Properties

Label 702.2.bc.a.665.9
Level $702$
Weight $2$
Character 702.665
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(305,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.305"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([2, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bc (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 665.9
Character \(\chi\) \(=\) 702.665
Dual form 702.2.bc.a.683.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.965926 - 0.258819i) q^{2} +(0.866025 - 0.500000i) q^{4} +(-2.84756 + 0.763001i) q^{5} +(-1.37958 - 1.37958i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-2.55305 + 1.47400i) q^{10} +(-0.207457 - 0.774238i) q^{11} +(-3.58657 - 0.369493i) q^{13} +(-1.68964 - 0.975511i) q^{14} +(0.500000 - 0.866025i) q^{16} +(4.02058 - 6.96385i) q^{17} +(-1.18319 - 4.41574i) q^{19} +(-2.08456 + 2.08456i) q^{20} +(-0.400775 - 0.694163i) q^{22} -6.99376 q^{23} +(3.19629 - 1.84538i) q^{25} +(-3.55999 + 0.571370i) q^{26} +(-1.88454 - 0.504962i) q^{28} +(-6.82146 - 3.93837i) q^{29} +(0.619046 + 2.31031i) q^{31} +(0.258819 - 0.965926i) q^{32} +(2.08121 - 7.76717i) q^{34} +(4.98106 + 2.87582i) q^{35} +(-2.09658 + 7.82455i) q^{37} +(-2.28576 - 3.95904i) q^{38} +(-1.47400 + 2.55305i) q^{40} +(3.66359 + 3.66359i) q^{41} +2.33382i q^{43} +(-0.566782 - 0.566782i) q^{44} +(-6.75546 + 1.81012i) q^{46} +(5.14869 + 1.37959i) q^{47} -3.19351i q^{49} +(2.60976 - 2.60976i) q^{50} +(-3.29081 + 1.47329i) q^{52} -8.27924i q^{53} +(1.18149 + 2.04640i) q^{55} -1.95102 q^{56} +(-7.60835 - 2.03865i) q^{58} +(8.52709 + 2.28483i) q^{59} -4.93917 q^{61} +(1.19590 + 2.07137i) q^{62} -1.00000i q^{64} +(10.4949 - 1.68440i) q^{65} +(0.549015 - 0.549015i) q^{67} -8.04117i q^{68} +(5.55565 + 1.48863i) q^{70} +(2.57304 - 0.689443i) q^{71} +(5.68293 + 5.68293i) q^{73} +8.10057i q^{74} +(-3.23255 - 3.23255i) q^{76} +(-0.781921 + 1.35433i) q^{77} +(0.554497 + 0.960416i) q^{79} +(-0.763001 + 2.84756i) q^{80} +(4.48696 + 2.59055i) q^{82} +(-0.614312 + 2.29264i) q^{83} +(-6.13542 + 22.8977i) q^{85} +(0.604036 + 2.25429i) q^{86} +(-0.694163 - 0.400775i) q^{88} +(2.84070 + 0.761164i) q^{89} +(4.43822 + 5.45771i) q^{91} +(-6.05678 + 3.49688i) q^{92} +5.33031 q^{94} +(6.73843 + 11.6713i) q^{95} +(2.59780 - 2.59780i) q^{97} +(-0.826542 - 3.08469i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 8 q^{7} + 24 q^{11} + 28 q^{16} - 8 q^{19} - 4 q^{28} - 4 q^{31} + 24 q^{35} - 4 q^{37} - 36 q^{38} + 48 q^{41} + 36 q^{47} + 24 q^{50} + 8 q^{52} + 36 q^{65} + 28 q^{67} + 24 q^{71} + 28 q^{73}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.965926 0.258819i 0.683013 0.183013i
\(3\) 0 0
\(4\) 0.866025 0.500000i 0.433013 0.250000i
\(5\) −2.84756 + 0.763001i −1.27347 + 0.341224i −0.831358 0.555737i \(-0.812436\pi\)
−0.442109 + 0.896962i \(0.645769\pi\)
\(6\) 0 0
\(7\) −1.37958 1.37958i −0.521433 0.521433i 0.396571 0.918004i \(-0.370200\pi\)
−0.918004 + 0.396571i \(0.870200\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) −2.55305 + 1.47400i −0.807345 + 0.466121i
\(11\) −0.207457 0.774238i −0.0625505 0.233442i 0.927572 0.373643i \(-0.121892\pi\)
−0.990123 + 0.140202i \(0.955225\pi\)
\(12\) 0 0
\(13\) −3.58657 0.369493i −0.994735 0.102479i
\(14\) −1.68964 0.975511i −0.451574 0.260716i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 4.02058 6.96385i 0.975135 1.68898i 0.295645 0.955298i \(-0.404465\pi\)
0.679490 0.733685i \(-0.262201\pi\)
\(18\) 0 0
\(19\) −1.18319 4.41574i −0.271443 1.01304i −0.958188 0.286141i \(-0.907627\pi\)
0.686744 0.726899i \(-0.259039\pi\)
\(20\) −2.08456 + 2.08456i −0.466121 + 0.466121i
\(21\) 0 0
\(22\) −0.400775 0.694163i −0.0854456 0.147996i
\(23\) −6.99376 −1.45830 −0.729150 0.684354i \(-0.760084\pi\)
−0.729150 + 0.684354i \(0.760084\pi\)
\(24\) 0 0
\(25\) 3.19629 1.84538i 0.639258 0.369076i
\(26\) −3.55999 + 0.571370i −0.698172 + 0.112055i
\(27\) 0 0
\(28\) −1.88454 0.504962i −0.356145 0.0954288i
\(29\) −6.82146 3.93837i −1.26671 0.731337i −0.292348 0.956312i \(-0.594437\pi\)
−0.974365 + 0.224975i \(0.927770\pi\)
\(30\) 0 0
\(31\) 0.619046 + 2.31031i 0.111184 + 0.414944i 0.998973 0.0453062i \(-0.0144263\pi\)
−0.887789 + 0.460250i \(0.847760\pi\)
\(32\) 0.258819 0.965926i 0.0457532 0.170753i
\(33\) 0 0
\(34\) 2.08121 7.76717i 0.356924 1.33206i
\(35\) 4.98106 + 2.87582i 0.841953 + 0.486102i
\(36\) 0 0
\(37\) −2.09658 + 7.82455i −0.344676 + 1.28635i 0.548314 + 0.836272i \(0.315270\pi\)
−0.892990 + 0.450076i \(0.851397\pi\)
\(38\) −2.28576 3.95904i −0.370798 0.642242i
\(39\) 0 0
\(40\) −1.47400 + 2.55305i −0.233061 + 0.403673i
\(41\) 3.66359 + 3.66359i 0.572156 + 0.572156i 0.932730 0.360574i \(-0.117419\pi\)
−0.360574 + 0.932730i \(0.617419\pi\)
\(42\) 0 0
\(43\) 2.33382i 0.355904i 0.984039 + 0.177952i \(0.0569471\pi\)
−0.984039 + 0.177952i \(0.943053\pi\)
\(44\) −0.566782 0.566782i −0.0854456 0.0854456i
\(45\) 0 0
\(46\) −6.75546 + 1.81012i −0.996038 + 0.266887i
\(47\) 5.14869 + 1.37959i 0.751013 + 0.201233i 0.613968 0.789331i \(-0.289573\pi\)
0.137046 + 0.990565i \(0.456239\pi\)
\(48\) 0 0
\(49\) 3.19351i 0.456216i
\(50\) 2.60976 2.60976i 0.369076 0.369076i
\(51\) 0 0
\(52\) −3.29081 + 1.47329i −0.456353 + 0.204309i
\(53\) 8.27924i 1.13724i −0.822600 0.568620i \(-0.807477\pi\)
0.822600 0.568620i \(-0.192523\pi\)
\(54\) 0 0
\(55\) 1.18149 + 2.04640i 0.159312 + 0.275936i
\(56\) −1.95102 −0.260716
\(57\) 0 0
\(58\) −7.60835 2.03865i −0.999025 0.267688i
\(59\) 8.52709 + 2.28483i 1.11013 + 0.297459i 0.766884 0.641786i \(-0.221806\pi\)
0.343248 + 0.939245i \(0.388473\pi\)
\(60\) 0 0
\(61\) −4.93917 −0.632396 −0.316198 0.948693i \(-0.602406\pi\)
−0.316198 + 0.948693i \(0.602406\pi\)
\(62\) 1.19590 + 2.07137i 0.151880 + 0.263064i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 10.4949 1.68440i 1.30173 0.208924i
\(66\) 0 0
\(67\) 0.549015 0.549015i 0.0670729 0.0670729i −0.672775 0.739847i \(-0.734898\pi\)
0.739847 + 0.672775i \(0.234898\pi\)
\(68\) 8.04117i 0.975135i
\(69\) 0 0
\(70\) 5.55565 + 1.48863i 0.664027 + 0.177926i
\(71\) 2.57304 0.689443i 0.305363 0.0818218i −0.102884 0.994693i \(-0.532807\pi\)
0.408247 + 0.912872i \(0.366140\pi\)
\(72\) 0 0
\(73\) 5.68293 + 5.68293i 0.665137 + 0.665137i 0.956586 0.291449i \(-0.0941375\pi\)
−0.291449 + 0.956586i \(0.594137\pi\)
\(74\) 8.10057i 0.941672i
\(75\) 0 0
\(76\) −3.23255 3.23255i −0.370798 0.370798i
\(77\) −0.781921 + 1.35433i −0.0891082 + 0.154340i
\(78\) 0 0
\(79\) 0.554497 + 0.960416i 0.0623857 + 0.108055i 0.895531 0.444998i \(-0.146796\pi\)
−0.833146 + 0.553054i \(0.813462\pi\)
\(80\) −0.763001 + 2.84756i −0.0853061 + 0.318367i
\(81\) 0 0
\(82\) 4.48696 + 2.59055i 0.495502 + 0.286078i
\(83\) −0.614312 + 2.29264i −0.0674295 + 0.251650i −0.991410 0.130789i \(-0.958249\pi\)
0.923981 + 0.382439i \(0.124916\pi\)
\(84\) 0 0
\(85\) −6.13542 + 22.8977i −0.665479 + 2.48360i
\(86\) 0.604036 + 2.25429i 0.0651349 + 0.243087i
\(87\) 0 0
\(88\) −0.694163 0.400775i −0.0739980 0.0427228i
\(89\) 2.84070 + 0.761164i 0.301114 + 0.0806832i 0.406213 0.913779i \(-0.366849\pi\)
−0.105099 + 0.994462i \(0.533516\pi\)
\(90\) 0 0
\(91\) 4.43822 + 5.45771i 0.465252 + 0.572123i
\(92\) −6.05678 + 3.49688i −0.631463 + 0.364575i
\(93\) 0 0
\(94\) 5.33031 0.549780
\(95\) 6.73843 + 11.6713i 0.691348 + 1.19745i
\(96\) 0 0
\(97\) 2.59780 2.59780i 0.263767 0.263767i −0.562816 0.826582i \(-0.690282\pi\)
0.826582 + 0.562816i \(0.190282\pi\)
\(98\) −0.826542 3.08469i −0.0834933 0.311601i
\(99\) 0 0
\(100\) 1.84538 3.19629i 0.184538 0.319629i
\(101\) 6.82190 11.8159i 0.678804 1.17572i −0.296537 0.955021i \(-0.595832\pi\)
0.975341 0.220702i \(-0.0708349\pi\)
\(102\) 0 0
\(103\) −11.6669 6.73592i −1.14958 0.663710i −0.200794 0.979633i \(-0.564352\pi\)
−0.948785 + 0.315924i \(0.897686\pi\)
\(104\) −2.79736 + 2.27482i −0.274304 + 0.223064i
\(105\) 0 0
\(106\) −2.14282 7.99713i −0.208129 0.776750i
\(107\) −16.0522 + 9.26775i −1.55183 + 0.895947i −0.553833 + 0.832628i \(0.686835\pi\)
−0.997993 + 0.0633192i \(0.979831\pi\)
\(108\) 0 0
\(109\) 4.23071 4.23071i 0.405229 0.405229i −0.474842 0.880071i \(-0.657495\pi\)
0.880071 + 0.474842i \(0.157495\pi\)
\(110\) 1.67088 + 1.67088i 0.159312 + 0.159312i
\(111\) 0 0
\(112\) −1.88454 + 0.504962i −0.178073 + 0.0477144i
\(113\) 5.17811 2.98958i 0.487116 0.281236i −0.236261 0.971690i \(-0.575922\pi\)
0.723377 + 0.690453i \(0.242589\pi\)
\(114\) 0 0
\(115\) 19.9151 5.33625i 1.85710 0.497608i
\(116\) −7.87674 −0.731337
\(117\) 0 0
\(118\) 8.82789 0.812673
\(119\) −15.1539 + 4.06048i −1.38916 + 0.372224i
\(120\) 0 0
\(121\) 8.96987 5.17876i 0.815443 0.470796i
\(122\) −4.77087 + 1.27835i −0.431935 + 0.115737i
\(123\) 0 0
\(124\) 1.69127 + 1.69127i 0.151880 + 0.151880i
\(125\) 2.72919 2.72919i 0.244106 0.244106i
\(126\) 0 0
\(127\) 1.93815 1.11899i 0.171983 0.0992946i −0.411537 0.911393i \(-0.635008\pi\)
0.583521 + 0.812098i \(0.301675\pi\)
\(128\) −0.258819 0.965926i −0.0228766 0.0853766i
\(129\) 0 0
\(130\) 9.70133 4.34328i 0.850863 0.380931i
\(131\) −7.37842 4.25993i −0.644656 0.372192i 0.141750 0.989903i \(-0.454727\pi\)
−0.786406 + 0.617710i \(0.788060\pi\)
\(132\) 0 0
\(133\) −4.45956 + 7.72418i −0.386693 + 0.669772i
\(134\) 0.388212 0.672403i 0.0335364 0.0580868i
\(135\) 0 0
\(136\) −2.08121 7.76717i −0.178462 0.666029i
\(137\) −8.21858 + 8.21858i −0.702161 + 0.702161i −0.964874 0.262713i \(-0.915383\pi\)
0.262713 + 0.964874i \(0.415383\pi\)
\(138\) 0 0
\(139\) −11.4143 19.7701i −0.968147 1.67688i −0.700910 0.713250i \(-0.747222\pi\)
−0.267238 0.963631i \(-0.586111\pi\)
\(140\) 5.75163 0.486102
\(141\) 0 0
\(142\) 2.30692 1.33190i 0.193593 0.111771i
\(143\) 0.457981 + 2.85351i 0.0382983 + 0.238623i
\(144\) 0 0
\(145\) 22.4295 + 6.00996i 1.86267 + 0.499100i
\(146\) 6.96014 + 4.01844i 0.576026 + 0.332568i
\(147\) 0 0
\(148\) 2.09658 + 7.82455i 0.172338 + 0.643174i
\(149\) −2.01425 + 7.51729i −0.165014 + 0.615840i 0.833025 + 0.553236i \(0.186607\pi\)
−0.998038 + 0.0626041i \(0.980059\pi\)
\(150\) 0 0
\(151\) 2.05706 7.67704i 0.167401 0.624748i −0.830321 0.557285i \(-0.811843\pi\)
0.997722 0.0674629i \(-0.0214904\pi\)
\(152\) −3.95904 2.28576i −0.321121 0.185399i
\(153\) 0 0
\(154\) −0.404752 + 1.51056i −0.0326159 + 0.121724i
\(155\) −3.52554 6.10641i −0.283178 0.490479i
\(156\) 0 0
\(157\) 1.97021 3.41251i 0.157240 0.272348i −0.776632 0.629954i \(-0.783074\pi\)
0.933872 + 0.357606i \(0.116407\pi\)
\(158\) 0.784177 + 0.784177i 0.0623857 + 0.0623857i
\(159\) 0 0
\(160\) 2.94801i 0.233061i
\(161\) 9.64846 + 9.64846i 0.760405 + 0.760405i
\(162\) 0 0
\(163\) −19.9290 + 5.33996i −1.56096 + 0.418258i −0.932967 0.359962i \(-0.882790\pi\)
−0.627992 + 0.778220i \(0.716123\pi\)
\(164\) 5.00455 + 1.34097i 0.390790 + 0.104712i
\(165\) 0 0
\(166\) 2.37352i 0.184221i
\(167\) 3.99041 3.99041i 0.308787 0.308787i −0.535652 0.844439i \(-0.679934\pi\)
0.844439 + 0.535652i \(0.179934\pi\)
\(168\) 0 0
\(169\) 12.7269 + 2.65042i 0.978996 + 0.203879i
\(170\) 23.7054i 1.81812i
\(171\) 0 0
\(172\) 1.16691 + 2.02114i 0.0889759 + 0.154111i
\(173\) 16.4329 1.24937 0.624687 0.780876i \(-0.285227\pi\)
0.624687 + 0.780876i \(0.285227\pi\)
\(174\) 0 0
\(175\) −6.95539 1.86369i −0.525778 0.140882i
\(176\) −0.774238 0.207457i −0.0583604 0.0156376i
\(177\) 0 0
\(178\) 2.94091 0.220431
\(179\) 3.02863 + 5.24575i 0.226371 + 0.392085i 0.956730 0.290978i \(-0.0939806\pi\)
−0.730359 + 0.683063i \(0.760647\pi\)
\(180\) 0 0
\(181\) 12.2487i 0.910436i 0.890380 + 0.455218i \(0.150439\pi\)
−0.890380 + 0.455218i \(0.849561\pi\)
\(182\) 5.69955 + 4.12305i 0.422479 + 0.305621i
\(183\) 0 0
\(184\) −4.94534 + 4.94534i −0.364575 + 0.364575i
\(185\) 23.8806i 1.75573i
\(186\) 0 0
\(187\) −6.22578 1.66819i −0.455274 0.121990i
\(188\) 5.14869 1.37959i 0.375507 0.100617i
\(189\) 0 0
\(190\) 9.52957 + 9.52957i 0.691348 + 0.691348i
\(191\) 0.420709i 0.0304415i −0.999884 0.0152207i \(-0.995155\pi\)
0.999884 0.0152207i \(-0.00484510\pi\)
\(192\) 0 0
\(193\) −9.60907 9.60907i −0.691676 0.691676i 0.270924 0.962601i \(-0.412671\pi\)
−0.962601 + 0.270924i \(0.912671\pi\)
\(194\) 1.83692 3.18164i 0.131883 0.228429i
\(195\) 0 0
\(196\) −1.59676 2.76566i −0.114054 0.197547i
\(197\) −0.239457 + 0.893667i −0.0170606 + 0.0636712i −0.973931 0.226843i \(-0.927160\pi\)
0.956871 + 0.290514i \(0.0938263\pi\)
\(198\) 0 0
\(199\) 11.1074 + 6.41286i 0.787382 + 0.454595i 0.839040 0.544070i \(-0.183117\pi\)
−0.0516579 + 0.998665i \(0.516451\pi\)
\(200\) 0.955238 3.56500i 0.0675455 0.252083i
\(201\) 0 0
\(202\) 3.53128 13.1789i 0.248460 0.927264i
\(203\) 3.97745 + 14.8441i 0.279162 + 1.04185i
\(204\) 0 0
\(205\) −13.2276 7.63696i −0.923855 0.533388i
\(206\) −13.0128 3.48677i −0.906644 0.242935i
\(207\) 0 0
\(208\) −2.11327 + 2.92131i −0.146529 + 0.202557i
\(209\) −3.17337 + 1.83215i −0.219507 + 0.126732i
\(210\) 0 0
\(211\) 6.84606 0.471302 0.235651 0.971838i \(-0.424278\pi\)
0.235651 + 0.971838i \(0.424278\pi\)
\(212\) −4.13962 7.17003i −0.284310 0.492440i
\(213\) 0 0
\(214\) −13.1066 + 13.1066i −0.895947 + 0.895947i
\(215\) −1.78070 6.64568i −0.121443 0.453231i
\(216\) 0 0
\(217\) 2.33324 4.04129i 0.158390 0.274340i
\(218\) 2.99156 5.18154i 0.202614 0.350938i
\(219\) 0 0
\(220\) 2.04640 + 1.18149i 0.137968 + 0.0796560i
\(221\) −16.9932 + 23.4908i −1.14309 + 1.58016i
\(222\) 0 0
\(223\) 4.57899 + 17.0890i 0.306632 + 1.14436i 0.931532 + 0.363660i \(0.118473\pi\)
−0.624900 + 0.780705i \(0.714860\pi\)
\(224\) −1.68964 + 0.975511i −0.112893 + 0.0651791i
\(225\) 0 0
\(226\) 4.22791 4.22791i 0.281236 0.281236i
\(227\) −13.6942 13.6942i −0.908916 0.908916i 0.0872689 0.996185i \(-0.472186\pi\)
−0.996185 + 0.0872689i \(0.972186\pi\)
\(228\) 0 0
\(229\) 25.0861 6.72179i 1.65773 0.444188i 0.695971 0.718070i \(-0.254974\pi\)
0.961763 + 0.273882i \(0.0883077\pi\)
\(230\) 17.8554 10.3088i 1.17735 0.679745i
\(231\) 0 0
\(232\) −7.60835 + 2.03865i −0.499512 + 0.133844i
\(233\) 11.9090 0.780184 0.390092 0.920776i \(-0.372443\pi\)
0.390092 + 0.920776i \(0.372443\pi\)
\(234\) 0 0
\(235\) −15.7138 −1.02506
\(236\) 8.52709 2.28483i 0.555066 0.148730i
\(237\) 0 0
\(238\) −13.5866 + 7.84425i −0.880691 + 0.508467i
\(239\) −8.96480 + 2.40211i −0.579885 + 0.155380i −0.536826 0.843693i \(-0.680377\pi\)
−0.0430587 + 0.999073i \(0.513710\pi\)
\(240\) 0 0
\(241\) −6.92428 6.92428i −0.446032 0.446032i 0.448001 0.894033i \(-0.352136\pi\)
−0.894033 + 0.448001i \(0.852136\pi\)
\(242\) 7.32387 7.32387i 0.470796 0.470796i
\(243\) 0 0
\(244\) −4.27745 + 2.46959i −0.273836 + 0.158099i
\(245\) 2.43665 + 9.09371i 0.155672 + 0.580976i
\(246\) 0 0
\(247\) 2.61202 + 16.2745i 0.166199 + 1.03552i
\(248\) 2.07137 + 1.19590i 0.131532 + 0.0759400i
\(249\) 0 0
\(250\) 1.92983 3.34257i 0.122053 0.211402i
\(251\) −7.05445 + 12.2187i −0.445273 + 0.771235i −0.998071 0.0620799i \(-0.980227\pi\)
0.552798 + 0.833315i \(0.313560\pi\)
\(252\) 0 0
\(253\) 1.45090 + 5.41484i 0.0912174 + 0.340428i
\(254\) 1.58250 1.58250i 0.0992946 0.0992946i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 5.11976 0.319362 0.159681 0.987169i \(-0.448953\pi\)
0.159681 + 0.987169i \(0.448953\pi\)
\(258\) 0 0
\(259\) 13.6870 7.90220i 0.850469 0.491019i
\(260\) 8.24664 6.70618i 0.511435 0.415900i
\(261\) 0 0
\(262\) −8.22956 2.20510i −0.508424 0.136232i
\(263\) −12.4904 7.21136i −0.770194 0.444671i 0.0627501 0.998029i \(-0.480013\pi\)
−0.832944 + 0.553358i \(0.813346\pi\)
\(264\) 0 0
\(265\) 6.31706 + 23.5756i 0.388054 + 1.44824i
\(266\) −2.30844 + 8.61521i −0.141539 + 0.528232i
\(267\) 0 0
\(268\) 0.200953 0.749969i 0.0122752 0.0458116i
\(269\) 10.3656 + 5.98459i 0.632002 + 0.364887i 0.781527 0.623871i \(-0.214441\pi\)
−0.149525 + 0.988758i \(0.547774\pi\)
\(270\) 0 0
\(271\) 6.16812 23.0197i 0.374687 1.39835i −0.479115 0.877752i \(-0.659042\pi\)
0.853802 0.520598i \(-0.174291\pi\)
\(272\) −4.02058 6.96385i −0.243784 0.422246i
\(273\) 0 0
\(274\) −5.81141 + 10.0657i −0.351080 + 0.608089i
\(275\) −2.09185 2.09185i −0.126143 0.126143i
\(276\) 0 0
\(277\) 9.44410i 0.567441i −0.958907 0.283721i \(-0.908431\pi\)
0.958907 0.283721i \(-0.0915688\pi\)
\(278\) −16.1422 16.1422i −0.968147 0.968147i
\(279\) 0 0
\(280\) 5.55565 1.48863i 0.332014 0.0889628i
\(281\) −18.8382 5.04768i −1.12379 0.301119i −0.351376 0.936235i \(-0.614286\pi\)
−0.772417 + 0.635115i \(0.780953\pi\)
\(282\) 0 0
\(283\) 20.7236i 1.23189i −0.787789 0.615946i \(-0.788774\pi\)
0.787789 0.615946i \(-0.211226\pi\)
\(284\) 1.88359 1.88359i 0.111771 0.111771i
\(285\) 0 0
\(286\) 1.18092 + 2.63775i 0.0698292 + 0.155973i
\(287\) 10.1084i 0.596682i
\(288\) 0 0
\(289\) −23.8302 41.2751i −1.40178 2.42795i
\(290\) 23.2207 1.36357
\(291\) 0 0
\(292\) 7.76303 + 2.08010i 0.454297 + 0.121729i
\(293\) −18.6486 4.99688i −1.08946 0.291921i −0.330996 0.943632i \(-0.607385\pi\)
−0.758467 + 0.651711i \(0.774051\pi\)
\(294\) 0 0
\(295\) −26.0247 −1.51522
\(296\) 4.05028 + 7.01530i 0.235418 + 0.407756i
\(297\) 0 0
\(298\) 7.78247i 0.450826i
\(299\) 25.0836 + 2.58415i 1.45062 + 0.149445i
\(300\) 0 0
\(301\) 3.21969 3.21969i 0.185580 0.185580i
\(302\) 7.94785i 0.457348i
\(303\) 0 0
\(304\) −4.41574 1.18319i −0.253260 0.0678608i
\(305\) 14.0646 3.76859i 0.805335 0.215789i
\(306\) 0 0
\(307\) −15.5762 15.5762i −0.888978 0.888978i 0.105447 0.994425i \(-0.466373\pi\)
−0.994425 + 0.105447i \(0.966373\pi\)
\(308\) 1.56384i 0.0891082i
\(309\) 0 0
\(310\) −4.98586 4.98586i −0.283178 0.283178i
\(311\) 4.85889 8.41584i 0.275522 0.477218i −0.694745 0.719257i \(-0.744483\pi\)
0.970267 + 0.242038i \(0.0778159\pi\)
\(312\) 0 0
\(313\) 2.74916 + 4.76168i 0.155392 + 0.269146i 0.933202 0.359353i \(-0.117003\pi\)
−0.777810 + 0.628500i \(0.783669\pi\)
\(314\) 1.01986 3.80616i 0.0575539 0.214794i
\(315\) 0 0
\(316\) 0.960416 + 0.554497i 0.0540276 + 0.0311929i
\(317\) −0.270848 + 1.01082i −0.0152123 + 0.0567731i −0.973115 0.230321i \(-0.926022\pi\)
0.957902 + 0.287094i \(0.0926892\pi\)
\(318\) 0 0
\(319\) −1.63408 + 6.09847i −0.0914910 + 0.341449i
\(320\) 0.763001 + 2.84756i 0.0426530 + 0.159183i
\(321\) 0 0
\(322\) 11.8169 + 6.82249i 0.658530 + 0.380203i
\(323\) −35.5077 9.51426i −1.97570 0.529388i
\(324\) 0 0
\(325\) −12.1456 + 5.43757i −0.673715 + 0.301622i
\(326\) −17.8678 + 10.3160i −0.989609 + 0.571351i
\(327\) 0 0
\(328\) 5.18109 0.286078
\(329\) −5.19978 9.00629i −0.286673 0.496533i
\(330\) 0 0
\(331\) −8.72945 + 8.72945i −0.479814 + 0.479814i −0.905072 0.425258i \(-0.860183\pi\)
0.425258 + 0.905072i \(0.360183\pi\)
\(332\) 0.614312 + 2.29264i 0.0337147 + 0.125825i
\(333\) 0 0
\(334\) 2.82165 4.88724i 0.154394 0.267418i
\(335\) −1.14445 + 1.98225i −0.0625282 + 0.108302i
\(336\) 0 0
\(337\) 18.3428 + 10.5902i 0.999195 + 0.576886i 0.908010 0.418948i \(-0.137601\pi\)
0.0911852 + 0.995834i \(0.470934\pi\)
\(338\) 12.9793 0.733864i 0.705979 0.0399170i
\(339\) 0 0
\(340\) 6.13542 + 22.8977i 0.332740 + 1.24180i
\(341\) 1.66031 0.958578i 0.0899106 0.0519099i
\(342\) 0 0
\(343\) −14.0628 + 14.0628i −0.759319 + 0.759319i
\(344\) 1.65026 + 1.65026i 0.0889759 + 0.0889759i
\(345\) 0 0
\(346\) 15.8730 4.25316i 0.853338 0.228651i
\(347\) 2.17991 1.25857i 0.117024 0.0675636i −0.440346 0.897828i \(-0.645144\pi\)
0.557369 + 0.830265i \(0.311811\pi\)
\(348\) 0 0
\(349\) 17.1855 4.60485i 0.919921 0.246492i 0.232369 0.972628i \(-0.425352\pi\)
0.687552 + 0.726136i \(0.258686\pi\)
\(350\) −7.20075 −0.384896
\(351\) 0 0
\(352\) −0.801550 −0.0427228
\(353\) 3.01498 0.807861i 0.160471 0.0429981i −0.177689 0.984087i \(-0.556862\pi\)
0.338160 + 0.941089i \(0.390195\pi\)
\(354\) 0 0
\(355\) −6.80082 + 3.92646i −0.360950 + 0.208395i
\(356\) 2.84070 0.761164i 0.150557 0.0403416i
\(357\) 0 0
\(358\) 4.28313 + 4.28313i 0.226371 + 0.226371i
\(359\) −14.3618 + 14.3618i −0.757986 + 0.757986i −0.975956 0.217970i \(-0.930057\pi\)
0.217970 + 0.975956i \(0.430057\pi\)
\(360\) 0 0
\(361\) −1.64433 + 0.949354i −0.0865436 + 0.0499660i
\(362\) 3.17019 + 11.8313i 0.166621 + 0.621839i
\(363\) 0 0
\(364\) 6.57246 + 2.50741i 0.344491 + 0.131424i
\(365\) −20.5186 11.8464i −1.07399 0.620069i
\(366\) 0 0
\(367\) −11.6102 + 20.1095i −0.606049 + 1.04971i 0.385835 + 0.922568i \(0.373913\pi\)
−0.991885 + 0.127141i \(0.959420\pi\)
\(368\) −3.49688 + 6.05678i −0.182288 + 0.315731i
\(369\) 0 0
\(370\) −6.18074 23.0668i −0.321321 1.19919i
\(371\) −11.4219 + 11.4219i −0.592994 + 0.592994i
\(372\) 0 0
\(373\) −12.6570 21.9226i −0.655355 1.13511i −0.981805 0.189893i \(-0.939186\pi\)
0.326450 0.945214i \(-0.394148\pi\)
\(374\) −6.44540 −0.333284
\(375\) 0 0
\(376\) 4.61619 2.66516i 0.238062 0.137445i
\(377\) 23.0104 + 16.6457i 1.18510 + 0.857298i
\(378\) 0 0
\(379\) −22.2862 5.97156i −1.14476 0.306738i −0.363898 0.931439i \(-0.618554\pi\)
−0.780865 + 0.624700i \(0.785221\pi\)
\(380\) 11.6713 + 6.73843i 0.598725 + 0.345674i
\(381\) 0 0
\(382\) −0.108888 0.406374i −0.00557117 0.0207919i
\(383\) 6.17345 23.0396i 0.315448 1.17727i −0.608123 0.793843i \(-0.708077\pi\)
0.923571 0.383426i \(-0.125256\pi\)
\(384\) 0 0
\(385\) 1.19321 4.45313i 0.0608118 0.226953i
\(386\) −11.7687 6.79464i −0.599009 0.345838i
\(387\) 0 0
\(388\) 0.950861 3.54866i 0.0482726 0.180156i
\(389\) 12.4984 + 21.6479i 0.633694 + 1.09759i 0.986790 + 0.162004i \(0.0517957\pi\)
−0.353096 + 0.935587i \(0.614871\pi\)
\(390\) 0 0
\(391\) −28.1190 + 48.7035i −1.42204 + 2.46304i
\(392\) −2.25815 2.25815i −0.114054 0.114054i
\(393\) 0 0
\(394\) 0.925192i 0.0466105i
\(395\) −2.31176 2.31176i −0.116317 0.116317i
\(396\) 0 0
\(397\) 20.3908 5.46370i 1.02338 0.274215i 0.292173 0.956366i \(-0.405622\pi\)
0.731212 + 0.682150i \(0.238955\pi\)
\(398\) 12.3887 + 3.31954i 0.620989 + 0.166393i
\(399\) 0 0
\(400\) 3.69076i 0.184538i
\(401\) 12.5004 12.5004i 0.624242 0.624242i −0.322371 0.946613i \(-0.604480\pi\)
0.946613 + 0.322371i \(0.104480\pi\)
\(402\) 0 0
\(403\) −1.36661 8.51482i −0.0680756 0.424154i
\(404\) 13.6438i 0.678804i
\(405\) 0 0
\(406\) 7.68385 + 13.3088i 0.381343 + 0.660506i
\(407\) 6.49301 0.321847
\(408\) 0 0
\(409\) 20.2046 + 5.41382i 0.999055 + 0.267696i 0.721050 0.692884i \(-0.243660\pi\)
0.278005 + 0.960580i \(0.410327\pi\)
\(410\) −14.7535 3.95318i −0.728622 0.195234i
\(411\) 0 0
\(412\) −13.4718 −0.663710
\(413\) −8.61171 14.9159i −0.423754 0.733964i
\(414\) 0 0
\(415\) 6.99715i 0.343477i
\(416\) −1.28518 + 3.36873i −0.0630109 + 0.165165i
\(417\) 0 0
\(418\) −2.59105 + 2.59105i −0.126732 + 0.126732i
\(419\) 17.8998i 0.874462i 0.899349 + 0.437231i \(0.144041\pi\)
−0.899349 + 0.437231i \(0.855959\pi\)
\(420\) 0 0
\(421\) 0.922884 + 0.247286i 0.0449786 + 0.0120520i 0.281238 0.959638i \(-0.409255\pi\)
−0.236260 + 0.971690i \(0.575922\pi\)
\(422\) 6.61278 1.77189i 0.321905 0.0862542i
\(423\) 0 0
\(424\) −5.85430 5.85430i −0.284310 0.284310i
\(425\) 29.6780i 1.43959i
\(426\) 0 0
\(427\) 6.81399 + 6.81399i 0.329752 + 0.329752i
\(428\) −9.26775 + 16.0522i −0.447974 + 0.775913i
\(429\) 0 0
\(430\) −3.44006 5.95835i −0.165894 0.287337i
\(431\) 10.1624 37.9267i 0.489507 1.82687i −0.0693375 0.997593i \(-0.522089\pi\)
0.558845 0.829272i \(-0.311245\pi\)
\(432\) 0 0
\(433\) 9.53436 + 5.50467i 0.458192 + 0.264537i 0.711284 0.702905i \(-0.248114\pi\)
−0.253092 + 0.967442i \(0.581447\pi\)
\(434\) 1.20777 4.50747i 0.0579749 0.216365i
\(435\) 0 0
\(436\) 1.54855 5.77926i 0.0741620 0.276776i
\(437\) 8.27498 + 30.8826i 0.395846 + 1.47732i
\(438\) 0 0
\(439\) 3.69190 + 2.13152i 0.176205 + 0.101732i 0.585508 0.810666i \(-0.300895\pi\)
−0.409304 + 0.912398i \(0.634228\pi\)
\(440\) 2.28246 + 0.611584i 0.108812 + 0.0291561i
\(441\) 0 0
\(442\) −10.3343 + 27.0885i −0.491553 + 1.28847i
\(443\) −24.9846 + 14.4249i −1.18705 + 0.685346i −0.957636 0.287981i \(-0.907016\pi\)
−0.229419 + 0.973328i \(0.573683\pi\)
\(444\) 0 0
\(445\) −8.66983 −0.410989
\(446\) 8.84592 + 15.3216i 0.418866 + 0.725498i
\(447\) 0 0
\(448\) −1.37958 + 1.37958i −0.0651791 + 0.0651791i
\(449\) −6.56424 24.4981i −0.309786 1.15614i −0.928747 0.370714i \(-0.879113\pi\)
0.618961 0.785421i \(-0.287554\pi\)
\(450\) 0 0
\(451\) 2.07645 3.59652i 0.0977764 0.169354i
\(452\) 2.98958 5.17811i 0.140618 0.243558i
\(453\) 0 0
\(454\) −16.7719 9.68326i −0.787144 0.454458i
\(455\) −16.8023 12.1548i −0.787705 0.569825i
\(456\) 0 0
\(457\) −7.44528 27.7862i −0.348275 1.29978i −0.888739 0.458414i \(-0.848418\pi\)
0.540463 0.841368i \(-0.318249\pi\)
\(458\) 22.4916 12.9855i 1.05096 0.606773i
\(459\) 0 0
\(460\) 14.5789 14.5789i 0.679745 0.679745i
\(461\) −26.1642 26.1642i −1.21859 1.21859i −0.968126 0.250464i \(-0.919417\pi\)
−0.250464 0.968126i \(-0.580583\pi\)
\(462\) 0 0
\(463\) −2.40613 + 0.644720i −0.111822 + 0.0299627i −0.314296 0.949325i \(-0.601769\pi\)
0.202474 + 0.979288i \(0.435102\pi\)
\(464\) −6.82146 + 3.93837i −0.316678 + 0.182834i
\(465\) 0 0
\(466\) 11.5032 3.08227i 0.532875 0.142784i
\(467\) 31.2741 1.44719 0.723596 0.690223i \(-0.242488\pi\)
0.723596 + 0.690223i \(0.242488\pi\)
\(468\) 0 0
\(469\) −1.51482 −0.0699480
\(470\) −15.1784 + 4.06703i −0.700126 + 0.187598i
\(471\) 0 0
\(472\) 7.64518 4.41394i 0.351898 0.203168i
\(473\) 1.80693 0.484165i 0.0830827 0.0222619i
\(474\) 0 0
\(475\) −11.9305 11.9305i −0.547411 0.547411i
\(476\) −11.0934 + 11.0934i −0.508467 + 0.508467i
\(477\) 0 0
\(478\) −8.03762 + 4.64052i −0.367632 + 0.212253i
\(479\) −1.43340 5.34951i −0.0654936 0.244426i 0.925416 0.378952i \(-0.123715\pi\)
−0.990910 + 0.134526i \(0.957049\pi\)
\(480\) 0 0
\(481\) 10.4107 27.2886i 0.474685 1.24425i
\(482\) −8.48048 4.89621i −0.386275 0.223016i
\(483\) 0 0
\(484\) 5.17876 8.96987i 0.235398 0.407721i
\(485\) −5.41526 + 9.37951i −0.245894 + 0.425902i
\(486\) 0 0
\(487\) −0.759319 2.83382i −0.0344080 0.128412i 0.946586 0.322453i \(-0.104507\pi\)
−0.980994 + 0.194040i \(0.937841\pi\)
\(488\) −3.49252 + 3.49252i −0.158099 + 0.158099i
\(489\) 0 0
\(490\) 4.70725 + 8.15320i 0.212652 + 0.368324i
\(491\) 35.6988 1.61106 0.805531 0.592553i \(-0.201880\pi\)
0.805531 + 0.592553i \(0.201880\pi\)
\(492\) 0 0
\(493\) −54.8525 + 31.6691i −2.47043 + 1.42630i
\(494\) 6.73518 + 15.0440i 0.303030 + 0.676860i
\(495\) 0 0
\(496\) 2.31031 + 0.619046i 0.103736 + 0.0277960i
\(497\) −4.50085 2.59857i −0.201891 0.116562i
\(498\) 0 0
\(499\) 4.71922 + 17.6124i 0.211261 + 0.788438i 0.987449 + 0.157936i \(0.0504841\pi\)
−0.776188 + 0.630502i \(0.782849\pi\)
\(500\) 0.998954 3.72815i 0.0446746 0.166728i
\(501\) 0 0
\(502\) −3.65165 + 13.6281i −0.162981 + 0.608254i
\(503\) −20.2816 11.7096i −0.904310 0.522104i −0.0257142 0.999669i \(-0.508186\pi\)
−0.878596 + 0.477565i \(0.841519\pi\)
\(504\) 0 0
\(505\) −10.4102 + 38.8515i −0.463249 + 1.72887i
\(506\) 2.80293 + 4.85481i 0.124605 + 0.215823i
\(507\) 0 0
\(508\) 1.11899 1.93815i 0.0496473 0.0859917i
\(509\) −2.33968 2.33968i −0.103705 0.103705i 0.653351 0.757055i \(-0.273363\pi\)
−0.757055 + 0.653351i \(0.773363\pi\)
\(510\) 0 0
\(511\) 15.6801i 0.693648i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 4.94531 1.32509i 0.218128 0.0584473i
\(515\) 38.3618 + 10.2790i 1.69042 + 0.452948i
\(516\) 0 0
\(517\) 4.27252i 0.187905i
\(518\) 11.1754 11.1754i 0.491019 0.491019i
\(519\) 0 0
\(520\) 6.22995 8.61206i 0.273201 0.377664i
\(521\) 7.00178i 0.306754i 0.988168 + 0.153377i \(0.0490148\pi\)
−0.988168 + 0.153377i \(0.950985\pi\)
\(522\) 0 0
\(523\) −21.4957 37.2316i −0.939940 1.62802i −0.765580 0.643341i \(-0.777548\pi\)
−0.174360 0.984682i \(-0.555786\pi\)
\(524\) −8.51987 −0.372192
\(525\) 0 0
\(526\) −13.9313 3.73287i −0.607433 0.162761i
\(527\) 18.5776 + 4.97785i 0.809253 + 0.216839i
\(528\) 0 0
\(529\) 25.9127 1.12664
\(530\) 12.2036 + 21.1373i 0.530092 + 0.918146i
\(531\) 0 0
\(532\) 8.91912i 0.386693i
\(533\) −11.7860 14.4934i −0.510510 0.627778i
\(534\) 0 0
\(535\) 38.6383 38.6383i 1.67048 1.67048i
\(536\) 0.776425i 0.0335364i
\(537\) 0 0
\(538\) 11.5613 + 3.09785i 0.498445 + 0.133558i
\(539\) −2.47254 + 0.662515i −0.106500 + 0.0285365i
\(540\) 0 0
\(541\) 8.12664 + 8.12664i 0.349391 + 0.349391i 0.859883 0.510491i \(-0.170536\pi\)
−0.510491 + 0.859883i \(0.670536\pi\)
\(542\) 23.8318i 1.02366i
\(543\) 0 0
\(544\) −5.68596 5.68596i −0.243784 0.243784i
\(545\) −8.81916 + 15.2752i −0.377771 + 0.654319i
\(546\) 0 0
\(547\) 2.01972 + 3.49826i 0.0863570 + 0.149575i 0.905969 0.423345i \(-0.139144\pi\)
−0.819612 + 0.572919i \(0.805811\pi\)
\(548\) −3.00821 + 11.2268i −0.128504 + 0.479585i
\(549\) 0 0
\(550\) −2.56199 1.47916i −0.109243 0.0630717i
\(551\) −9.31971 + 34.7816i −0.397033 + 1.48175i
\(552\) 0 0
\(553\) 0.559999 2.08995i 0.0238136 0.0888735i
\(554\) −2.44431 9.12230i −0.103849 0.387570i
\(555\) 0 0
\(556\) −19.7701 11.4143i −0.838440 0.484074i
\(557\) 22.2275 + 5.95584i 0.941810 + 0.252357i 0.696883 0.717185i \(-0.254570\pi\)
0.244926 + 0.969542i \(0.421236\pi\)
\(558\) 0 0
\(559\) 0.862329 8.37039i 0.0364726 0.354030i
\(560\) 4.98106 2.87582i 0.210488 0.121525i
\(561\) 0 0
\(562\) −19.5027 −0.822674
\(563\) −2.44455 4.23408i −0.103025 0.178445i 0.809904 0.586562i \(-0.199519\pi\)
−0.912930 + 0.408117i \(0.866186\pi\)
\(564\) 0 0
\(565\) −12.4639 + 12.4639i −0.524361 + 0.524361i
\(566\) −5.36367 20.0175i −0.225452 0.841397i
\(567\) 0 0
\(568\) 1.33190 2.30692i 0.0558853 0.0967963i
\(569\) 10.6832 18.5038i 0.447863 0.775721i −0.550384 0.834912i \(-0.685519\pi\)
0.998247 + 0.0591908i \(0.0188520\pi\)
\(570\) 0 0
\(571\) 21.5820 + 12.4604i 0.903179 + 0.521451i 0.878230 0.478238i \(-0.158724\pi\)
0.0249486 + 0.999689i \(0.492058\pi\)
\(572\) 1.82338 + 2.24222i 0.0762393 + 0.0937521i
\(573\) 0 0
\(574\) −2.61625 9.76399i −0.109200 0.407541i
\(575\) −22.3541 + 12.9061i −0.932230 + 0.538223i
\(576\) 0 0
\(577\) −4.11164 + 4.11164i −0.171170 + 0.171170i −0.787493 0.616323i \(-0.788621\pi\)
0.616323 + 0.787493i \(0.288621\pi\)
\(578\) −33.7010 33.7010i −1.40178 1.40178i
\(579\) 0 0
\(580\) 22.4295 6.00996i 0.931333 0.249550i
\(581\) 4.01038 2.31539i 0.166379 0.0960587i
\(582\) 0 0
\(583\) −6.41010 + 1.71758i −0.265479 + 0.0711350i
\(584\) 8.03688 0.332568
\(585\) 0 0
\(586\) −19.3065 −0.797542
\(587\) 17.3963 4.66134i 0.718024 0.192394i 0.118734 0.992926i \(-0.462116\pi\)
0.599290 + 0.800532i \(0.295450\pi\)
\(588\) 0 0
\(589\) 9.46928 5.46709i 0.390175 0.225268i
\(590\) −25.1379 + 6.73569i −1.03491 + 0.277304i
\(591\) 0 0
\(592\) 5.72797 + 5.72797i 0.235418 + 0.235418i
\(593\) −8.08152 + 8.08152i −0.331868 + 0.331868i −0.853296 0.521427i \(-0.825400\pi\)
0.521427 + 0.853296i \(0.325400\pi\)
\(594\) 0 0
\(595\) 40.0535 23.1249i 1.64203 0.948029i
\(596\) 2.01425 + 7.51729i 0.0825069 + 0.307920i
\(597\) 0 0
\(598\) 24.8977 3.99602i 1.01814 0.163410i
\(599\) 0.103217 + 0.0595921i 0.00421731 + 0.00243487i 0.502107 0.864805i \(-0.332558\pi\)
−0.497890 + 0.867240i \(0.665892\pi\)
\(600\) 0 0
\(601\) −13.5435 + 23.4581i −0.552452 + 0.956875i 0.445645 + 0.895210i \(0.352974\pi\)
−0.998097 + 0.0616651i \(0.980359\pi\)
\(602\) 2.27666 3.94330i 0.0927899 0.160717i
\(603\) 0 0
\(604\) −2.05706 7.67704i −0.0837004 0.312374i
\(605\) −21.5908 + 21.5908i −0.877792 + 0.877792i
\(606\) 0 0
\(607\) 9.24915 + 16.0200i 0.375412 + 0.650232i 0.990389 0.138313i \(-0.0441680\pi\)
−0.614977 + 0.788545i \(0.710835\pi\)
\(608\) −4.57151 −0.185399
\(609\) 0 0
\(610\) 12.6100 7.28036i 0.510562 0.294773i
\(611\) −17.9564 6.85039i −0.726437 0.277137i
\(612\) 0 0
\(613\) −21.0392 5.63743i −0.849764 0.227694i −0.192447 0.981307i \(-0.561642\pi\)
−0.657317 + 0.753614i \(0.728309\pi\)
\(614\) −19.0768 11.0140i −0.769878 0.444489i
\(615\) 0 0
\(616\) 0.404752 + 1.51056i 0.0163079 + 0.0608620i
\(617\) −0.679941 + 2.53758i −0.0273734 + 0.102159i −0.978261 0.207377i \(-0.933507\pi\)
0.950888 + 0.309536i \(0.100174\pi\)
\(618\) 0 0
\(619\) −3.69004 + 13.7714i −0.148315 + 0.553520i 0.851270 + 0.524728i \(0.175833\pi\)
−0.999585 + 0.0287923i \(0.990834\pi\)
\(620\) −6.10641 3.52554i −0.245239 0.141589i
\(621\) 0 0
\(622\) 2.51514 9.38665i 0.100848 0.376370i
\(623\) −2.86889 4.96907i −0.114940 0.199081i
\(624\) 0 0
\(625\) −14.9160 + 25.8354i −0.596642 + 1.03341i
\(626\) 3.88790 + 3.88790i 0.155392 + 0.155392i
\(627\) 0 0
\(628\) 3.94043i 0.157240i
\(629\) 46.0595 + 46.0595i 1.83651 + 1.83651i
\(630\) 0 0
\(631\) 34.0030 9.11109i 1.35364 0.362707i 0.492163 0.870503i \(-0.336206\pi\)
0.861477 + 0.507797i \(0.169540\pi\)
\(632\) 1.07121 + 0.287029i 0.0426103 + 0.0114174i
\(633\) 0 0
\(634\) 1.04647i 0.0415608i
\(635\) −4.66521 + 4.66521i −0.185133 + 0.185133i
\(636\) 0 0
\(637\) −1.17998 + 11.4537i −0.0467525 + 0.453814i
\(638\) 6.31360i 0.249958i
\(639\) 0 0
\(640\) 1.47400 + 2.55305i 0.0582651 + 0.100918i
\(641\) −5.81916 −0.229843 −0.114922 0.993375i \(-0.536662\pi\)
−0.114922 + 0.993375i \(0.536662\pi\)
\(642\) 0 0
\(643\) 5.74185 + 1.53852i 0.226436 + 0.0606735i 0.370253 0.928931i \(-0.379271\pi\)
−0.143817 + 0.989604i \(0.545938\pi\)
\(644\) 13.1800 + 3.53158i 0.519367 + 0.139164i
\(645\) 0 0
\(646\) −36.7603 −1.44631
\(647\) 2.47586 + 4.28832i 0.0973362 + 0.168591i 0.910581 0.413330i \(-0.135634\pi\)
−0.813245 + 0.581921i \(0.802301\pi\)
\(648\) 0 0
\(649\) 7.07600i 0.277757i
\(650\) −10.3244 + 8.39579i −0.404955 + 0.329310i
\(651\) 0 0
\(652\) −14.5890 + 14.5890i −0.571351 + 0.571351i
\(653\) 20.4897i 0.801824i 0.916117 + 0.400912i \(0.131307\pi\)
−0.916117 + 0.400912i \(0.868693\pi\)
\(654\) 0 0
\(655\) 24.2608 + 6.50067i 0.947949 + 0.254002i
\(656\) 5.00455 1.34097i 0.195395 0.0523559i
\(657\) 0 0
\(658\) −7.35360 7.35360i −0.286673 0.286673i
\(659\) 4.80810i 0.187297i −0.995605 0.0936484i \(-0.970147\pi\)
0.995605 0.0936484i \(-0.0298530\pi\)
\(660\) 0 0
\(661\) −28.8974 28.8974i −1.12398 1.12398i −0.991138 0.132839i \(-0.957591\pi\)
−0.132839 0.991138i \(-0.542409\pi\)
\(662\) −6.17265 + 10.6913i −0.239907 + 0.415531i
\(663\) 0 0
\(664\) 1.18676 + 2.05553i 0.0460552 + 0.0797699i
\(665\) 6.80530 25.3977i 0.263898 0.984881i
\(666\) 0 0
\(667\) 47.7077 + 27.5440i 1.84725 + 1.06651i
\(668\) 1.46059 5.45101i 0.0565120 0.210906i
\(669\) 0 0
\(670\) −0.592413 + 2.21091i −0.0228869 + 0.0854151i
\(671\) 1.02466 + 3.82410i 0.0395567 + 0.147628i
\(672\) 0 0
\(673\) 22.6393 + 13.0708i 0.872680 + 0.503842i 0.868238 0.496148i \(-0.165253\pi\)
0.00444195 + 0.999990i \(0.498586\pi\)
\(674\) 20.4587 + 5.48190i 0.788040 + 0.211155i
\(675\) 0 0
\(676\) 12.3471 4.06814i 0.474887 0.156467i
\(677\) 34.5645 19.9558i 1.32842 0.766964i 0.343365 0.939202i \(-0.388433\pi\)
0.985055 + 0.172238i \(0.0551000\pi\)
\(678\) 0 0
\(679\) −7.16775 −0.275073
\(680\) 11.8527 + 20.5295i 0.454531 + 0.787271i
\(681\) 0 0
\(682\) 1.35563 1.35563i 0.0519099 0.0519099i
\(683\) 9.69531 + 36.1834i 0.370981 + 1.38452i 0.859129 + 0.511759i \(0.171006\pi\)
−0.488148 + 0.872761i \(0.662327\pi\)
\(684\) 0 0
\(685\) 17.1321 29.6737i 0.654584 1.13377i
\(686\) −9.94388 + 17.2233i −0.379659 + 0.657589i
\(687\) 0 0
\(688\) 2.02114 + 1.16691i 0.0770554 + 0.0444880i
\(689\) −3.05912 + 29.6941i −0.116543 + 1.13125i
\(690\) 0 0
\(691\) 12.0361 + 44.9193i 0.457875 + 1.70881i 0.679496 + 0.733679i \(0.262199\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(692\) 14.2313 8.21647i 0.540994 0.312343i
\(693\) 0 0
\(694\) 1.77989 1.77989i 0.0675636 0.0675636i
\(695\) 47.5875 + 47.5875i 1.80510 + 1.80510i
\(696\) 0 0
\(697\) 40.2424 10.7829i 1.52429 0.408433i
\(698\) 15.4081 8.89589i 0.583206 0.336714i
\(699\) 0 0
\(700\) −6.95539 + 1.86369i −0.262889 + 0.0704409i
\(701\) −27.1053 −1.02375 −0.511876 0.859059i \(-0.671049\pi\)
−0.511876 + 0.859059i \(0.671049\pi\)
\(702\) 0 0
\(703\) 37.0318 1.39668
\(704\) −0.774238 + 0.207457i −0.0291802 + 0.00781881i
\(705\) 0 0
\(706\) 2.70316 1.56067i 0.101735 0.0587365i
\(707\) −25.7123 + 6.88960i −0.967012 + 0.259110i
\(708\) 0 0
\(709\) 32.1360 + 32.1360i 1.20689 + 1.20689i 0.972028 + 0.234865i \(0.0754647\pi\)
0.234865 + 0.972028i \(0.424535\pi\)
\(710\) −5.55285 + 5.55285i −0.208395 + 0.208395i
\(711\) 0 0
\(712\) 2.54690 1.47046i 0.0954492 0.0551076i
\(713\) −4.32946 16.1578i −0.162140 0.605113i
\(714\) 0 0
\(715\) −3.48136 7.77610i −0.130196 0.290810i
\(716\) 5.24575 + 3.02863i 0.196043 + 0.113185i
\(717\) 0 0
\(718\) −10.1553 + 17.5895i −0.378993 + 0.656435i
\(719\) 10.2199 17.7014i 0.381138 0.660150i −0.610087 0.792334i \(-0.708866\pi\)
0.991225 + 0.132184i \(0.0421990\pi\)
\(720\) 0 0
\(721\) 6.80276 + 25.3882i 0.253348 + 0.945508i
\(722\) −1.34259 + 1.34259i −0.0499660 + 0.0499660i
\(723\) 0 0
\(724\) 6.12433 + 10.6077i 0.227609 + 0.394230i
\(725\) −29.0711 −1.07967
\(726\) 0 0
\(727\) 25.7087 14.8430i 0.953485 0.550495i 0.0593229 0.998239i \(-0.481106\pi\)
0.894162 + 0.447744i \(0.147773\pi\)
\(728\) 6.99748 + 0.720889i 0.259344 + 0.0267179i
\(729\) 0 0
\(730\) −22.8855 6.13215i −0.847030 0.226961i
\(731\) 16.2524 + 9.38330i 0.601115 + 0.347054i
\(732\) 0 0
\(733\) −0.441496 1.64769i −0.0163070 0.0608587i 0.957293 0.289120i \(-0.0933626\pi\)
−0.973600 + 0.228261i \(0.926696\pi\)
\(734\) −6.00990 + 22.4293i −0.221829 + 0.827879i
\(735\) 0 0
\(736\) −1.81012 + 6.75546i −0.0667219 + 0.249009i
\(737\) −0.538965 0.311172i −0.0198530 0.0114622i
\(738\) 0 0
\(739\) −12.2243 + 45.6218i −0.449679 + 1.67822i 0.253600 + 0.967309i \(0.418385\pi\)
−0.703279 + 0.710914i \(0.748281\pi\)
\(740\) −11.9403 20.6812i −0.438933 0.760255i
\(741\) 0 0
\(742\) −8.07649 + 13.9889i −0.296497 + 0.513548i
\(743\) 22.8373 + 22.8373i 0.837819 + 0.837819i 0.988571 0.150753i \(-0.0481698\pi\)
−0.150753 + 0.988571i \(0.548170\pi\)
\(744\) 0 0
\(745\) 22.9428i 0.840558i
\(746\) −17.8997 17.8997i −0.655355 0.655355i
\(747\) 0 0
\(748\) −6.22578 + 1.66819i −0.227637 + 0.0609952i
\(749\) 34.9309 + 9.35972i 1.27635 + 0.341997i
\(750\) 0 0
\(751\) 36.8858i 1.34598i −0.739651 0.672991i \(-0.765009\pi\)
0.739651 0.672991i \(-0.234991\pi\)
\(752\) 3.76910 3.76910i 0.137445 0.137445i
\(753\) 0 0
\(754\) 26.5346 + 10.1230i 0.966333 + 0.368658i
\(755\) 23.4303i 0.852717i
\(756\) 0 0
\(757\) −6.73813 11.6708i −0.244902 0.424182i 0.717202 0.696865i \(-0.245422\pi\)
−0.962104 + 0.272683i \(0.912089\pi\)
\(758\) −23.0723 −0.838025
\(759\) 0 0
\(760\) 13.0176 + 3.48807i 0.472199 + 0.126525i
\(761\) 39.5762 + 10.6044i 1.43463 + 0.384409i 0.890651 0.454687i \(-0.150249\pi\)
0.543983 + 0.839096i \(0.316915\pi\)
\(762\) 0 0
\(763\) −11.6732 −0.422599
\(764\) −0.210355 0.364345i −0.00761037 0.0131815i
\(765\) 0 0
\(766\) 23.8524i 0.861821i
\(767\) −29.7388 11.3454i −1.07380 0.409658i
\(768\) 0 0
\(769\) −15.4846 + 15.4846i −0.558390 + 0.558390i −0.928849 0.370459i \(-0.879200\pi\)
0.370459 + 0.928849i \(0.379200\pi\)
\(770\) 4.61022i 0.166141i
\(771\) 0 0
\(772\) −13.1262 3.51716i −0.472424 0.126586i
\(773\) −34.2518 + 9.17773i −1.23195 + 0.330100i −0.815338 0.578985i \(-0.803449\pi\)
−0.416611 + 0.909085i \(0.636782\pi\)
\(774\) 0 0
\(775\) 6.24205 + 6.24205i 0.224221 + 0.224221i
\(776\) 3.67384i 0.131883i
\(777\) 0 0
\(778\) 17.6754 + 17.6754i 0.633694 + 0.633694i
\(779\) 11.8427 20.5122i 0.424309 0.734925i
\(780\) 0 0
\(781\) −1.06759 1.84911i −0.0382012 0.0661665i
\(782\) −14.5555 + 54.3217i −0.520502 + 1.94254i
\(783\) 0 0
\(784\) −2.76566 1.59676i −0.0987736 0.0570270i
\(785\) −3.00655 + 11.2206i −0.107308 + 0.400480i
\(786\) 0 0
\(787\) −1.37584 + 5.13469i −0.0490432 + 0.183032i −0.986102 0.166139i \(-0.946870\pi\)
0.937059 + 0.349171i \(0.113537\pi\)
\(788\) 0.239457 + 0.893667i 0.00853032 + 0.0318356i
\(789\) 0 0
\(790\) −2.83132 1.63466i −0.100734 0.0581586i
\(791\) −11.2680 3.01925i −0.400644 0.107352i
\(792\) 0 0
\(793\) 17.7147 + 1.82499i 0.629067 + 0.0648073i
\(794\) 18.2819 10.5551i 0.648800 0.374585i
\(795\) 0 0
\(796\) 12.8257 0.454595
\(797\) 2.55627 + 4.42759i 0.0905478 + 0.156833i 0.907742 0.419529i \(-0.137805\pi\)
−0.817194 + 0.576363i \(0.804472\pi\)
\(798\) 0 0
\(799\) 30.3080 30.3080i 1.07222 1.07222i
\(800\) −0.955238 3.56500i −0.0337728 0.126042i
\(801\) 0 0
\(802\) 8.83914 15.3098i 0.312121 0.540609i
\(803\) 3.22098 5.57891i 0.113666 0.196875i
\(804\) 0 0
\(805\) −34.8363 20.1128i −1.22782 0.708882i
\(806\) −3.52384 7.87098i −0.124122 0.277244i
\(807\) 0 0
\(808\) −3.53128 13.1789i −0.124230 0.463632i
\(809\) 12.6443 7.30018i 0.444549 0.256661i −0.260976 0.965345i \(-0.584044\pi\)
0.705525 + 0.708685i \(0.250711\pi\)
\(810\) 0 0
\(811\) −20.1306 + 20.1306i −0.706880 + 0.706880i −0.965878 0.258998i \(-0.916608\pi\)
0.258998 + 0.965878i \(0.416608\pi\)
\(812\) 10.8666 + 10.8666i 0.381343 + 0.381343i
\(813\) 0 0
\(814\) 6.27177 1.68052i 0.219825 0.0589021i
\(815\) 52.6746 30.4117i 1.84511 1.06527i
\(816\) 0 0
\(817\) 10.3055 2.76136i 0.360545 0.0966077i
\(818\) 20.9174 0.731359
\(819\) 0 0
\(820\) −15.2739 −0.533388
\(821\) −4.87897 + 1.30731i −0.170277 + 0.0456256i −0.342950 0.939354i \(-0.611426\pi\)
0.172673 + 0.984979i \(0.444760\pi\)
\(822\) 0 0
\(823\) −38.3390 + 22.1350i −1.33641 + 0.771579i −0.986274 0.165118i \(-0.947199\pi\)
−0.350140 + 0.936697i \(0.613866\pi\)
\(824\) −13.0128 + 3.48677i −0.453322 + 0.121467i
\(825\) 0 0
\(826\) −12.1788 12.1788i −0.423754 0.423754i
\(827\) 14.3305 14.3305i 0.498320 0.498320i −0.412595 0.910915i \(-0.635377\pi\)
0.910915 + 0.412595i \(0.135377\pi\)
\(828\) 0 0
\(829\) 18.5330 10.7000i 0.643677 0.371627i −0.142352 0.989816i \(-0.545467\pi\)
0.786030 + 0.618189i \(0.212133\pi\)
\(830\) −1.81100 6.75873i −0.0628606 0.234599i
\(831\) 0 0
\(832\) −0.369493 + 3.58657i −0.0128099 + 0.124342i
\(833\) −22.2391 12.8398i −0.770541 0.444872i
\(834\) 0 0
\(835\) −8.31824 + 14.4076i −0.287865 + 0.498596i
\(836\) −1.83215 + 3.17337i −0.0633662 + 0.109753i
\(837\) 0 0
\(838\) 4.63281 + 17.2899i 0.160038 + 0.597269i
\(839\) −34.4148 + 34.4148i −1.18813 + 1.18813i −0.210549 + 0.977583i \(0.567525\pi\)
−0.977583 + 0.210549i \(0.932475\pi\)
\(840\) 0 0
\(841\) 16.5215 + 28.6161i 0.569708 + 0.986763i
\(842\) 0.955439 0.0329266
\(843\) 0 0
\(844\) 5.92886 3.42303i 0.204080 0.117825i
\(845\) −38.2630 + 2.16344i −1.31629 + 0.0744246i
\(846\) 0 0
\(847\) −19.5192 5.23015i −0.670687 0.179710i
\(848\) −7.17003 4.13962i −0.246220 0.142155i
\(849\) 0 0
\(850\) −7.68123 28.6667i −0.263464 0.983261i
\(851\) 14.6630 54.7230i 0.502641 1.87588i
\(852\) 0 0
\(853\) −0.430304 + 1.60592i −0.0147333 + 0.0549855i −0.972901 0.231221i \(-0.925728\pi\)
0.958168 + 0.286207i \(0.0923945\pi\)
\(854\) 8.34540 + 4.81822i 0.285574 + 0.164876i
\(855\) 0 0
\(856\) −4.79734 + 17.9039i −0.163970 + 0.611943i
\(857\) −6.29501 10.9033i −0.215033 0.372449i 0.738249 0.674528i \(-0.235653\pi\)
−0.953283 + 0.302079i \(0.902319\pi\)
\(858\) 0 0
\(859\) 11.6155 20.1186i 0.396315 0.686438i −0.596953 0.802276i \(-0.703622\pi\)
0.993268 + 0.115838i \(0.0369554\pi\)
\(860\) −4.86497 4.86497i −0.165894 0.165894i
\(861\) 0 0
\(862\) 39.2646i 1.33736i
\(863\) −21.8752 21.8752i −0.744642 0.744642i 0.228826 0.973467i \(-0.426511\pi\)
−0.973467 + 0.228826i \(0.926511\pi\)
\(864\) 0 0
\(865\) −46.7937 + 12.5383i −1.59103 + 0.426316i
\(866\) 10.6342 + 2.84942i 0.361365 + 0.0968274i
\(867\) 0 0
\(868\) 4.66648i 0.158390i
\(869\) 0.628557 0.628557i 0.0213223 0.0213223i
\(870\) 0 0
\(871\) −2.17194 + 1.76622i −0.0735933 + 0.0598462i
\(872\) 5.98313i 0.202614i
\(873\) 0 0
\(874\) 15.9860 + 27.6886i 0.540735 + 0.936581i
\(875\) −7.53029 −0.254570
\(876\) 0 0
\(877\) −25.8463 6.92550i −0.872769 0.233858i −0.205484 0.978660i \(-0.565877\pi\)
−0.667285 + 0.744803i \(0.732544\pi\)
\(878\) 4.11778 + 1.10336i 0.138968 + 0.0372364i
\(879\) 0 0
\(880\) 2.36298 0.0796560
\(881\) −11.3559 19.6690i −0.382589 0.662664i 0.608842 0.793291i \(-0.291634\pi\)
−0.991432 + 0.130627i \(0.958301\pi\)
\(882\) 0 0
\(883\) 11.3387i 0.381577i 0.981631 + 0.190789i \(0.0611045\pi\)
−0.981631 + 0.190789i \(0.938895\pi\)
\(884\) −2.97115 + 28.8402i −0.0999307 + 0.970001i
\(885\) 0 0
\(886\) −20.3999 + 20.3999i −0.685346 + 0.685346i
\(887\) 17.8989i 0.600985i −0.953784 0.300492i \(-0.902849\pi\)
0.953784 0.300492i \(-0.0971510\pi\)
\(888\) 0 0
\(889\) −4.21758 1.13010i −0.141453 0.0379023i
\(890\) −8.37441 + 2.24392i −0.280711 + 0.0752163i
\(891\) 0 0
\(892\) 12.5100 + 12.5100i 0.418866 + 0.418866i
\(893\) 24.3676i 0.815430i
\(894\) 0 0
\(895\) −12.6267 12.6267i −0.422065 0.422065i
\(896\) −0.975511 + 1.68964i −0.0325895 + 0.0564467i
\(897\) 0 0
\(898\) −12.6811 21.9644i −0.423175 0.732961i
\(899\) 4.87606 18.1977i 0.162626 0.606928i
\(900\) 0 0
\(901\) −57.6554 33.2874i −1.92078 1.10896i
\(902\) 1.07485 4.01140i 0.0357886 0.133565i
\(903\) 0 0
\(904\) 1.54752 5.77543i 0.0514698 0.192088i
\(905\) −9.34574 34.8788i −0.310663 1.15941i
\(906\) 0 0
\(907\) −42.4694 24.5197i −1.41017 0.814165i −0.414770 0.909926i \(-0.636138\pi\)
−0.995404 + 0.0957617i \(0.969471\pi\)
\(908\) −18.7066 5.01242i −0.620801 0.166343i
\(909\) 0 0
\(910\) −19.3757 7.39185i −0.642298 0.245038i
\(911\) 49.7924 28.7477i 1.64970 0.952453i 0.672506 0.740092i \(-0.265218\pi\)
0.977191 0.212362i \(-0.0681155\pi\)
\(912\) 0 0
\(913\) 1.90249 0.0629634
\(914\) −14.3832 24.9124i −0.475753 0.824029i
\(915\) 0 0
\(916\) 18.3643 18.3643i 0.606773 0.606773i
\(917\) 4.30221 + 16.0561i 0.142071 + 0.530218i
\(918\) 0 0
\(919\) −18.6828 + 32.3595i −0.616288 + 1.06744i 0.373869 + 0.927482i \(0.378031\pi\)
−0.990157 + 0.139961i \(0.955302\pi\)
\(920\) 10.3088 17.8554i 0.339872 0.588676i
\(921\) 0 0
\(922\) −32.0445 18.5009i −1.05533 0.609295i
\(923\) −9.48312 + 1.52202i −0.312141 + 0.0500978i
\(924\) 0 0
\(925\) 7.73797 + 28.8785i 0.254423 + 0.949519i
\(926\) −2.15728 + 1.24550i −0.0708925 + 0.0409298i
\(927\) 0 0
\(928\) −5.56970 + 5.56970i −0.182834 + 0.182834i
\(929\) 13.3388 + 13.3388i 0.437632 + 0.437632i 0.891214 0.453582i \(-0.149854\pi\)
−0.453582 + 0.891214i \(0.649854\pi\)
\(930\) 0 0
\(931\) −14.1017 + 3.77854i −0.462165 + 0.123837i
\(932\) 10.3135 5.95449i 0.337830 0.195046i
\(933\) 0 0
\(934\) 30.2085 8.09433i 0.988451 0.264855i
\(935\) 19.0011 0.621402
\(936\) 0 0
\(937\) 38.9992 1.27405 0.637025 0.770843i \(-0.280165\pi\)
0.637025 + 0.770843i \(0.280165\pi\)
\(938\) −1.46321 + 0.392065i −0.0477754 + 0.0128014i
\(939\) 0 0
\(940\) −13.6086 + 7.85691i −0.443862 + 0.256264i
\(941\) 52.8136 14.1514i 1.72167 0.461321i 0.743437 0.668806i \(-0.233195\pi\)
0.978238 + 0.207485i \(0.0665279\pi\)
\(942\) 0 0
\(943\) −25.6223 25.6223i −0.834375 0.834375i
\(944\) 6.24226 6.24226i 0.203168 0.203168i
\(945\) 0 0
\(946\) 1.62005 0.935336i 0.0526723 0.0304104i
\(947\) −0.410138 1.53066i −0.0133277 0.0497397i 0.958942 0.283603i \(-0.0915298\pi\)
−0.972269 + 0.233863i \(0.924863\pi\)
\(948\) 0 0
\(949\) −18.2824 22.4820i −0.593473 0.729798i
\(950\) −14.6119 8.43617i −0.474072 0.273705i
\(951\) 0 0
\(952\) −7.84425 + 13.5866i −0.254234 + 0.440345i
\(953\) −10.7911 + 18.6908i −0.349559 + 0.605454i −0.986171 0.165730i \(-0.947002\pi\)
0.636612 + 0.771184i \(0.280335\pi\)
\(954\) 0 0
\(955\) 0.321002 + 1.19799i 0.0103874 + 0.0387662i
\(956\) −6.56269 + 6.56269i −0.212253 + 0.212253i
\(957\) 0 0
\(958\) −2.76911 4.79624i −0.0894659 0.154960i
\(959\) 22.6764 0.732259
\(960\) 0 0
\(961\) 21.8925 12.6396i 0.706209 0.407730i
\(962\) 2.99310 29.0532i 0.0965015 0.936714i
\(963\) 0 0
\(964\) −9.45875 2.53446i −0.304646 0.0816296i
\(965\) 34.6941 + 20.0307i 1.11684 + 0.644810i
\(966\) 0 0
\(967\) 12.5386 + 46.7947i 0.403215 + 1.50482i 0.807325 + 0.590107i \(0.200915\pi\)
−0.404110 + 0.914710i \(0.632419\pi\)
\(968\) 2.68072 10.0046i 0.0861617 0.321560i
\(969\) 0 0
\(970\) −2.80315 + 10.4615i −0.0900036 + 0.335898i
\(971\) −1.30561 0.753792i −0.0418989 0.0241903i 0.478904 0.877867i \(-0.341034\pi\)
−0.520803 + 0.853677i \(0.674367\pi\)
\(972\) 0 0
\(973\) −11.5276 + 43.0214i −0.369557 + 1.37920i
\(974\) −1.46689 2.54073i −0.0470022 0.0814102i
\(975\) 0 0
\(976\) −2.46959 + 4.27745i −0.0790495 + 0.136918i
\(977\) −22.2801 22.2801i −0.712804 0.712804i 0.254317 0.967121i \(-0.418149\pi\)
−0.967121 + 0.254317i \(0.918149\pi\)
\(978\) 0 0
\(979\) 2.35729i 0.0753393i
\(980\) 6.65706 + 6.65706i 0.212652 + 0.212652i
\(981\) 0 0
\(982\) 34.4824 9.23952i 1.10038 0.294845i
\(983\) 13.9059 + 3.72607i 0.443529 + 0.118843i 0.473670 0.880702i \(-0.342929\pi\)
−0.0301410 + 0.999546i \(0.509596\pi\)
\(984\) 0 0
\(985\) 2.72748i 0.0869046i
\(986\) −44.7869 + 44.7869i −1.42630 + 1.42630i
\(987\) 0 0
\(988\) 10.3993 + 12.7882i 0.330847 + 0.406845i
\(989\) 16.3222i 0.519014i
\(990\) 0 0
\(991\) 9.55307 + 16.5464i 0.303463 + 0.525614i 0.976918 0.213615i \(-0.0685236\pi\)
−0.673455 + 0.739229i \(0.735190\pi\)
\(992\) 2.39181 0.0759400
\(993\) 0 0
\(994\) −5.02005 1.34512i −0.159226 0.0426646i
\(995\) −36.5220 9.78603i −1.15782 0.310238i
\(996\) 0 0
\(997\) 4.95003 0.156769 0.0783845 0.996923i \(-0.475024\pi\)
0.0783845 + 0.996923i \(0.475024\pi\)
\(998\) 9.11683 + 15.7908i 0.288588 + 0.499850i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bc.a.665.9 56
3.2 odd 2 234.2.z.a.41.6 yes 56
9.2 odd 6 702.2.bb.a.197.9 56
9.7 even 3 234.2.y.a.119.1 yes 56
13.7 odd 12 702.2.bb.a.449.9 56
39.20 even 12 234.2.y.a.59.1 56
117.7 odd 12 234.2.z.a.137.6 yes 56
117.20 even 12 inner 702.2.bc.a.683.9 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.y.a.59.1 56 39.20 even 12
234.2.y.a.119.1 yes 56 9.7 even 3
234.2.z.a.41.6 yes 56 3.2 odd 2
234.2.z.a.137.6 yes 56 117.7 odd 12
702.2.bb.a.197.9 56 9.2 odd 6
702.2.bb.a.449.9 56 13.7 odd 12
702.2.bc.a.665.9 56 1.1 even 1 trivial
702.2.bc.a.683.9 56 117.20 even 12 inner