68403 6.38093i −0.264498 0.458124i
\(195\) 0 0
\(196\) −2.47676 + 4.28987i −0.176911 + 0.306419i
\(197\) 0.638138 + 2.38157i 0.0454655 + 0.169680i 0.984926 0.172979i \(-0.0553393\pi\)
−0.939460 + 0.342659i \(0.888673\pi\)
\(198\) 0 0
\(199\) −18.1467 + 10.4770i −1.28639 + 0.742697i −0.978008 0.208567i \(-0.933120\pi\)
−0.308380 + 0.951263i \(0.599787\pi\)
\(200\) 0.681106 + 2.54192i 0.0481615 + 0.179741i
\(201\) 0 0
\(202\) 1.42836 + 5.33073i 0.100499 + 0.375069i
\(203\) 1.74416 6.50928i 0.122416 0.456862i
\(204\) 0 0
\(205\) −10.7344 + 6.19748i −0.749720 + 0.432851i
\(206\) 14.5621 3.90189i 1.01459 0.271858i
\(207\) 0 0
\(208\) −0.183180 + 3.60090i −0.0127013 + 0.249677i
\(209\) 1.33689 + 0.771857i 0.0924750 + 0.0533904i
\(210\) 0 0
\(211\) −14.1278 −0.972599 −0.486299 0.873792i \(-0.661654\pi\)
−0.486299 + 0.873792i \(0.661654\pi\)
\(212\) −1.01360 + 1.75560i −0.0696140 + 0.120575i
\(213\) 0 0
\(214\) −8.87102 8.87102i −0.606411 0.606411i
\(215\) −0.646139 + 2.41142i −0.0440663 + 0.164458i
\(216\) 0 0
\(217\) 0.225054 + 0.389805i 0.0152777 + 0.0264617i
\(218\) 4.89836 + 8.48421i 0.331759 + 0.574623i
\(219\) 0 0
\(220\) 0.661392 0.381855i 0.0445911 0.0257447i
\(221\) 0.404863 7.95867i 0.0272341 0.535358i
\(222\) 0 0
\(223\) −2.37228 + 8.85346i −0.158859 + 0.592872i 0.839884 + 0.542765i \(0.182623\pi\)
−0.998744 + 0.0501063i \(0.984044\pi\)
\(224\) −1.23890 0.715277i −0.0827772 0.0477914i
\(225\) 0 0
\(226\) −10.1162 10.1162i −0.672923 0.672923i
\(227\) −18.6738 + 18.6738i −1.23943 + 1.23943i −0.279190 + 0.960236i \(0.590066\pi\)
−0.960236 + 0.279190i \(0.909934\pi\)
\(228\) 0 0
\(229\) 13.7346 + 3.68017i 0.907607 + 0.243193i 0.682280 0.731091i \(-0.260988\pi\)
0.225327 + 0.974283i \(0.427655\pi\)
\(230\) 2.36645 + 1.36627i 0.156039 + 0.0900893i
\(231\) 0 0
\(232\) −4.55018 1.21922i −0.298734 0.0800455i
\(233\) 21.4490 1.40517 0.702586 0.711599i \(-0.252029\pi\)
0.702586 + 0.711599i \(0.252029\pi\)
\(234\) 0 0
\(235\) −18.8622 −1.23043
\(236\) 2.70586 + 0.725033i 0.176137 + 0.0471956i
\(237\) 0 0
\(238\) 2.73820 + 1.58090i 0.177491 + 0.102474i
\(239\) −7.59513 2.03511i −0.491288 0.131640i 0.00466587 0.999989i \(-0.498515\pi\)
−0.495954 + 0.868349i \(0.665181\pi\)
\(240\) 0 0
\(241\) 13.0877 13.0877i 0.843051 0.843051i −0.146203 0.989255i \(-0.546705\pi\)
0.989255 + 0.146203i \(0.0467054\pi\)
\(242\) −7.60404 7.60404i −0.488806 0.488806i
\(243\) 0 0
\(244\) 5.88306 + 3.39659i 0.376624 + 0.217444i
\(245\) 1.97305 7.36353i 0.126054 0.470438i
\(246\) 0 0
\(247\) 8.32360 7.51774i 0.529618 0.478342i
\(248\) 0.272485 0.157320i 0.0173028 0.00998980i
\(249\) 0 0
\(250\) −5.87237 10.1712i −0.371401 0.643286i
\(251\) −11.0446 19.1298i −0.697127 1.20746i −0.969458 0.245256i \(-0.921128\pi\)
0.272331 0.962204i \(-0.412205\pi\)
\(252\) 0 0
\(253\) −0.228053 + 0.851104i −0.0143375 + 0.0535084i
\(254\) −2.04731 2.04731i −0.128459 0.128459i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 30.2080 1.88432 0.942162 0.335158i \(-0.108790\pi\)
0.942162 + 0.335158i \(0.108790\pi\)
\(258\) 0 0
\(259\) −14.1376 8.16235i −0.878468 0.507183i
\(260\) −1.16198 5.42578i −0.0720631 0.336493i
\(261\) 0 0
\(262\) 12.6278 3.38360i 0.780147 0.209040i
\(263\) 4.77357 2.75602i 0.294351 0.169943i −0.345552 0.938400i \(-0.612308\pi\)
0.639902 + 0.768456i \(0.278975\pi\)
\(264\) 0 0
\(265\) 0.807457 3.01347i 0.0496017 0.185116i
\(266\) 1.15177 + 4.29847i 0.0706197 + 0.263556i
\(267\) 0 0
\(268\) −2.05043 7.65232i −0.125250 0.467440i
\(269\) −16.8180 + 9.70985i −1.02541 + 0.592020i −0.915666 0.401940i \(-0.868336\pi\)
−0.109743 + 0.993960i \(0.535003\pi\)
\(270\) 0 0
\(271\) 5.79813 + 21.6389i 0.352212 + 1.31447i 0.883957 + 0.467567i \(0.154869\pi\)
−0.531746 + 0.846904i \(0.678464\pi\)
\(272\) 1.10510 1.91408i 0.0670063 0.116058i
\(273\) 0 0
\(274\) 3.25601 + 5.63957i 0.196703 + 0.340699i
\(275\) 0.923429 0.923429i 0.0556849 0.0556849i
\(276\) 0 0
\(277\) 8.82351i 0.530153i 0.964227 + 0.265077i \(0.0853973\pi\)
−0.964227 + 0.265077i \(0.914603\pi\)
\(278\) 11.7959 11.7959i 0.707470 0.707470i
\(279\) 0 0
\(280\) 2.12655 + 0.569808i 0.127086 + 0.0340525i
\(281\) 17.2960 4.63444i 1.03179 0.276467i 0.297083 0.954852i \(-0.403986\pi\)
0.734707 + 0.678384i \(0.237320\pi\)
\(282\) 0 0
\(283\) 7.31258i 0.434688i −0.976095 0.217344i \(-0.930261\pi\)
0.976095 0.217344i \(-0.0697393\pi\)
\(284\) −7.94760 7.94760i −0.471603 0.471603i
\(285\) 0 0
\(286\) 1.59299 0.814747i 0.0941954 0.0481770i
\(287\) 11.5218i 0.680111i
\(288\) 0 0
\(289\) 6.05752 10.4919i 0.356325 0.617173i
\(290\) 7.24959 0.425710
\(291\) 0 0
\(292\) 6.08250 1.62980i 0.355952 0.0953769i
\(293\) −13.7781 + 3.69183i −0.804925 + 0.215679i −0.637745 0.770247i \(-0.720133\pi\)
−0.167180 + 0.985926i \(0.553466\pi\)
\(294\) 0 0
\(295\) −4.31112 −0.251003
\(296\) −5.70573 + 9.88261i −0.331639 + 0.574415i
\(297\) 0 0
\(298\) 10.5217i 0.609505i
\(299\) 5.37444 + 3.47850i 0.310812 + 0.201167i
\(300\) 0 0
\(301\) −1.64093 1.64093i −0.0945817 0.0945817i
\(302\) 17.1871i 0.989008i
\(303\) 0 0
\(304\) 3.00476 0.805124i 0.172335 0.0461770i
\(305\) −10.0982 2.70581i −0.578223 0.154934i
\(306\) 0 0
\(307\) 15.5883 15.5883i 0.889669 0.889669i −0.104822 0.994491i \(-0.533427\pi\)
0.994491 + 0.104822i \(0.0334273\pi\)
\(308\) 0.709911i 0.0404510i
\(309\) 0 0
\(310\) −0.342394 + 0.342394i −0.0194467 + 0.0194467i
\(311\) −12.3786 21.4403i −0.701923 1.21577i −0.967790 0.251757i \(-0.918992\pi\)
0.265867 0.964010i \(-0.414342\pi\)
\(312\) 0 0
\(313\) 16.0705 27.8349i 0.908359 1.57332i 0.0920148 0.995758i \(-0.470669\pi\)
0.816344 0.577566i \(-0.195997\pi\)
\(314\) 5.66905 + 21.1572i 0.319923 + 1.19397i
\(315\) 0 0
\(316\) 8.26720 4.77307i 0.465066 0.268506i
\(317\) −7.74554 28.9067i −0.435033 1.62356i −0.740988 0.671518i \(-0.765643\pi\)
0.305956 0.952046i \(-0.401024\pi\)
\(318\) 0 0
\(319\) 0.605036 + 2.25803i 0.0338755 + 0.126425i
\(320\) 0.398313 1.48652i 0.0222664 0.0830993i
\(321\) 0 0
\(322\) −2.19975 + 1.27003i −0.122587 + 0.0707758i
\(323\) −6.64110 + 1.77948i −0.369521 + 0.0990128i
\(324\) 0 0
\(325\) −4.32057 8.44756i −0.239662 0.468586i
\(326\) −4.60538 2.65892i −0.255069 0.147264i
\(327\) 0 0
\(328\) −8.05410 −0.444713
\(329\) 8.76671 15.1844i 0.483325 0.837143i
\(330\) 0 0
\(331\) 4.69098 + 4.69098i 0.257839 + 0.257839i 0.824175 0.566335i \(-0.191639\pi\)
−0.566335 + 0.824175i \(0.691639\pi\)
\(332\) 2.17883 8.13149i 0.119579 0.446273i
\(333\) 0 0
\(334\) 5.42465 + 9.39577i 0.296824 + 0.514113i
\(335\) 6.09604 + 10.5586i 0.333062 + 0.576881i
\(336\) 0 0
\(337\) 20.1675 11.6437i 1.09859 0.634274i 0.162743 0.986669i \(-0.447966\pi\)
0.935851 + 0.352395i \(0.114633\pi\)
\(338\) −2.07300 12.8337i −0.112757 0.698059i
\(339\) 0 0
\(340\) −0.880349 + 3.28551i −0.0477436 + 0.178182i
\(341\) −0.135221 0.0780698i −0.00732262 0.00422772i
\(342\) 0 0
\(343\) 12.0916 + 12.0916i 0.652886 + 0.652886i
\(344\) −1.14706 + 1.14706i −0.0618453 + 0.0618453i
\(345\) 0 0
\(346\) 1.55112 + 0.415621i 0.0833887 + 0.0223439i
\(347\) 17.4763 + 10.0899i 0.938175 + 0.541655i 0.889388 0.457154i \(-0.151131\pi\)
0.0487871 + 0.998809i \(0.484464\pi\)
\(348\) 0 0
\(349\) −24.2443 6.49625i −1.29777 0.347736i −0.457163 0.889383i \(-0.651134\pi\)
−0.840606 + 0.541647i \(0.817801\pi\)
\(350\) 3.76463 0.201228
\(351\) 0 0
\(352\) 0.496250 0.0264502
\(353\) −25.2002 6.75238i −1.34127 0.359393i −0.484366 0.874865i \(-0.660950\pi\)
−0.856906 + 0.515472i \(0.827616\pi\)
\(354\) 0 0
\(355\) 14.9799 + 8.64867i 0.795052 + 0.459024i
\(356\) −3.41203 0.914251i −0.180837 0.0484552i
\(357\) 0 0
\(358\) 7.11212 7.11212i 0.375887 0.375887i
\(359\) −23.1726 23.1726i −1.22300 1.22300i −0.966559 0.256444i \(-0.917449\pi\)
−0.256444 0.966559i \(-0.582551\pi\)
\(360\) 0 0
\(361\) 8.07411 + 4.66159i 0.424953 + 0.245347i
\(362\) 3.09247 11.5412i 0.162537 0.606594i
\(363\) 0 0
\(364\) 4.90792 + 1.58637i 0.257245 + 0.0831482i
\(365\) −8.39262 + 4.84548i −0.439290 + 0.253624i
\(366\) 0 0
\(367\) −0.292660 0.506902i −0.0152767 0.0264601i 0.858286 0.513172i \(-0.171530\pi\)
−0.873563 + 0.486712i \(0.838196\pi\)
\(368\) 0.887787 + 1.53769i 0.0462791 + 0.0801577i
\(369\) 0 0
\(370\) 4.54533 16.9634i 0.236301 0.881886i
\(371\) 2.05061 + 2.05061i 0.106463 + 0.106463i
\(372\) 0 0
\(373\) −13.6890 + 23.7100i −0.708790 + 1.22766i 0.256517 + 0.966540i \(0.417425\pi\)
−0.965306 + 0.261120i \(0.915908\pi\)
\(374\) −1.09681 −0.0567145
\(375\) 0 0
\(376\) −10.6144 6.12820i −0.547393 0.316038i
\(377\) 16.9627 + 0.862906i 0.873624 + 0.0444419i
\(378\) 0 0
\(379\) 3.11912 0.835766i 0.160219 0.0429304i −0.177818 0.984063i \(-0.556904\pi\)
0.338037 + 0.941133i \(0.390237\pi\)
\(380\) −4.14596 + 2.39367i −0.212683 + 0.122793i
\(381\) 0 0
\(382\) 5.65407 21.1013i 0.289287 1.07963i
\(383\) −3.64974 13.6210i −0.186493 0.696001i −0.994306 0.106562i \(-0.966016\pi\)
0.807813 0.589439i \(-0.200651\pi\)
\(384\) 0 0
\(385\) −0.282767 1.05530i −0.0144111 0.0537831i
\(386\) −11.3378 + 6.54589i −0.577080 + 0.333177i
\(387\) 0 0
\(388\) 1.90700 + 7.11700i 0.0968130 + 0.361311i
\(389\) −9.97462 + 17.2765i −0.505733 + 0.875956i 0.494245 + 0.869323i \(0.335445\pi\)
−0.999978 + 0.00663286i \(0.997889\pi\)
\(390\) 0 0
\(391\) −1.96218 3.39859i −0.0992317 0.171874i
\(392\) 3.50267 3.50267i 0.176911 0.176911i
\(393\) 0 0
\(394\) 2.46558i 0.124214i
\(395\) −10.3882 + 10.3882i −0.522688 + 0.522688i
\(396\) 0 0
\(397\) 17.9027 + 4.79700i 0.898509 + 0.240755i 0.678376 0.734715i \(-0.262684\pi\)
0.220133 + 0.975470i \(0.429351\pi\)
\(398\) 20.2401 5.42331i 1.01454 0.271846i
\(399\) 0 0
\(400\) 2.63159i 0.131580i
\(401\) 11.1565 + 11.1565i 0.557131 + 0.557131i 0.928489 0.371359i \(-0.121108\pi\)
−0.371359 + 0.928489i \(0.621108\pi\)
\(402\) 0 0
\(403\) −0.841894 + 0.760385i −0.0419377 + 0.0378775i
\(404\) 5.51878i 0.274569i
\(405\) 0 0
\(406\) −3.36945 + 5.83606i −0.167223 + 0.289639i
\(407\) 5.66293 0.280701
\(408\) 0 0
\(409\) −10.7473 + 2.87972i −0.531418 + 0.142393i −0.514543 0.857464i \(-0.672038\pi\)
−0.0168752 + 0.999858i \(0.505372\pi\)
\(410\) 11.9726 3.20805i 0.591285 0.158434i
\(411\) 0 0
\(412\) −15.0757 −0.742729
\(413\) 2.00371 3.47053i 0.0985963 0.170774i
\(414\) 0 0
\(415\) 12.9555i 0.635961i
\(416\) 1.10892 3.43079i 0.0543692 0.168208i
\(417\) 0 0
\(418\) −1.09157 1.09157i −0.0533904 0.0533904i
\(419\) 0.458051i 0.0223772i 0.999937 + 0.0111886i \(0.00356152\pi\)
−0.999937 + 0.0111886i \(0.996438\pi\)
\(420\) 0 0
\(421\) 4.37413 1.17205i 0.213182 0.0571220i −0.150647 0.988588i \(-0.548136\pi\)
0.363829 + 0.931466i \(0.381469\pi\)
\(422\) 13.6464 + 3.65655i 0.664297 + 0.177998i
\(423\) 0 0
\(424\) 1.43344 1.43344i 0.0696140 0.0696140i
\(425\) 5.81632i 0.282133i
\(426\) 0 0
\(427\) 6.87166 6.87166i 0.332543 0.332543i
\(428\) 6.27276 + 10.8647i 0.303205 + 0.525167i
\(429\) 0 0
\(430\) 1.24824 2.16202i 0.0601957 0.104262i
\(431\) −3.86478 14.4235i −0.186160 0.694758i −0.994379 0.105876i \(-0.966235\pi\)
0.808220 0.588881i \(-0.200431\pi\)
\(432\) 0 0
\(433\) −3.91621 + 2.26103i −0.188201 + 0.108658i −0.591140 0.806569i \(-0.701322\pi\)
0.402939 + 0.915227i \(0.367989\pi\)
\(434\) −0.116497 0.434771i −0.00559201 0.0208697i
\(435\) 0 0
\(436\) −2.53558 9.46291i −0.121432 0.453191i
\(437\) 1.42956 5.33518i 0.0683850 0.255216i
\(438\) 0 0
\(439\) −11.5668 + 6.67809i −0.552053 + 0.318728i −0.749949 0.661495i \(-0.769922\pi\)
0.197897 + 0.980223i \(0.436589\pi\)
\(440\) −0.737687 + 0.197663i −0.0351679 + 0.00942320i
\(441\) 0 0
\(442\) −2.45092 + 7.58270i −0.116579 + 0.360672i
\(443\) −26.7016 15.4162i −1.26863 0.732445i −0.293903 0.955835i \(-0.594954\pi\)
−0.974729 + 0.223390i \(0.928288\pi\)
\(444\) 0 0
\(445\) 5.43623 0.257702
\(446\) 4.58289 7.93780i 0.217006 0.375865i
\(447\) 0 0
\(448\) 1.01155 + 1.01155i 0.0477914 + 0.0477914i
\(449\) −10.3894 + 38.7738i −0.490306 + 1.82985i 0.0645682 + 0.997913i \(0.479433\pi\)
−0.554874 + 0.831934i \(0.687234\pi\)
\(450\) 0 0
\(451\) 1.99842 + 3.46137i 0.0941020 + 0.162989i
\(452\) 7.15327 + 12.3898i 0.336461 + 0.582768i
\(453\) 0 0
\(454\) 22.8707 13.2044i 1.07337 0.619713i
\(455\) −7.92762 0.403284i −0.371653 0.0189062i
\(456\) 0 0
\(457\) −4.27321 + 15.9478i −0.199892 + 0.746008i 0.791054 + 0.611747i \(0.209533\pi\)
−0.990946 + 0.134261i \(0.957134\pi\)
\(458\) −12.3141 7.10955i −0.575400 0.332207i
\(459\) 0 0
\(460\) −1.93220 1.93220i −0.0900893 0.0900893i
\(461\) 9.76161 9.76161i 0.454643 0.454643i −0.442249 0.896892i \(-0.645819\pi\)
0.896892 + 0.442249i \(0.145819\pi\)
\(462\) 0 0
\(463\) 37.1831 + 9.96318i 1.72805 + 0.463028i 0.979731 0.200316i \(-0.0641970\pi\)
0.748314 + 0.663345i \(0.230864\pi\)
\(464\) 4.07958 + 2.35535i 0.189390 + 0.109344i
\(465\) 0 0
\(466\) −20.7182 5.55141i −0.959750 0.257164i
\(467\) −8.54433 −0.395385 −0.197692 0.980264i \(-0.563345\pi\)
−0.197692 + 0.980264i \(0.563345\pi\)
\(468\) 0 0
\(469\) −11.3332 −0.523319
\(470\) 18.2194 + 4.88188i 0.840400 + 0.225185i
\(471\) 0 0
\(472\) −2.42601 1.40066i −0.111666 0.0644704i
\(473\) 0.777580 + 0.208352i 0.0357532 + 0.00958003i
\(474\) 0 0
\(475\) −5.78855 + 5.78855i −0.265597 + 0.265597i
\(476\) −2.23573 2.23573i −0.102474 0.102474i
\(477\) 0 0
\(478\) 6.80960 + 3.93153i 0.311464 + 0.179824i
\(479\) −2.29400 + 8.56132i −0.104816 + 0.391177i −0.998324 0.0578691i \(-0.981569\pi\)
0.893509 + 0.449046i \(0.148236\pi\)
\(480\) 0 0
\(481\) 12.6544 39.1503i 0.576990 1.78510i
\(482\) −16.0291 + 9.25438i −0.730104 + 0.421526i
\(483\) 0 0
\(484\) 5.37687 + 9.31301i 0.244403 + 0.423319i
\(485\) −5.66959 9.82002i −0.257443 0.445904i
\(486\) 0 0
\(487\) −2.81256 + 10.4966i −0.127449 + 0.475648i −0.999915 0.0130276i \(-0.995853\pi\)
0.872466 + 0.488675i \(0.162520\pi\)
\(488\) −4.80350 4.80350i −0.217444 0.217444i
\(489\) 0 0
\(490\) −3.81164 + 6.60196i −0.172192 + 0.298246i
\(491\) 17.3462 0.782822 0.391411 0.920216i \(-0.371987\pi\)
0.391411 + 0.920216i \(0.371987\pi\)
\(492\) 0 0
\(493\) −9.01666 5.20577i −0.406090 0.234456i
\(494\) −9.98571 + 5.10727i −0.449279 + 0.229787i
\(495\) 0 0
\(496\) −0.303918 + 0.0814346i −0.0136463 + 0.00365652i
\(497\) −13.9247 + 8.03942i −0.624607 + 0.360617i
\(498\) 0 0
\(499\) −3.05648 + 11.4069i −0.136827 + 0.510644i 0.863157 + 0.504936i \(0.168484\pi\)
−0.999984 + 0.00570844i \(0.998183\pi\)
\(500\) 3.03976 + 11.3445i 0.135942 + 0.507344i
\(501\) 0 0
\(502\) 5.71709 + 21.3365i 0.255166 + 0.952294i
\(503\) 20.1247 11.6190i 0.897316 0.518066i 0.0209877 0.999780i \(-0.493319\pi\)
0.876329 + 0.481714i \(0.159986\pi\)
\(504\) 0 0
\(505\) 2.19820 + 8.20380i 0.0978186 + 0.365064i
\(506\) 0.440564 0.763079i 0.0195855 0.0339230i
\(507\) 0 0
\(508\) 1.44766 + 2.50743i 0.0642297 + 0.111249i
\(509\) 2.53125 2.53125i 0.112195 0.112195i −0.648780 0.760976i \(-0.724721\pi\)
0.760976 + 0.648780i \(0.224721\pi\)
\(510\) 0 0
\(511\) 9.00829i 0.398503i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) −29.1787 7.81841i −1.28702 0.344855i
\(515\) 22.4105 6.00487i 0.987523 0.264606i
\(516\) 0 0
\(517\) 6.08223i 0.267496i
\(518\) 11.5433 + 11.5433i 0.507183 + 0.507183i
\(519\) 0 0
\(520\) −0.281908 + 5.54165i −0.0123625 + 0.243017i
\(521\) 4.89726i 0.214553i −0.994229 0.107277i \(-0.965787\pi\)
0.994229 0.107277i \(-0.0342130\pi\)
\(522\) 0 0
\(523\) 0.745466 1.29119i 0.0325970 0.0564596i −0.849267 0.527964i \(-0.822956\pi\)
0.881864 + 0.471504i \(0.156289\pi\)
\(524\) −13.0732 −0.571107
\(525\) 0 0
\(526\) −5.32422 + 1.42662i −0.232147 + 0.0622036i
\(527\) 0.671717 0.179986i 0.0292605 0.00784032i
\(528\) 0 0
\(529\) −19.8473 −0.862928
\(530\) −1.55989 + 2.70180i −0.0677572 + 0.117359i
\(531\) 0 0
\(532\) 4.45011i 0.192937i
\(533\) 28.3956 6.08118i 1.22995 0.263405i
\(534\) 0 0
\(535\) −13.6522 13.6522i −0.590235 0.590235i
\(536\) 7.92226i 0.342190i
\(537\) 0 0
\(538\) 18.7580 5.02619i 0.808714 0.216694i
\(539\) −2.37442 0.636224i −0.102274 0.0274041i
\(540\) 0 0
\(541\) −1.70268 + 1.70268i −0.0732039 + 0.0732039i −0.742761 0.669557i \(-0.766484\pi\)
0.669557 + 0.742761i \(0.266484\pi\)
\(542\) 22.4023i 0.962260i
\(543\) 0 0
\(544\) −1.56284 + 1.56284i −0.0670063 + 0.0670063i
\(545\) 7.53840 + 13.0569i 0.322910 + 0.559296i
\(546\) 0 0
\(547\) 6.38104 11.0523i 0.272833 0.472561i −0.696753 0.717311i \(-0.745373\pi\)
0.969586 + 0.244750i \(0.0787059\pi\)
\(548\) −1.68543 6.29012i −0.0719981 0.268701i
\(549\) 0 0
\(550\) −1.13097 + 0.652963i −0.0482245 + 0.0278424i
\(551\) −3.79269 14.1545i −0.161574 0.603003i
\(552\) 0 0
\(553\) −3.53450 13.1909i −0.150302 0.560936i
\(554\) 2.28369 8.52286i 0.0970248 0.362102i
\(555\) 0 0
\(556\) −14.4469 + 8.34095i −0.612687 + 0.353735i
\(557\) 11.2158 3.00527i 0.475229 0.127337i −0.0132513 0.999912i \(-0.504218\pi\)
0.488480 + 0.872575i \(0.337551\pi\)
\(558\) 0 0
\(559\) 3.17801 4.91016i 0.134415 0.207678i
\(560\) −1.90661 1.10078i −0.0805692 0.0465166i
\(561\) 0 0
\(562\) −17.9061 −0.755323
\(563\) −20.4323 + 35.3898i −0.861119 + 1.49150i 0.00973001 + 0.999953i \(0.496903\pi\)
−0.870849 + 0.491550i \(0.836431\pi\)
\(564\) 0 0
\(565\) −15.5685 15.5685i −0.654973 0.654973i
\(566\) −1.89264 + 7.06341i −0.0795534 + 0.296897i
\(567\) 0 0
\(568\) 5.61980 + 9.73378i 0.235802 + 0.408420i
\(569\) 3.20683 + 5.55440i 0.134437 + 0.232852i 0.925382 0.379035i \(-0.123744\pi\)
−0.790945 + 0.611887i \(0.790411\pi\)
\(570\) 0 0
\(571\) 11.8701 6.85319i 0.496747 0.286797i −0.230622 0.973043i \(-0.574076\pi\)
0.727369 + 0.686246i \(0.240743\pi\)
\(572\) −1.74958 + 0.374689i −0.0731537 + 0.0156665i
\(573\) 0 0
\(574\) −2.98207 + 11.1292i −0.124469 + 0.464525i
\(575\) −4.04658 2.33629i −0.168754 0.0974301i
\(576\) 0 0
\(577\) −10.8626 10.8626i −0.452214 0.452214i 0.443875 0.896089i \(-0.353604\pi\)
−0.896089 + 0.443875i \(0.853604\pi\)
\(578\) −8.56663 + 8.56663i −0.356325 + 0.356325i
\(579\) 0 0
\(580\) −7.00256 1.87633i −0.290766 0.0779104i
\(581\) −10.4294 6.02144i −0.432686 0.249811i
\(582\) 0 0
\(583\) −0.971715 0.260370i −0.0402443 0.0107834i
\(584\) −6.29707 −0.260575
\(585\) 0 0
\(586\) 14.2641 0.589246
\(587\) −2.47016 0.661876i −0.101954 0.0273186i 0.207481 0.978239i \(-0.433473\pi\)
−0.309435 + 0.950920i \(0.600140\pi\)
\(588\) 0 0
\(589\) 0.847637 + 0.489383i 0.0349263 + 0.0201647i
\(590\) 4.16422 + 1.11580i 0.171438 + 0.0459368i
\(591\) 0 0
\(592\) 8.06912 8.06912i 0.331639 0.331639i
\(593\) 15.9796 + 15.9796i 0.656204 + 0.656204i 0.954480 0.298276i \(-0.0964115\pi\)
−0.298276 + 0.954480i \(0.596412\pi\)
\(594\) 0 0
\(595\) 4.21399 + 2.43295i 0.172757 + 0.0997411i
\(596\) −2.72321 + 10.1632i −0.111547 + 0.416299i
\(597\) 0 0
\(598\) −4.29101 4.75098i −0.175472 0.194282i
\(599\) −20.6867 + 11.9435i −0.845237 + 0.487998i −0.859041 0.511907i \(-0.828939\pi\)
0.0138036 + 0.999905i \(0.495606\pi\)
\(600\) 0 0
\(601\) 12.7060 + 22.0074i 0.518287 + 0.897700i 0.999774 + 0.0212465i \(0.00676348\pi\)
−0.481487 + 0.876453i \(0.659903\pi\)
\(602\) 1.16031 + 2.00972i 0.0472908 + 0.0819101i
\(603\) 0 0
\(604\) −4.44836 + 16.6015i −0.181001 + 0.675505i
\(605\) −11.7023 11.7023i −0.475768 0.475768i
\(606\) 0 0
\(607\) −10.3003 + 17.8407i −0.418078 + 0.724132i −0.995746 0.0921396i \(-0.970629\pi\)
0.577668 + 0.816272i \(0.303963\pi\)
\(608\) −3.11076 −0.126158
\(609\) 0 0
\(610\) 9.05382 + 5.22722i 0.366578 + 0.211644i
\(611\) 42.0491 + 13.5913i 1.70112 + 0.549847i
\(612\) 0 0
\(613\) −6.32348 + 1.69437i −0.255403 + 0.0684350i −0.384249 0.923230i \(-0.625539\pi\)
0.128846 + 0.991665i \(0.458873\pi\)
\(614\) −19.0916 + 11.0226i −0.770476 + 0.444835i
\(615\) 0 0
\(616\) 0.183739 0.685722i 0.00740304 0.0276285i
\(617\) 4.13493 + 15.4318i 0.166466 + 0.621260i 0.997849 + 0.0655593i \(0.0208831\pi\)
−0.831383 + 0.555700i \(0.812450\pi\)
\(618\) 0 0
\(619\) 5.84160 + 21.8012i 0.234794 + 0.876263i 0.978242 + 0.207469i \(0.0665225\pi\)
−0.743448 + 0.668794i \(0.766811\pi\)
\(620\) 0.419345 0.242109i 0.0168413 0.00972334i
\(621\) 0 0
\(622\) 6.40761 + 23.9135i 0.256922 + 0.958845i
\(623\) −2.52664 + 4.37627i −0.101228 + 0.175331i
\(624\) 0 0
\(625\) −2.45839 4.25805i −0.0983355 0.170322i
\(626\) −22.7271 + 22.7271i −0.908359 + 0.908359i
\(627\) 0 0
\(628\) 21.9035i 0.874046i
\(629\) −17.8343 + 17.8343i −0.711100 + 0.711100i
\(630\) 0 0
\(631\) −16.8737 4.52128i −0.671730 0.179989i −0.0931960 0.995648i \(-0.529708\pi\)
−0.578534 + 0.815658i \(0.696375\pi\)
\(632\) −9.22086 + 2.47072i −0.366786 + 0.0982801i
\(633\) 0 0
\(634\) 29.9265i 1.18853i
\(635\) −3.15073 3.15073i −0.125033 0.125033i
\(636\) 0 0
\(637\) −9.70437 + 14.9937i −0.384501 + 0.594072i
\(638\) 2.33768i 0.0925496i
\(639\) 0 0
\(640\) −0.769482 + 1.33278i −0.0304164 + 0.0526828i
\(641\) 36.5684 1.44436 0.722182 0.691703i \(-0.243139\pi\)
0.722182 + 0.691703i \(0.243139\pi\)
\(642\) 0 0
\(643\) −33.7924 + 9.05466i −1.33264 + 0.357081i −0.853700 0.520765i \(-0.825647\pi\)
−0.478944 + 0.877846i \(0.658980\pi\)
\(644\) 2.45350 0.657414i 0.0966815 0.0259057i
\(645\) 0 0
\(646\) 6.87538 0.270508
\(647\) 9.58684 16.6049i 0.376897 0.652806i −0.613712 0.789530i \(-0.710324\pi\)
0.990609 + 0.136725i \(0.0436576\pi\)
\(648\) 0 0
\(649\) 1.39015i 0.0545682i
\(650\) 1.98696 + 9.27796i 0.0779350 + 0.363911i
\(651\) 0 0
\(652\) 3.76028 + 3.76028i 0.147264 + 0.147264i
\(653\) 6.63054i 0.259473i 0.991548 + 0.129737i \(0.0414132\pi\)
−0.991548 + 0.129737i \(0.958587\pi\)
\(654\) 0 0
\(655\) 19.4337 5.20724i 0.759337 0.203464i
\(656\) 7.77966 + 2.08455i 0.303745 + 0.0813882i
\(657\) 0 0
\(658\) −12.3980 + 12.3980i −0.483325 + 0.483325i
\(659\) 21.6577i 0.843665i 0.906674 + 0.421833i \(0.138613\pi\)
−0.906674 + 0.421833i \(0.861387\pi\)
\(660\) 0 0
\(661\) 7.30997 7.30997i 0.284325 0.284325i −0.550506 0.834831i \(-0.685565\pi\)
0.834831 + 0.550506i \(0.185565\pi\)
\(662\) −3.31702 5.74525i −0.128920 0.223295i
\(663\) 0 0
\(664\) −4.20917 + 7.29049i −0.163347 + 0.282926i
\(665\) 1.77254 + 6.61519i 0.0687360 + 0.256526i
\(666\) 0 0
\(667\) 7.24360 4.18209i 0.280473 0.161931i
\(668\) −2.80800 10.4796i −0.108645 0.405469i
\(669\) 0 0
\(670\) −3.15554 11.7766i −0.121909 0.454971i
\(671\) −0.872508 + 3.25624i −0.0336828 + 0.125706i
\(672\) 0 0
\(673\) 22.7770 13.1503i 0.877990 0.506908i 0.00799497 0.999968i \(-0.497455\pi\)
0.869995 + 0.493060i \(0.164122\pi\)
\(674\) −22.4939 + 6.02723i −0.866434 + 0.232160i
\(675\) 0 0
\(676\) −1.31923 + 12.9329i −0.0507394 + 0.497419i
\(677\) 0.260338 + 0.150306i 0.0100056 + 0.00577673i 0.504994 0.863123i \(-0.331495\pi\)
−0.494989 + 0.868899i \(0.664828\pi\)
\(678\) 0 0
\(679\) 10.5404 0.404504
\(680\) 1.70070 2.94570i 0.0652190 0.112963i
\(681\) 0 0
\(682\) 0.110407 + 0.110407i 0.00422772 + 0.00422772i
\(683\) −0.894421 + 3.33802i −0.0342241 + 0.127726i −0.980924 0.194390i \(-0.937727\pi\)
0.946700 + 0.322116i \(0.104394\pi\)
\(684\) 0 0
\(685\) 5.01088 + 8.67909i 0.191456 + 0.331611i
\(686\) −8.55007 14.8092i −0.326443 0.565416i
\(687\) 0 0
\(688\) 1.40486 0.811094i 0.0535596 0.0309227i
\(689\) −3.97144 + 6.13606i −0.151300 + 0.233765i
\(690\) 0 0
\(691\) 8.65698 32.3083i 0.329327 1.22906i −0.580563 0.814215i \(-0.697168\pi\)
0.909890 0.414849i \(-0.136166\pi\)
\(692\) −1.39070 0.802919i −0.0528663 0.0305224i
\(693\) 0 0
\(694\) −14.2693 14.2693i −0.541655 0.541655i
\(695\) 18.1534 18.1534i 0.688599 0.688599i
\(696\) 0 0
\(697\) −17.1946 4.60727i −0.651290 0.174513i
\(698\) 21.7369 + 12.5498i 0.822752 + 0.475016i
\(699\) 0 0
\(700\) −3.63635 0.974358i −0.137441 0.0368273i
\(701\) −14.8908 −0.562418 −0.281209 0.959647i \(-0.590735\pi\)
−0.281209 + 0.959647i \(0.590735\pi\)
\(702\) 0 0
\(703\) −35.4983 −1.33884
\(704\) −0.479340 0.128439i −0.0180658 0.00484072i
\(705\) 0 0
\(706\) 22.5939 + 13.0446i 0.850333 + 0.490940i
\(707\) −7.62589 2.04335i −0.286801 0.0768481i
\(708\) 0 0
\(709\) −17.4183 + 17.4183i −0.654157 + 0.654157i −0.953991 0.299834i \(-0.903069\pi\)
0.299834 + 0.953991i \(0.403069\pi\)
\(710\) −12.2311 12.2311i −0.459024 0.459024i
\(711\) 0 0
\(712\) 3.05914 + 1.76620i 0.114646 + 0.0661910i
\(713\) −0.144593 + 0.539629i −0.00541505 + 0.0202093i
\(714\) 0 0
\(715\) 2.45155 1.25387i 0.0916829 0.0468919i
\(716\) −8.71053 + 5.02903i −0.325528 + 0.187944i
\(717\) 0 0
\(718\) 16.3855 + 28.3805i 0.611502 + 1.05915i
\(719\) 17.8371 + 30.8948i 0.665213 + 1.15218i 0.979227 + 0.202765i \(0.0649928\pi\)
−0.314014 + 0.949418i \(0.601674\pi\)
\(720\) 0 0
\(721\) −5.58186 + 20.8318i −0.207879 + 0.775816i
\(722\) −6.59248 6.59248i −0.245347 0.245347i
\(723\) 0 0
\(724\) −5.97419 + 10.3476i −0.222029 + 0.384565i
\(725\) −12.3966 −0.460399
\(726\) 0 0
\(727\) −8.14708 4.70372i −0.302159 0.174451i 0.341254 0.939971i \(-0.389149\pi\)
−0.643412 + 0.765520i \(0.722482\pi\)
\(728\) −4.33011 2.80258i −0.160484 0.103870i
\(729\) 0 0
\(730\) 9.36075 2.50821i 0.346457 0.0928328i
\(731\) −3.10500 + 1.79267i −0.114843 + 0.0663044i
\(732\) 0 0
\(733\) −8.37893 + 31.2706i −0.309483 + 1.15501i 0.619534 + 0.784970i \(0.287322\pi\)
−0.929017 + 0.370037i \(0.879345\pi\)
\(734\) 0.151492 + 0.565376i 0.00559167 + 0.0208684i
\(735\) 0 0
\(736\) −0.459552 1.71507i −0.0169393 0.0632184i
\(737\) 3.40471 1.96571i 0.125414 0.0724079i
\(738\) 0 0
\(739\) 7.68766 + 28.6907i 0.282795 + 1.05541i 0.950436 + 0.310922i \(0.100638\pi\)
−0.667640 + 0.744484i \(0.732696\pi\)
\(740\) −8.78091 + 15.2090i −0.322793 + 0.559093i
\(741\) 0 0
\(742\) −1.45000 2.51148i −0.0532313 0.0921993i
\(743\) 17.4277 17.4277i 0.639359 0.639359i −0.311038 0.950397i \(-0.600677\pi\)
0.950397 + 0.311038i \(0.100677\pi\)
\(744\) 0 0
\(745\) 16.1925i 0.593247i
\(746\) 19.3592 19.3592i 0.708790 0.708790i
\(747\) 0 0
\(748\) 1.05943 + 0.283875i 0.0387368 + 0.0103795i
\(749\) 17.3355 4.64503i 0.633425 0.169726i
\(750\) 0 0
\(751\) 22.1321i 0.807610i −0.914845 0.403805i \(-0.867687\pi\)
0.914845 0.403805i \(-0.132313\pi\)
\(752\) 8.66658 + 8.66658i 0.316038 + 0.316038i
\(753\) 0 0
\(754\) −16.1614 5.22378i −0.588563 0.190239i
\(755\) 26.4504i 0.962628i
\(756\) 0 0
\(757\) 25.1440 43.5507i 0.913875 1.58288i 0.105336 0.994437i \(-0.466408\pi\)
0.808540 0.588442i \(-0.200258\pi\)
\(758\) −3.22915 −0.117288
\(759\) 0 0
\(760\) 4.62422 1.23906i 0.167738 0.0449453i
\(761\) −8.09766 + 2.16976i −0.293540 + 0.0786538i −0.402584 0.915383i \(-0.631888\pi\)
0.109044 + 0.994037i \(0.465221\pi\)
\(762\) 0 0
\(763\) −14.0147 −0.507368
\(764\) −10.9228 + 18.9189i −0.395174 + 0.684461i
\(765\) 0 0
\(766\) 14.1015i 0.509508i
\(767\) 9.61071 + 3.10643i 0.347023 + 0.112167i
\(768\) 0 0
\(769\) −10.9600 10.9600i −0.395229 0.395229i 0.481317 0.876547i \(-0.340159\pi\)
−0.876547 + 0.481317i \(0.840159\pi\)
\(770\) 1.09253i 0.0393720i
\(771\) 0 0
\(772\) 12.6457 3.38840i 0.455128 0.121951i
\(773\) 6.28210 + 1.68328i 0.225951 + 0.0605435i 0.370018 0.929024i \(-0.379351\pi\)
−0.144067 + 0.989568i \(0.546018\pi\)
\(774\) 0 0
\(775\) 0.585485 0.585485i 0.0210313 0.0210313i
\(776\) 7.36806i 0.264498i
\(777\) 0 0
\(778\) 14.1062 14.1062i 0.505733 0.505733i
\(779\) −12.5272 21.6977i −0.448833 0.777401i
\(780\) 0 0
\(781\) 2.78882 4.83038i 0.0997919 0.172845i
\(782\) 1.01570 + 3.79064i 0.0363213 + 0.135553i
\(783\) 0 0
\(784\) −4.28987 + 2.47676i −0.153210 + 0.0884557i
\(785\) 8.72447 + 32.5601i 0.311390 + 1.16212i
\(786\) 0 0
\(787\) −13.8656 51.7471i −0.494255 1.84458i −0.534164 0.845381i \(-0.679373\pi\)
0.0399086 0.999203i \(-0.487293\pi\)
\(788\) −0.638138 + 2.38157i −0.0227327 + 0.0848398i
\(789\) 0 0
\(790\) 12.7229 7.34558i 0.452661 0.261344i
\(791\) 19.7689 5.29706i 0.702901 0.188342i
\(792\) 0 0
\(793\) 20.5621 + 13.3084i 0.730182 + 0.472596i
\(794\) −16.0511 9.26710i −0.569632 0.328877i
\(795\) 0 0
\(796\) −20.9541 −0.742697
\(797\) 23.3358 40.4188i 0.826597 1.43171i −0.0740951 0.997251i \(-0.523607\pi\)
0.900692 0.434457i \(-0.143060\pi\)
\(798\) 0 0
\(799\) −19.1548 19.1548i −0.677649 0.677649i
\(800\) −0.681106 + 2.54192i −0.0240807 + 0.0898705i
\(801\) 0 0
\(802\) −7.88886 13.6639i −0.278565 0.482489i
\(803\) 1.56246 + 2.70626i 0.0551380 + 0.0955018i
\(804\) 0 0
\(805\) −3.38533 + 1.95452i −0.119317 + 0.0688879i
\(806\) 1.01001 0.516577i 0.0355761 0.0181957i
\(807\) 0 0
\(808\) −1.42836 + 5.33073i −0.0502497 + 0.187534i
\(809\) −3.13155 1.80800i −0.110099 0.0635659i 0.443939 0.896057i \(-0.353581\pi\)
−0.554039 + 0.832491i \(0.686914\pi\)
\(810\) 0 0
\(811\) 0.430194 + 0.430194i 0.0151062 + 0.0151062i 0.714620 0.699513i \(-0.246600\pi\)
−0.699513 + 0.714620i \(0.746600\pi\)
\(812\) 4.76512 4.76512i 0.167223 0.167223i
\(813\) 0 0
\(814\) −5.46997 1.46567i −0.191722 0.0513719i
\(815\) −7.08752 4.09198i −0.248265 0.143336i
\(816\) 0 0
\(817\) −4.87429 1.30606i −0.170530 0.0456933i
\(818\) 11.1264 0.389025
\(819\) 0 0
\(820\) −12.3950 −0.432851
\(821\) −49.9310 13.3790i −1.74260 0.466929i −0.759580 0.650414i \(-0.774595\pi\)
−0.983022 + 0.183485i \(0.941262\pi\)
\(822\) 0 0
\(823\) 16.1344 + 9.31518i 0.562408 + 0.324707i 0.754112 0.656746i \(-0.228068\pi\)
−0.191703 + 0.981453i \(0.561401\pi\)
\(824\) 14.5621 + 3.90189i 0.507293 + 0.135929i
\(825\) 0 0
\(826\) −2.83368 + 2.83368i −0.0985963 + 0.0985963i
\(827\) 23.9908 + 23.9908i 0.834244 + 0.834244i 0.988094 0.153851i \(-0.0491675\pi\)
−0.153851 + 0.988094i \(0.549167\pi\)
\(828\) 0 0
\(829\) −11.0843 6.39953i −0.384974 0.222265i 0.295006 0.955495i \(-0.404678\pi\)
−0.679980 + 0.733230i \(0.738012\pi\)
\(830\) 3.35313 12.5141i 0.116389 0.434370i
\(831\) 0 0
\(832\) −1.95909 + 3.02688i −0.0679191 + 0.104938i
\(833\) 9.48144 5.47411i 0.328513 0.189667i
\(834\) 0 0
\(835\) 8.34834 + 14.4597i 0.288906 + 0.500400i
\(836\) 0.771857 + 1.33689i 0.0266952 + 0.0462375i
\(837\) 0 0
\(838\) 0.118552 0.442443i 0.00409532 0.0152839i
\(839\) 14.9217 + 14.9217i 0.515155 + 0.515155i 0.916102 0.400946i \(-0.131319\pi\)
−0.400946 + 0.916102i \(0.631319\pi\)
\(840\) 0 0
\(841\) −3.40468 + 5.89708i −0.117403 + 0.203348i
\(842\) −4.52844 −0.156060
\(843\) 0 0
\(844\) −12.2350 7.06391i −0.421148 0.243150i
\(845\) −3.19028 19.7505i −0.109749 0.679439i
\(846\) 0 0
\(847\) 14.8596 3.98162i 0.510582 0.136810i
\(848\) −1.75560 + 1.01360i −0.0602875 + 0.0348070i
\(849\) 0 0
\(850\) 1.50537 5.61814i 0.0516339 0.192700i
\(851\) −5.24416 19.5715i −0.179767 0.670901i
\(852\) 0 0
\(853\) −2.43856 9.10083i −0.0834947 0.311606i 0.911530 0.411233i \(-0.134902\pi\)
−0.995025 + 0.0996268i \(0.968235\pi\)
\(854\) −8.41603 + 4.85900i −0.287991 + 0.166272i
\(855\) 0 0
\(856\) −3.24702 12.1180i −0.110981 0.414186i
\(857\) −7.45337 + 12.9096i −0.254602 + 0.440984i −0.964787 0.263031i \(-0.915278\pi\)
0.710185 + 0.704015i \(0.248611\pi\)
\(858\) 0 0
\(859\) 17.7711 + 30.7804i 0.606341 + 1.05021i 0.991838 + 0.127504i \(0.0406967\pi\)
−0.385497 + 0.922709i \(0.625970\pi\)
\(860\) −1.76528 + 1.76528i −0.0601957 + 0.0601957i
\(861\) 0 0
\(862\) 14.9323i 0.508598i
\(863\) 0.118264 0.118264i 0.00402577 0.00402577i −0.705091 0.709117i \(-0.749094\pi\)
0.709117 + 0.705091i \(0.249094\pi\)
\(864\) 0 0
\(865\) 2.38712 + 0.639626i 0.0811644 + 0.0217479i
\(866\) 4.36797 1.17039i 0.148430 0.0397716i
\(867\) 0 0
\(868\) 0.450108i 0.0152777i
\(869\) 3.34975 + 3.34975i 0.113633 + 0.113633i
\(870\) 0 0
\(871\) −5.98164 27.9308i −0.202680 0.946399i
\(872\) 9.79673i 0.331759i
\(873\) 0 0
\(874\) −2.76169 + 4.78339i −0.0934156 + 0.161801i
\(875\) 16.8015 0.567994
\(876\) 0 0
\(877\) −41.3195 + 11.0715i −1.39526 + 0.373859i −0.876640 0.481147i \(-0.840220\pi\)
−0.518619 + 0.855005i \(0.673554\pi\)
\(878\) 12.9011 3.45683i 0.435390 0.116662i
\(879\) 0 0
\(880\) 0.763710 0.0257447
\(881\) 13.3432 23.1111i 0.449544 0.778633i −0.548812 0.835946i \(-0.684920\pi\)
0.998356 + 0.0573124i \(0.0182531\pi\)
\(882\) 0 0
\(883\) 11.8585i 0.399071i −0.979891 0.199536i \(-0.936057\pi\)
0.979891 0.199536i \(-0.0639433\pi\)
\(884\) 4.32996 6.68998i 0.145632 0.225008i
\(885\) 0 0
\(886\) 21.8018 + 21.8018i 0.732445 + 0.732445i
\(887\) 52.7911i 1.77255i 0.463156 + 0.886277i \(0.346717\pi\)
−0.463156 + 0.886277i \(0.653283\pi\)
\(888\) 0 0
\(889\) 4.00079 1.07201i 0.134182 0.0359540i
\(890\) −5.25099 1.40700i −0.176014 0.0471627i
\(891\) 0 0
\(892\) −6.48118 + 6.48118i −0.217006 + 0.217006i
\(893\) 38.1267i 1.27586i
\(894\) 0 0
\(895\) 10.9453 10.9453i 0.365861 0.365861i
\(896\) −0.715277 1.23890i −0.0238957 0.0413886i
\(897\) 0 0
\(898\) 20.0708 34.7636i 0.669771 1.16008i
\(899\) 0.383613 + 1.43167i 0.0127942 + 0.0477487i
\(900\) 0 0
\(901\) 3.88021 2.24024i 0.129269 0.0746333i
\(902\) −1.03446 3.86065i −0.0344437 0.128546i
\(903\) 0 0
\(904\) −3.70280 13.8190i −0.123153 0.459615i
\(905\) 4.75920 17.7616i 0.158201 0.590414i
\(906\) 0 0
\(907\) −15.9624 + 9.21592i −0.530024 + 0.306009i −0.741026 0.671476i \(-0.765661\pi\)
0.211002 + 0.977486i \(0.432327\pi\)
\(908\) −25.5089 + 6.83510i −0.846544 + 0.226831i
\(909\) 0 0
\(910\) 7.55312 + 2.44136i 0.250383 + 0.0809303i
\(911\) 37.3282 + 21.5514i 1.23674 + 0.714030i 0.968426 0.249302i \(-0.0802011\pi\)
0.268311 + 0.963332i \(0.413534\pi\)
\(912\) 0 0
\(913\) 4.17760 0.138258
\(914\) 8.25520 14.2984i 0.273058 0.472950i
\(915\) 0 0
\(916\) 10.0544 + 10.0544i 0.332207 + 0.332207i
\(917\) −4.84042 + 18.0647i −0.159845 + 0.596549i
\(918\) 0 0
\(919\) −25.3781 43.9562i −0.837147 1.44998i −0.892270 0.451502i \(-0.850888\pi\)
0.0551224 0.998480i \(-0.482445\pi\)
\(920\) 1.36627 + 2.36645i 0.0450446 + 0.0780196i
\(921\) 0 0
\(922\) −11.9555 + 6.90250i −0.393733 + 0.227322i
\(923\) −27.1626 30.0743i −0.894068 0.989908i
\(924\) 0 0
\(925\) −7.77241 + 29.0070i −0.255555 + 0.953745i
\(926\) −33.3375 19.2474i −1.09554 0.632508i
\(927\) 0 0
\(928\) −3.33096 3.33096i −0.109344 0.109344i
\(929\) −32.8640 + 32.8640i −1.07823 + 1.07823i −0.0815633 + 0.996668i \(0.525991\pi\)
−0.996668 + 0.0815633i \(0.974009\pi\)
\(930\) 0 0
\(931\) 14.8841 + 3.98820i 0.487808 + 0.130708i
\(932\) 18.5754 + 10.7245i 0.608457 + 0.351293i
\(933\) 0 0
\(934\) 8.25319 + 2.21144i 0.270053 + 0.0723604i
\(935\) −1.68795 −0.0552018
\(936\) 0 0
\(937\) −13.9838 −0.456832 −0.228416 0.973564i \(-0.573355\pi\)
−0.228416 + 0.973564i \(0.573355\pi\)
\(938\) 10.9471 + 2.93325i 0.357434 + 0.0957741i
\(939\) 0 0
\(940\) −16.3351 9.43108i −0.532792 0.307608i
\(941\) −24.7787 6.63944i −0.807764 0.216440i −0.168774 0.985655i \(-0.553981\pi\)
−0.638990 + 0.769215i \(0.720647\pi\)
\(942\) 0 0
\(943\) 10.1121 10.1121i 0.329295 0.329295i
\(944\) 1.98083 + 1.98083i 0.0644704 + 0.0644704i
\(945\) 0 0
\(946\) −0.697159 0.402505i −0.0226666 0.0130866i
\(947\) −0.714319 + 2.66588i −0.0232123 + 0.0866293i −0.976560 0.215244i \(-0.930945\pi\)
0.953348 + 0.301873i \(0.0976120\pi\)
\(948\) 0 0
\(949\) 22.2010 4.75455i 0.720675 0.154339i
\(950\) 7.08950 4.09312i 0.230014 0.132798i
\(951\) 0 0
\(952\) 1.58090 + 2.73820i 0.0512372 + 0.0887455i
\(953\) −14.2452 24.6735i −0.461448 0.799252i 0.537585 0.843210i \(-0.319337\pi\)
−0.999033 + 0.0439575i \(0.986003\pi\)
\(954\) 0 0
\(955\) 8.70140 32.4741i 0.281571 1.05084i
\(956\) −5.56002 5.56002i −0.179824 0.179824i
\(957\) 0 0
\(958\) 4.43167 7.67587i 0.143181 0.247996i
\(959\) −9.31578 −0.300822
\(960\) 0 0
\(961\) 26.7611 + 15.4505i 0.863260 + 0.498403i
\(962\) −22.3560 + 34.5411i −0.720787 + 1.11365i
\(963\) 0 0
\(964\) 17.8781 4.79042i 0.575815 0.154289i
\(965\) −17.4485 + 10.0739i −0.561687 + 0.324290i
\(966\) 0 0
\(967\) −2.73120 + 10.1930i −0.0878293 + 0.327783i −0.995835 0.0911745i \(-0.970938\pi\)
0.908006 + 0.418958i \(0.137605\pi\)
\(968\) −2.78327 10.3873i −0.0894577 0.333861i
\(969\) 0 0
\(970\) 2.93480 + 10.9528i 0.0942306 + 0.351674i
\(971\) 36.5800 21.1195i 1.17391 0.677756i 0.219310 0.975655i \(-0.429619\pi\)
0.954597 + 0.297899i \(0.0962859\pi\)
\(972\) 0 0
\(973\) 6.17655 + 23.0512i 0.198011 + 0.738987i
\(974\) 5.43346 9.41102i 0.174099 0.301549i
\(975\) 0 0
\(976\) 3.39659 + 5.88306i 0.108722 + 0.188312i
\(977\) 37.3318 37.3318i 1.19435 1.19435i 0.218516 0.975833i \(-0.429878\pi\)
0.975833 0.218516i \(-0.0701217\pi\)
\(978\) 0 0
\(979\) 1.75295i 0.0560245i
\(980\) 5.39048 5.39048i 0.172192 0.172192i
\(981\) 0 0
\(982\) −16.7551 4.48952i −0.534678 0.143266i
\(983\) −32.7120 + 8.76515i −1.04335 + 0.279565i −0.739501 0.673155i \(-0.764939\pi\)
−0.303849 + 0.952720i \(0.598272\pi\)
\(984\) 0 0
\(985\) 3.79443i 0.120901i
\(986\) 7.36207 + 7.36207i 0.234456 + 0.234456i
\(987\) 0 0
\(988\) 10.9673 2.34875i 0.348917 0.0747238i
\(989\) 2.88031i 0.0915887i
\(990\) 0 0
\(991\) 20.3156 35.1877i 0.645347 1.11777i −0.338874 0.940832i \(-0.610046\pi\)
0.984221 0.176942i \(-0.0566205\pi\)
\(992\) 0.314639 0.00998980
\(993\) 0 0
\(994\) 15.5310 4.16151i 0.492612 0.131995i
\(995\) 31.1487 8.34627i 0.987481 0.264595i
\(996\) 0 0
\(997\) 15.3421 0.485888 0.242944 0.970040i \(-0.421887\pi\)
0.242944 + 0.970040i \(0.421887\pi\)
\(998\) 5.90466 10.2272i 0.186909 0.323735i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bc.a.683.2 56
3.2 odd 2 234.2.z.a.137.8 yes 56
9.4 even 3 234.2.y.a.59.12 56
9.5 odd 6 702.2.bb.a.449.2 56
13.2 odd 12 702.2.bb.a.197.2 56
39.2 even 12 234.2.y.a.119.12 yes 56
117.41 even 12 inner 702.2.bc.a.665.2 56
117.67 odd 12 234.2.z.a.41.8 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.y.a.59.12 56 9.4 even 3
234.2.y.a.119.12 yes 56 39.2 even 12
234.2.z.a.41.8 yes 56 117.67 odd 12
234.2.z.a.137.8 yes 56 3.2 odd 2
702.2.bb.a.197.2 56 13.2 odd 12
702.2.bb.a.449.2 56 9.5 odd 6
702.2.bc.a.665.2 56 117.41 even 12 inner
702.2.bc.a.683.2 56 1.1 even 1 trivial