Properties

Label 702.2.bc.a.665.8
Level $702$
Weight $2$
Character 702.665
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(305,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.305"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([2, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bc (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 665.8
Character \(\chi\) \(=\) 702.665
Dual form 702.2.bc.a.683.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.965926 - 0.258819i) q^{2} +(0.866025 - 0.500000i) q^{4} +(-3.32591 + 0.891175i) q^{5} +(-0.0201488 - 0.0201488i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-2.98193 + 1.72162i) q^{10} +(1.12616 + 4.20290i) q^{11} +(1.39839 + 3.32333i) q^{13} +(-0.0246771 - 0.0142473i) q^{14} +(0.500000 - 0.866025i) q^{16} +(-3.35521 + 5.81139i) q^{17} +(-0.521462 - 1.94612i) q^{19} +(-2.43473 + 2.43473i) q^{20} +(2.17558 + 3.76822i) q^{22} -0.528142 q^{23} +(5.93735 - 3.42793i) q^{25} +(2.21088 + 2.84816i) q^{26} +(-0.0275237 - 0.00737496i) q^{28} +(7.19404 + 4.15348i) q^{29} +(-0.373424 - 1.39364i) q^{31} +(0.258819 - 0.965926i) q^{32} +(-1.73678 + 6.48176i) q^{34} +(0.0849690 + 0.0490569i) q^{35} +(-2.09857 + 7.83198i) q^{37} +(-1.00739 - 1.74484i) q^{38} +(-1.72162 + 2.98193i) q^{40} +(-3.55302 - 3.55302i) q^{41} +8.76179i q^{43} +(3.07674 + 3.07674i) q^{44} +(-0.510146 + 0.136693i) q^{46} +(0.775777 + 0.207869i) q^{47} -6.99919i q^{49} +(4.84783 - 4.84783i) q^{50} +(2.87270 + 2.17889i) q^{52} -5.06566i q^{53} +(-7.49104 - 12.9749i) q^{55} -0.0284946 q^{56} +(8.02391 + 2.15000i) q^{58} +(-13.8214 - 3.70343i) q^{59} -0.0214935 q^{61} +(-0.721399 - 1.24950i) q^{62} -1.00000i q^{64} +(-7.61257 - 9.80688i) q^{65} +(-0.668189 + 0.668189i) q^{67} +6.71041i q^{68} +(0.0947706 + 0.0253937i) q^{70} +(9.32969 - 2.49988i) q^{71} +(6.53713 + 6.53713i) q^{73} +8.10826i q^{74} +(-1.42466 - 1.42466i) q^{76} +(0.0619924 - 0.107374i) q^{77} +(1.40950 + 2.44132i) q^{79} +(-0.891175 + 3.32591i) q^{80} +(-4.35155 - 2.51237i) q^{82} +(3.80210 - 14.1896i) q^{83} +(5.98015 - 22.3182i) q^{85} +(2.26772 + 8.46324i) q^{86} +(3.76822 + 2.17558i) q^{88} +(-10.8696 - 2.91249i) q^{89} +(0.0387852 - 0.0951367i) q^{91} +(-0.457384 + 0.264071i) q^{92} +0.803143 q^{94} +(3.46867 + 6.00791i) q^{95} +(0.333814 - 0.333814i) q^{97} +(-1.81152 - 6.76070i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 8 q^{7} + 24 q^{11} + 28 q^{16} - 8 q^{19} - 4 q^{28} - 4 q^{31} + 24 q^{35} - 4 q^{37} - 36 q^{38} + 48 q^{41} + 36 q^{47} + 24 q^{50} + 8 q^{52} + 36 q^{65} + 28 q^{67} + 24 q^{71} + 28 q^{73}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.965926 0.258819i 0.683013 0.183013i
\(3\) 0 0
\(4\) 0.866025 0.500000i 0.433013 0.250000i
\(5\) −3.32591 + 0.891175i −1.48739 + 0.398545i −0.908855 0.417111i \(-0.863043\pi\)
−0.578536 + 0.815657i \(0.696376\pi\)
\(6\) 0 0
\(7\) −0.0201488 0.0201488i −0.00761551 0.00761551i 0.703289 0.710904i \(-0.251714\pi\)
−0.710904 + 0.703289i \(0.751714\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) −2.98193 + 1.72162i −0.942969 + 0.544423i
\(11\) 1.12616 + 4.20290i 0.339551 + 1.26722i 0.898850 + 0.438256i \(0.144404\pi\)
−0.559299 + 0.828966i \(0.688930\pi\)
\(12\) 0 0
\(13\) 1.39839 + 3.32333i 0.387843 + 0.921726i
\(14\) −0.0246771 0.0142473i −0.00659523 0.00380776i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −3.35521 + 5.81139i −0.813757 + 1.40947i 0.0964602 + 0.995337i \(0.469248\pi\)
−0.910217 + 0.414131i \(0.864085\pi\)
\(18\) 0 0
\(19\) −0.521462 1.94612i −0.119632 0.446471i 0.879960 0.475048i \(-0.157569\pi\)
−0.999592 + 0.0285767i \(0.990903\pi\)
\(20\) −2.43473 + 2.43473i −0.544423 + 0.544423i
\(21\) 0 0
\(22\) 2.17558 + 3.76822i 0.463835 + 0.803387i
\(23\) −0.528142 −0.110125 −0.0550626 0.998483i \(-0.517536\pi\)
−0.0550626 + 0.998483i \(0.517536\pi\)
\(24\) 0 0
\(25\) 5.93735 3.42793i 1.18747 0.685587i
\(26\) 2.21088 + 2.84816i 0.433589 + 0.558570i
\(27\) 0 0
\(28\) −0.0275237 0.00737496i −0.00520149 0.00139374i
\(29\) 7.19404 + 4.15348i 1.33590 + 0.771282i 0.986197 0.165578i \(-0.0529491\pi\)
0.349703 + 0.936861i \(0.386282\pi\)
\(30\) 0 0
\(31\) −0.373424 1.39364i −0.0670689 0.250305i 0.924249 0.381790i \(-0.124692\pi\)
−0.991318 + 0.131485i \(0.958025\pi\)
\(32\) 0.258819 0.965926i 0.0457532 0.170753i
\(33\) 0 0
\(34\) −1.73678 + 6.48176i −0.297856 + 1.11161i
\(35\) 0.0849690 + 0.0490569i 0.0143624 + 0.00829212i
\(36\) 0 0
\(37\) −2.09857 + 7.83198i −0.345003 + 1.28757i 0.547605 + 0.836737i \(0.315540\pi\)
−0.892608 + 0.450833i \(0.851127\pi\)
\(38\) −1.00739 1.74484i −0.163420 0.283051i
\(39\) 0 0
\(40\) −1.72162 + 2.98193i −0.272212 + 0.471484i
\(41\) −3.55302 3.55302i −0.554889 0.554889i 0.372959 0.927848i \(-0.378343\pi\)
−0.927848 + 0.372959i \(0.878343\pi\)
\(42\) 0 0
\(43\) 8.76179i 1.33616i 0.744089 + 0.668080i \(0.232884\pi\)
−0.744089 + 0.668080i \(0.767116\pi\)
\(44\) 3.07674 + 3.07674i 0.463835 + 0.463835i
\(45\) 0 0
\(46\) −0.510146 + 0.136693i −0.0752169 + 0.0201543i
\(47\) 0.775777 + 0.207869i 0.113159 + 0.0303208i 0.314954 0.949107i \(-0.398011\pi\)
−0.201795 + 0.979428i \(0.564678\pi\)
\(48\) 0 0
\(49\) 6.99919i 0.999884i
\(50\) 4.84783 4.84783i 0.685587 0.685587i
\(51\) 0 0
\(52\) 2.87270 + 2.17889i 0.398372 + 0.302158i
\(53\) 5.06566i 0.695822i −0.937527 0.347911i \(-0.886891\pi\)
0.937527 0.347911i \(-0.113109\pi\)
\(54\) 0 0
\(55\) −7.49104 12.9749i −1.01009 1.74953i
\(56\) −0.0284946 −0.00380776
\(57\) 0 0
\(58\) 8.02391 + 2.15000i 1.05359 + 0.282309i
\(59\) −13.8214 3.70343i −1.79939 0.482145i −0.805508 0.592585i \(-0.798107\pi\)
−0.993883 + 0.110440i \(0.964774\pi\)
\(60\) 0 0
\(61\) −0.0214935 −0.00275196 −0.00137598 0.999999i \(-0.500438\pi\)
−0.00137598 + 0.999999i \(0.500438\pi\)
\(62\) −0.721399 1.24950i −0.0916178 0.158687i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −7.61257 9.80688i −0.944223 1.21639i
\(66\) 0 0
\(67\) −0.668189 + 0.668189i −0.0816322 + 0.0816322i −0.746744 0.665112i \(-0.768384\pi\)
0.665112 + 0.746744i \(0.268384\pi\)
\(68\) 6.71041i 0.813757i
\(69\) 0 0
\(70\) 0.0947706 + 0.0253937i 0.0113273 + 0.00303513i
\(71\) 9.32969 2.49988i 1.10723 0.296682i 0.341525 0.939873i \(-0.389057\pi\)
0.765706 + 0.643191i \(0.222390\pi\)
\(72\) 0 0
\(73\) 6.53713 + 6.53713i 0.765113 + 0.765113i 0.977242 0.212129i \(-0.0680396\pi\)
−0.212129 + 0.977242i \(0.568040\pi\)
\(74\) 8.10826i 0.942566i
\(75\) 0 0
\(76\) −1.42466 1.42466i −0.163420 0.163420i
\(77\) 0.0619924 0.107374i 0.00706469 0.0122364i
\(78\) 0 0
\(79\) 1.40950 + 2.44132i 0.158581 + 0.274670i 0.934357 0.356338i \(-0.115975\pi\)
−0.775776 + 0.631008i \(0.782641\pi\)
\(80\) −0.891175 + 3.32591i −0.0996364 + 0.371848i
\(81\) 0 0
\(82\) −4.35155 2.51237i −0.480548 0.277444i
\(83\) 3.80210 14.1896i 0.417335 1.55752i −0.362777 0.931876i \(-0.618171\pi\)
0.780112 0.625640i \(-0.215162\pi\)
\(84\) 0 0
\(85\) 5.98015 22.3182i 0.648638 2.42075i
\(86\) 2.26772 + 8.46324i 0.244534 + 0.912615i
\(87\) 0 0
\(88\) 3.76822 + 2.17558i 0.401693 + 0.231918i
\(89\) −10.8696 2.91249i −1.15217 0.308724i −0.368337 0.929692i \(-0.620073\pi\)
−0.783835 + 0.620969i \(0.786739\pi\)
\(90\) 0 0
\(91\) 0.0387852 0.0951367i 0.00406579 0.00997303i
\(92\) −0.457384 + 0.264071i −0.0476856 + 0.0275313i
\(93\) 0 0
\(94\) 0.803143 0.0828379
\(95\) 3.46867 + 6.00791i 0.355878 + 0.616399i
\(96\) 0 0
\(97\) 0.333814 0.333814i 0.0338937 0.0338937i −0.689957 0.723851i \(-0.742371\pi\)
0.723851 + 0.689957i \(0.242371\pi\)
\(98\) −1.81152 6.76070i −0.182991 0.682933i
\(99\) 0 0
\(100\) 3.42793 5.93735i 0.342793 0.593735i
\(101\) 2.74544 4.75523i 0.273181 0.473163i −0.696494 0.717563i \(-0.745258\pi\)
0.969675 + 0.244400i \(0.0785909\pi\)
\(102\) 0 0
\(103\) 3.62390 + 2.09226i 0.357073 + 0.206156i 0.667796 0.744344i \(-0.267238\pi\)
−0.310723 + 0.950501i \(0.600571\pi\)
\(104\) 3.33876 + 1.36114i 0.327392 + 0.133471i
\(105\) 0 0
\(106\) −1.31109 4.89306i −0.127344 0.475256i
\(107\) 2.85234 1.64680i 0.275746 0.159202i −0.355750 0.934581i \(-0.615774\pi\)
0.631496 + 0.775379i \(0.282441\pi\)
\(108\) 0 0
\(109\) −5.40316 + 5.40316i −0.517529 + 0.517529i −0.916823 0.399294i \(-0.869255\pi\)
0.399294 + 0.916823i \(0.369255\pi\)
\(110\) −10.5939 10.5939i −1.01009 1.01009i
\(111\) 0 0
\(112\) −0.0275237 + 0.00737496i −0.00260075 + 0.000696868i
\(113\) −0.503942 + 0.290951i −0.0474068 + 0.0273704i −0.523516 0.852016i \(-0.675380\pi\)
0.476109 + 0.879386i \(0.342047\pi\)
\(114\) 0 0
\(115\) 1.75655 0.470666i 0.163799 0.0438899i
\(116\) 8.30696 0.771282
\(117\) 0 0
\(118\) −14.3089 −1.31725
\(119\) 0.184695 0.0494890i 0.0169310 0.00453665i
\(120\) 0 0
\(121\) −6.86984 + 3.96631i −0.624531 + 0.360573i
\(122\) −0.0207611 + 0.00556292i −0.00187962 + 0.000503644i
\(123\) 0 0
\(124\) −1.02021 1.02021i −0.0916178 0.0916178i
\(125\) −4.51854 + 4.51854i −0.404150 + 0.404150i
\(126\) 0 0
\(127\) 8.56275 4.94371i 0.759822 0.438683i −0.0694101 0.997588i \(-0.522112\pi\)
0.829232 + 0.558905i \(0.188778\pi\)
\(128\) −0.258819 0.965926i −0.0228766 0.0853766i
\(129\) 0 0
\(130\) −9.89139 7.50244i −0.867532 0.658008i
\(131\) 15.6965 + 9.06236i 1.37141 + 0.791782i 0.991105 0.133081i \(-0.0424871\pi\)
0.380301 + 0.924863i \(0.375820\pi\)
\(132\) 0 0
\(133\) −0.0287051 + 0.0497187i −0.00248905 + 0.00431116i
\(134\) −0.472481 + 0.818361i −0.0408161 + 0.0706956i
\(135\) 0 0
\(136\) 1.73678 + 6.48176i 0.148928 + 0.555806i
\(137\) −11.8200 + 11.8200i −1.00985 + 1.00985i −0.00990200 + 0.999951i \(0.503152\pi\)
−0.999951 + 0.00990200i \(0.996848\pi\)
\(138\) 0 0
\(139\) −2.54241 4.40359i −0.215645 0.373508i 0.737827 0.674990i \(-0.235852\pi\)
−0.953472 + 0.301482i \(0.902519\pi\)
\(140\) 0.0981137 0.00829212
\(141\) 0 0
\(142\) 8.36477 4.82940i 0.701956 0.405275i
\(143\) −12.3928 + 9.61989i −1.03634 + 0.804456i
\(144\) 0 0
\(145\) −27.6282 7.40295i −2.29440 0.614782i
\(146\) 8.00631 + 4.62245i 0.662607 + 0.382557i
\(147\) 0 0
\(148\) 2.09857 + 7.83198i 0.172502 + 0.643785i
\(149\) 1.36845 5.10712i 0.112108 0.418392i −0.886947 0.461872i \(-0.847178\pi\)
0.999054 + 0.0434804i \(0.0138446\pi\)
\(150\) 0 0
\(151\) −2.52008 + 9.40508i −0.205082 + 0.765375i 0.784343 + 0.620327i \(0.213000\pi\)
−0.989425 + 0.145047i \(0.953667\pi\)
\(152\) −1.74484 1.00739i −0.141526 0.0817098i
\(153\) 0 0
\(154\) 0.0320896 0.119760i 0.00258586 0.00965055i
\(155\) 2.48395 + 4.30232i 0.199515 + 0.345571i
\(156\) 0 0
\(157\) 4.81339 8.33703i 0.384150 0.665368i −0.607501 0.794319i \(-0.707828\pi\)
0.991651 + 0.128952i \(0.0411612\pi\)
\(158\) 1.99333 + 1.99333i 0.158581 + 0.158581i
\(159\) 0 0
\(160\) 3.44323i 0.272212i
\(161\) 0.0106414 + 0.0106414i 0.000838659 + 0.000838659i
\(162\) 0 0
\(163\) 10.7066 2.86883i 0.838607 0.224704i 0.186142 0.982523i \(-0.440402\pi\)
0.652465 + 0.757819i \(0.273735\pi\)
\(164\) −4.85352 1.30050i −0.378996 0.101552i
\(165\) 0 0
\(166\) 14.6902i 1.14018i
\(167\) 10.5531 10.5531i 0.816620 0.816620i −0.168997 0.985617i \(-0.554053\pi\)
0.985617 + 0.168997i \(0.0540528\pi\)
\(168\) 0 0
\(169\) −9.08903 + 9.29459i −0.699156 + 0.714969i
\(170\) 23.1055i 1.77211i
\(171\) 0 0
\(172\) 4.38090 + 7.58793i 0.334040 + 0.578574i
\(173\) 19.0603 1.44912 0.724562 0.689210i \(-0.242042\pi\)
0.724562 + 0.689210i \(0.242042\pi\)
\(174\) 0 0
\(175\) −0.188699 0.0505617i −0.0142643 0.00382211i
\(176\) 4.20290 + 1.12616i 0.316805 + 0.0848878i
\(177\) 0 0
\(178\) −11.2530 −0.843449
\(179\) 12.0533 + 20.8769i 0.900906 + 1.56041i 0.826320 + 0.563200i \(0.190430\pi\)
0.0745856 + 0.997215i \(0.476237\pi\)
\(180\) 0 0
\(181\) 1.16505i 0.0865977i −0.999062 0.0432988i \(-0.986213\pi\)
0.999062 0.0432988i \(-0.0137868\pi\)
\(182\) 0.0128404 0.101933i 0.000951797 0.00755580i
\(183\) 0 0
\(184\) −0.373453 + 0.373453i −0.0275313 + 0.0275313i
\(185\) 27.9187i 2.05262i
\(186\) 0 0
\(187\) −28.2032 7.55702i −2.06242 0.552624i
\(188\) 0.775777 0.207869i 0.0565793 0.0151604i
\(189\) 0 0
\(190\) 4.90544 + 4.90544i 0.355878 + 0.355878i
\(191\) 11.5646i 0.836783i −0.908267 0.418392i \(-0.862594\pi\)
0.908267 0.418392i \(-0.137406\pi\)
\(192\) 0 0
\(193\) −1.01826 1.01826i −0.0732962 0.0732962i 0.669508 0.742805i \(-0.266505\pi\)
−0.742805 + 0.669508i \(0.766505\pi\)
\(194\) 0.236042 0.408837i 0.0169468 0.0293528i
\(195\) 0 0
\(196\) −3.49959 6.06147i −0.249971 0.432962i
\(197\) 1.07594 4.01546i 0.0766575 0.286090i −0.916947 0.399010i \(-0.869354\pi\)
0.993604 + 0.112920i \(0.0360205\pi\)
\(198\) 0 0
\(199\) 1.78437 + 1.03021i 0.126491 + 0.0730295i 0.561910 0.827198i \(-0.310067\pi\)
−0.435419 + 0.900228i \(0.643400\pi\)
\(200\) 1.77443 6.62226i 0.125471 0.468264i
\(201\) 0 0
\(202\) 1.42114 5.30377i 0.0999912 0.373172i
\(203\) −0.0612635 0.228638i −0.00429985 0.0160473i
\(204\) 0 0
\(205\) 14.9834 + 8.65067i 1.04649 + 0.604189i
\(206\) 4.04193 + 1.08303i 0.281615 + 0.0754585i
\(207\) 0 0
\(208\) 3.57728 + 0.450627i 0.248040 + 0.0312453i
\(209\) 7.59210 4.38330i 0.525157 0.303199i
\(210\) 0 0
\(211\) 19.1496 1.31831 0.659157 0.752005i \(-0.270913\pi\)
0.659157 + 0.752005i \(0.270913\pi\)
\(212\) −2.53283 4.38699i −0.173956 0.301300i
\(213\) 0 0
\(214\) 2.32893 2.32893i 0.159202 0.159202i
\(215\) −7.80829 29.1409i −0.532521 1.98739i
\(216\) 0 0
\(217\) −0.0205560 + 0.0356041i −0.00139543 + 0.00241696i
\(218\) −3.82061 + 6.61749i −0.258764 + 0.448193i
\(219\) 0 0
\(220\) −12.9749 7.49104i −0.874765 0.505046i
\(221\) −24.0050 3.02389i −1.61475 0.203409i
\(222\) 0 0
\(223\) 6.83797 + 25.5197i 0.457905 + 1.70892i 0.679406 + 0.733763i \(0.262238\pi\)
−0.221501 + 0.975160i \(0.571096\pi\)
\(224\) −0.0246771 + 0.0142473i −0.00164881 + 0.000951939i
\(225\) 0 0
\(226\) −0.411467 + 0.411467i −0.0273704 + 0.0273704i
\(227\) 3.63037 + 3.63037i 0.240956 + 0.240956i 0.817246 0.576289i \(-0.195500\pi\)
−0.576289 + 0.817246i \(0.695500\pi\)
\(228\) 0 0
\(229\) −7.67020 + 2.05522i −0.506861 + 0.135813i −0.503182 0.864180i \(-0.667838\pi\)
−0.00367870 + 0.999993i \(0.501171\pi\)
\(230\) 1.57488 0.909258i 0.103845 0.0599547i
\(231\) 0 0
\(232\) 8.02391 2.15000i 0.526795 0.141154i
\(233\) 0.240333 0.0157448 0.00787238 0.999969i \(-0.497494\pi\)
0.00787238 + 0.999969i \(0.497494\pi\)
\(234\) 0 0
\(235\) −2.76541 −0.180395
\(236\) −13.8214 + 3.70343i −0.899695 + 0.241073i
\(237\) 0 0
\(238\) 0.165593 0.0956054i 0.0107338 0.00619718i
\(239\) 6.49603 1.74060i 0.420193 0.112590i −0.0425261 0.999095i \(-0.513541\pi\)
0.462719 + 0.886505i \(0.346874\pi\)
\(240\) 0 0
\(241\) −18.3499 18.3499i −1.18202 1.18202i −0.979220 0.202800i \(-0.934996\pi\)
−0.202800 0.979220i \(-0.565004\pi\)
\(242\) −5.60920 + 5.60920i −0.360573 + 0.360573i
\(243\) 0 0
\(244\) −0.0186139 + 0.0107467i −0.00119163 + 0.000687990i
\(245\) 6.23750 + 23.2787i 0.398499 + 1.48722i
\(246\) 0 0
\(247\) 5.73840 4.45442i 0.365125 0.283428i
\(248\) −1.24950 0.721399i −0.0793434 0.0458089i
\(249\) 0 0
\(250\) −3.19509 + 5.53406i −0.202075 + 0.350005i
\(251\) −10.2804 + 17.8061i −0.648892 + 1.12391i 0.334496 + 0.942397i \(0.391434\pi\)
−0.983388 + 0.181517i \(0.941899\pi\)
\(252\) 0 0
\(253\) −0.594774 2.21973i −0.0373931 0.139553i
\(254\) 6.99146 6.99146i 0.438683 0.438683i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −15.4381 −0.963002 −0.481501 0.876446i \(-0.659908\pi\)
−0.481501 + 0.876446i \(0.659908\pi\)
\(258\) 0 0
\(259\) 0.200088 0.115521i 0.0124329 0.00717813i
\(260\) −11.4961 4.68673i −0.712959 0.290658i
\(261\) 0 0
\(262\) 17.5071 + 4.69102i 1.08159 + 0.289812i
\(263\) 10.9321 + 6.31167i 0.674104 + 0.389194i 0.797630 0.603147i \(-0.206087\pi\)
−0.123526 + 0.992341i \(0.539420\pi\)
\(264\) 0 0
\(265\) 4.51439 + 16.8479i 0.277317 + 1.03496i
\(266\) −0.0148589 + 0.0554540i −0.000911055 + 0.00340010i
\(267\) 0 0
\(268\) −0.244574 + 0.912763i −0.0149397 + 0.0557559i
\(269\) 13.5676 + 7.83325i 0.827230 + 0.477602i 0.852903 0.522069i \(-0.174840\pi\)
−0.0256732 + 0.999670i \(0.508173\pi\)
\(270\) 0 0
\(271\) −4.43051 + 16.5349i −0.269134 + 1.00442i 0.690537 + 0.723297i \(0.257374\pi\)
−0.959671 + 0.281126i \(0.909292\pi\)
\(272\) 3.35521 + 5.81139i 0.203439 + 0.352367i
\(273\) 0 0
\(274\) −8.35802 + 14.4765i −0.504926 + 0.874558i
\(275\) 21.0937 + 21.0937i 1.27200 + 1.27200i
\(276\) 0 0
\(277\) 19.5532i 1.17484i −0.809284 0.587418i \(-0.800144\pi\)
0.809284 0.587418i \(-0.199856\pi\)
\(278\) −3.59552 3.59552i −0.215645 0.215645i
\(279\) 0 0
\(280\) 0.0947706 0.0253937i 0.00566363 0.00151756i
\(281\) −29.5609 7.92083i −1.76346 0.472517i −0.776044 0.630679i \(-0.782777\pi\)
−0.987413 + 0.158162i \(0.949443\pi\)
\(282\) 0 0
\(283\) 23.6188i 1.40399i 0.712182 + 0.701995i \(0.247707\pi\)
−0.712182 + 0.701995i \(0.752293\pi\)
\(284\) 6.82981 6.82981i 0.405275 0.405275i
\(285\) 0 0
\(286\) −9.48072 + 12.4996i −0.560607 + 0.739116i
\(287\) 0.143178i 0.00845153i
\(288\) 0 0
\(289\) −14.0148 24.2744i −0.824401 1.42790i
\(290\) −28.6028 −1.67962
\(291\) 0 0
\(292\) 8.92988 + 2.39276i 0.522582 + 0.140025i
\(293\) 21.3337 + 5.71634i 1.24633 + 0.333952i 0.820917 0.571048i \(-0.193463\pi\)
0.425411 + 0.905000i \(0.360130\pi\)
\(294\) 0 0
\(295\) 49.2691 2.86856
\(296\) 4.05413 + 7.02196i 0.235642 + 0.408143i
\(297\) 0 0
\(298\) 5.28728i 0.306284i
\(299\) −0.738546 1.75519i −0.0427112 0.101505i
\(300\) 0 0
\(301\) 0.176539 0.176539i 0.0101755 0.0101755i
\(302\) 9.73686i 0.560293i
\(303\) 0 0
\(304\) −1.94612 0.521462i −0.111618 0.0299079i
\(305\) 0.0714854 0.0191545i 0.00409324 0.00109678i
\(306\) 0 0
\(307\) 2.99786 + 2.99786i 0.171097 + 0.171097i 0.787461 0.616364i \(-0.211395\pi\)
−0.616364 + 0.787461i \(0.711395\pi\)
\(308\) 0.123985i 0.00706469i
\(309\) 0 0
\(310\) 3.51283 + 3.51283i 0.199515 + 0.199515i
\(311\) −15.1300 + 26.2059i −0.857943 + 1.48600i 0.0159450 + 0.999873i \(0.494924\pi\)
−0.873888 + 0.486128i \(0.838409\pi\)
\(312\) 0 0
\(313\) −16.7332 28.9828i −0.945817 1.63820i −0.754107 0.656751i \(-0.771930\pi\)
−0.191710 0.981452i \(-0.561403\pi\)
\(314\) 2.49159 9.29875i 0.140609 0.524759i
\(315\) 0 0
\(316\) 2.44132 + 1.40950i 0.137335 + 0.0792905i
\(317\) −2.88814 + 10.7787i −0.162214 + 0.605392i 0.836165 + 0.548478i \(0.184793\pi\)
−0.998379 + 0.0569135i \(0.981874\pi\)
\(318\) 0 0
\(319\) −9.35500 + 34.9133i −0.523779 + 1.95477i
\(320\) 0.891175 + 3.32591i 0.0498182 + 0.185924i
\(321\) 0 0
\(322\) 0.0130330 + 0.00752460i 0.000726300 + 0.000419330i
\(323\) 13.0593 + 3.49922i 0.726638 + 0.194702i
\(324\) 0 0
\(325\) 19.6949 + 14.9382i 1.09247 + 0.828623i
\(326\) 9.59929 5.54215i 0.531655 0.306951i
\(327\) 0 0
\(328\) −5.02473 −0.277444
\(329\) −0.0114426 0.0198192i −0.000630853 0.00109267i
\(330\) 0 0
\(331\) 2.92713 2.92713i 0.160890 0.160890i −0.622071 0.782961i \(-0.713709\pi\)
0.782961 + 0.622071i \(0.213709\pi\)
\(332\) −3.80210 14.1896i −0.208668 0.778758i
\(333\) 0 0
\(334\) 7.46214 12.9248i 0.408310 0.707213i
\(335\) 1.62686 2.81781i 0.0888850 0.153953i
\(336\) 0 0
\(337\) −14.3966 8.31187i −0.784232 0.452777i 0.0536959 0.998557i \(-0.482900\pi\)
−0.837928 + 0.545781i \(0.816233\pi\)
\(338\) −6.37371 + 11.3303i −0.346684 + 0.616287i
\(339\) 0 0
\(340\) −5.98015 22.3182i −0.324319 1.21038i
\(341\) 5.43678 3.13893i 0.294418 0.169982i
\(342\) 0 0
\(343\) −0.282066 + 0.282066i −0.0152301 + 0.0152301i
\(344\) 6.19552 + 6.19552i 0.334040 + 0.334040i
\(345\) 0 0
\(346\) 18.4108 4.93316i 0.989770 0.265208i
\(347\) 17.6269 10.1769i 0.946261 0.546324i 0.0543438 0.998522i \(-0.482693\pi\)
0.891918 + 0.452198i \(0.149360\pi\)
\(348\) 0 0
\(349\) 18.8920 5.06210i 1.01127 0.270968i 0.285108 0.958495i \(-0.407971\pi\)
0.726158 + 0.687527i \(0.241304\pi\)
\(350\) −0.195355 −0.0104422
\(351\) 0 0
\(352\) 4.35116 0.231918
\(353\) 9.77585 2.61943i 0.520316 0.139418i 0.0109033 0.999941i \(-0.496529\pi\)
0.509413 + 0.860522i \(0.329863\pi\)
\(354\) 0 0
\(355\) −28.8019 + 16.6288i −1.52864 + 0.882564i
\(356\) −10.8696 + 2.91249i −0.576086 + 0.154362i
\(357\) 0 0
\(358\) 17.0459 + 17.0459i 0.900906 + 0.900906i
\(359\) 1.10596 1.10596i 0.0583705 0.0583705i −0.677319 0.735689i \(-0.736858\pi\)
0.735689 + 0.677319i \(0.236858\pi\)
\(360\) 0 0
\(361\) 12.9390 7.47034i 0.681001 0.393176i
\(362\) −0.301538 1.12535i −0.0158485 0.0591473i
\(363\) 0 0
\(364\) −0.0139794 0.101783i −0.000732718 0.00533490i
\(365\) −27.5676 15.9162i −1.44296 0.833091i
\(366\) 0 0
\(367\) 3.11681 5.39847i 0.162696 0.281798i −0.773139 0.634237i \(-0.781314\pi\)
0.935835 + 0.352439i \(0.114648\pi\)
\(368\) −0.264071 + 0.457384i −0.0137656 + 0.0238428i
\(369\) 0 0
\(370\) −7.22588 26.9673i −0.375656 1.40197i
\(371\) −0.102067 + 0.102067i −0.00529904 + 0.00529904i
\(372\) 0 0
\(373\) 10.5545 + 18.2810i 0.546493 + 0.946554i 0.998511 + 0.0545455i \(0.0173710\pi\)
−0.452018 + 0.892009i \(0.649296\pi\)
\(374\) −29.1981 −1.50980
\(375\) 0 0
\(376\) 0.695542 0.401572i 0.0358699 0.0207095i
\(377\) −3.74334 + 29.7163i −0.192792 + 1.53047i
\(378\) 0 0
\(379\) 1.28885 + 0.345346i 0.0662038 + 0.0177393i 0.291769 0.956489i \(-0.405756\pi\)
−0.225565 + 0.974228i \(0.572423\pi\)
\(380\) 6.00791 + 3.46867i 0.308199 + 0.177939i
\(381\) 0 0
\(382\) −2.99313 11.1705i −0.153142 0.571534i
\(383\) −6.69236 + 24.9762i −0.341963 + 1.27622i 0.554156 + 0.832413i \(0.313041\pi\)
−0.896120 + 0.443812i \(0.853626\pi\)
\(384\) 0 0
\(385\) −0.110492 + 0.412362i −0.00563120 + 0.0210159i
\(386\) −1.24711 0.720021i −0.0634764 0.0366481i
\(387\) 0 0
\(388\) 0.122184 0.455998i 0.00620297 0.0231498i
\(389\) −7.30331 12.6497i −0.370292 0.641365i 0.619318 0.785140i \(-0.287409\pi\)
−0.989610 + 0.143775i \(0.954076\pi\)
\(390\) 0 0
\(391\) 1.77202 3.06924i 0.0896151 0.155218i
\(392\) −4.94917 4.94917i −0.249971 0.249971i
\(393\) 0 0
\(394\) 4.15711i 0.209432i
\(395\) −6.86351 6.86351i −0.345341 0.345341i
\(396\) 0 0
\(397\) 2.88194 0.772213i 0.144640 0.0387563i −0.185772 0.982593i \(-0.559479\pi\)
0.330413 + 0.943837i \(0.392812\pi\)
\(398\) 1.99021 + 0.533275i 0.0997601 + 0.0267307i
\(399\) 0 0
\(400\) 6.85587i 0.342793i
\(401\) 7.83107 7.83107i 0.391065 0.391065i −0.484002 0.875067i \(-0.660817\pi\)
0.875067 + 0.484002i \(0.160817\pi\)
\(402\) 0 0
\(403\) 4.10932 3.18985i 0.204700 0.158898i
\(404\) 5.49087i 0.273181i
\(405\) 0 0
\(406\) −0.118352 0.204992i −0.00587371 0.0101736i
\(407\) −35.2804 −1.74878
\(408\) 0 0
\(409\) −14.1786 3.79916i −0.701089 0.187856i −0.109371 0.994001i \(-0.534884\pi\)
−0.591718 + 0.806145i \(0.701550\pi\)
\(410\) 16.7118 + 4.47792i 0.825337 + 0.221148i
\(411\) 0 0
\(412\) 4.18452 0.206156
\(413\) 0.203864 + 0.353103i 0.0100315 + 0.0173751i
\(414\) 0 0
\(415\) 50.5818i 2.48296i
\(416\) 3.57202 0.490596i 0.175133 0.0240535i
\(417\) 0 0
\(418\) 6.19893 6.19893i 0.303199 0.303199i
\(419\) 28.1641i 1.37591i −0.725755 0.687953i \(-0.758509\pi\)
0.725755 0.687953i \(-0.241491\pi\)
\(420\) 0 0
\(421\) 7.03106 + 1.88397i 0.342673 + 0.0918189i 0.426051 0.904699i \(-0.359904\pi\)
−0.0833784 + 0.996518i \(0.526571\pi\)
\(422\) 18.4971 4.95629i 0.900425 0.241268i
\(423\) 0 0
\(424\) −3.58197 3.58197i −0.173956 0.173956i
\(425\) 46.0057i 2.23160i
\(426\) 0 0
\(427\) 0.000433067 0 0.000433067i 2.09576e−5 0 2.09576e-5i
\(428\) 1.64680 2.85234i 0.0796011 0.137873i
\(429\) 0 0
\(430\) −15.0845 26.1270i −0.727437 1.25996i
\(431\) 4.90556 18.3078i 0.236292 0.881855i −0.741270 0.671207i \(-0.765776\pi\)
0.977562 0.210648i \(-0.0675573\pi\)
\(432\) 0 0
\(433\) 27.2951 + 15.7588i 1.31172 + 0.757322i 0.982381 0.186890i \(-0.0598407\pi\)
0.329339 + 0.944212i \(0.393174\pi\)
\(434\) −0.0106406 + 0.0397112i −0.000510764 + 0.00190620i
\(435\) 0 0
\(436\) −1.97769 + 7.38085i −0.0947143 + 0.353479i
\(437\) 0.275406 + 1.02783i 0.0131744 + 0.0491677i
\(438\) 0 0
\(439\) 11.1606 + 6.44360i 0.532668 + 0.307536i 0.742102 0.670287i \(-0.233829\pi\)
−0.209434 + 0.977823i \(0.567162\pi\)
\(440\) −14.4716 3.87765i −0.689905 0.184860i
\(441\) 0 0
\(442\) −23.9697 + 3.29210i −1.14012 + 0.156589i
\(443\) 10.9018 6.29415i 0.517959 0.299044i −0.218140 0.975917i \(-0.569999\pi\)
0.736099 + 0.676874i \(0.236666\pi\)
\(444\) 0 0
\(445\) 38.7467 1.83677
\(446\) 13.2099 + 22.8803i 0.625509 + 1.08341i
\(447\) 0 0
\(448\) −0.0201488 + 0.0201488i −0.000951939 + 0.000951939i
\(449\) 1.16977 + 4.36565i 0.0552050 + 0.206028i 0.988020 0.154329i \(-0.0493216\pi\)
−0.932814 + 0.360357i \(0.882655\pi\)
\(450\) 0 0
\(451\) 10.9317 18.9343i 0.514754 0.891581i
\(452\) −0.290951 + 0.503942i −0.0136852 + 0.0237034i
\(453\) 0 0
\(454\) 4.44628 + 2.56706i 0.208674 + 0.120478i
\(455\) −0.0442127 + 0.350980i −0.00207272 + 0.0164542i
\(456\) 0 0
\(457\) 2.63241 + 9.82430i 0.123139 + 0.459562i 0.999767 0.0216084i \(-0.00687869\pi\)
−0.876627 + 0.481170i \(0.840212\pi\)
\(458\) −6.87691 + 3.97039i −0.321337 + 0.185524i
\(459\) 0 0
\(460\) 1.28588 1.28588i 0.0599547 0.0599547i
\(461\) 19.2384 + 19.2384i 0.896021 + 0.896021i 0.995081 0.0990604i \(-0.0315837\pi\)
−0.0990604 + 0.995081i \(0.531584\pi\)
\(462\) 0 0
\(463\) 11.4472 3.06727i 0.531996 0.142548i 0.0171864 0.999852i \(-0.494529\pi\)
0.514810 + 0.857304i \(0.327862\pi\)
\(464\) 7.19404 4.15348i 0.333975 0.192821i
\(465\) 0 0
\(466\) 0.232144 0.0622029i 0.0107539 0.00288149i
\(467\) 0.615879 0.0284995 0.0142497 0.999898i \(-0.495464\pi\)
0.0142497 + 0.999898i \(0.495464\pi\)
\(468\) 0 0
\(469\) 0.0269263 0.00124334
\(470\) −2.67118 + 0.715741i −0.123212 + 0.0330147i
\(471\) 0 0
\(472\) −12.3919 + 7.15447i −0.570384 + 0.329311i
\(473\) −36.8249 + 9.86721i −1.69321 + 0.453695i
\(474\) 0 0
\(475\) −9.76728 9.76728i −0.448153 0.448153i
\(476\) 0.135206 0.135206i 0.00619718 0.00619718i
\(477\) 0 0
\(478\) 5.82418 3.36259i 0.266392 0.153801i
\(479\) −5.18682 19.3575i −0.236992 0.884466i −0.977241 0.212133i \(-0.931959\pi\)
0.740249 0.672333i \(-0.234708\pi\)
\(480\) 0 0
\(481\) −28.9629 + 3.97788i −1.32059 + 0.181376i
\(482\) −22.4739 12.9753i −1.02366 0.591010i
\(483\) 0 0
\(484\) −3.96631 + 6.86984i −0.180287 + 0.312266i
\(485\) −0.812748 + 1.40772i −0.0369050 + 0.0639213i
\(486\) 0 0
\(487\) −5.47316 20.4261i −0.248012 0.925595i −0.971845 0.235620i \(-0.924288\pi\)
0.723833 0.689975i \(-0.242379\pi\)
\(488\) −0.0151982 + 0.0151982i −0.000687990 + 0.000687990i
\(489\) 0 0
\(490\) 12.0499 + 20.8711i 0.544360 + 0.942859i
\(491\) 19.7513 0.891362 0.445681 0.895192i \(-0.352961\pi\)
0.445681 + 0.895192i \(0.352961\pi\)
\(492\) 0 0
\(493\) −48.2750 + 27.8716i −2.17420 + 1.25527i
\(494\) 4.38998 5.78784i 0.197514 0.260407i
\(495\) 0 0
\(496\) −1.39364 0.373424i −0.0625761 0.0167672i
\(497\) −0.238351 0.137612i −0.0106915 0.00617275i
\(498\) 0 0
\(499\) −1.37420 5.12859i −0.0615177 0.229587i 0.928321 0.371778i \(-0.121252\pi\)
−0.989839 + 0.142191i \(0.954585\pi\)
\(500\) −1.65390 + 6.17244i −0.0739647 + 0.276040i
\(501\) 0 0
\(502\) −5.32152 + 19.8602i −0.237511 + 0.886403i
\(503\) 16.2322 + 9.37164i 0.723756 + 0.417861i 0.816134 0.577863i \(-0.196113\pi\)
−0.0923776 + 0.995724i \(0.529447\pi\)
\(504\) 0 0
\(505\) −4.89333 + 18.2621i −0.217750 + 0.812654i
\(506\) −1.14901 1.99015i −0.0510799 0.0884731i
\(507\) 0 0
\(508\) 4.94371 8.56275i 0.219342 0.379911i
\(509\) 12.0815 + 12.0815i 0.535502 + 0.535502i 0.922204 0.386703i \(-0.126386\pi\)
−0.386703 + 0.922204i \(0.626386\pi\)
\(510\) 0 0
\(511\) 0.263430i 0.0116535i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) −14.9121 + 3.99567i −0.657743 + 0.176242i
\(515\) −13.9173 3.72914i −0.613271 0.164325i
\(516\) 0 0
\(517\) 3.49461i 0.153693i
\(518\) 0.163371 0.163371i 0.00717813 0.00717813i
\(519\) 0 0
\(520\) −12.3174 1.55161i −0.540154 0.0680427i
\(521\) 6.18564i 0.270998i 0.990777 + 0.135499i \(0.0432637\pi\)
−0.990777 + 0.135499i \(0.956736\pi\)
\(522\) 0 0
\(523\) 3.32093 + 5.75201i 0.145214 + 0.251518i 0.929453 0.368941i \(-0.120280\pi\)
−0.784239 + 0.620459i \(0.786946\pi\)
\(524\) 18.1247 0.791782
\(525\) 0 0
\(526\) 12.1932 + 3.26716i 0.531649 + 0.142455i
\(527\) 9.35188 + 2.50583i 0.407374 + 0.109156i
\(528\) 0 0
\(529\) −22.7211 −0.987872
\(530\) 8.72113 + 15.1054i 0.378822 + 0.656139i
\(531\) 0 0
\(532\) 0.0574102i 0.00248905i
\(533\) 6.83937 16.7764i 0.296246 0.726665i
\(534\) 0 0
\(535\) −8.01904 + 8.01904i −0.346693 + 0.346693i
\(536\) 0.944962i 0.0408161i
\(537\) 0 0
\(538\) 15.1327 + 4.05479i 0.652416 + 0.174814i
\(539\) 29.4169 7.88223i 1.26708 0.339512i
\(540\) 0 0
\(541\) 4.34283 + 4.34283i 0.186713 + 0.186713i 0.794273 0.607561i \(-0.207852\pi\)
−0.607561 + 0.794273i \(0.707852\pi\)
\(542\) 17.1182i 0.735289i
\(543\) 0 0
\(544\) 4.74498 + 4.74498i 0.203439 + 0.203439i
\(545\) 13.1553 22.7856i 0.563509 0.976027i
\(546\) 0 0
\(547\) −16.4189 28.4384i −0.702022 1.21594i −0.967755 0.251892i \(-0.918947\pi\)
0.265733 0.964047i \(-0.414386\pi\)
\(548\) −4.32643 + 16.1465i −0.184816 + 0.689742i
\(549\) 0 0
\(550\) 25.8344 + 14.9155i 1.10158 + 0.635999i
\(551\) 4.33176 16.1664i 0.184539 0.688710i
\(552\) 0 0
\(553\) 0.0207900 0.0775892i 0.000884079 0.00329943i
\(554\) −5.06073 18.8869i −0.215010 0.802428i
\(555\) 0 0
\(556\) −4.40359 2.54241i −0.186754 0.107822i
\(557\) 7.73861 + 2.07355i 0.327895 + 0.0878593i 0.419011 0.907981i \(-0.362377\pi\)
−0.0911160 + 0.995840i \(0.529043\pi\)
\(558\) 0 0
\(559\) −29.1183 + 12.2524i −1.23157 + 0.518220i
\(560\) 0.0849690 0.0490569i 0.00359059 0.00207303i
\(561\) 0 0
\(562\) −30.6037 −1.29094
\(563\) −7.44232 12.8905i −0.313656 0.543269i 0.665495 0.746403i \(-0.268221\pi\)
−0.979151 + 0.203134i \(0.934887\pi\)
\(564\) 0 0
\(565\) 1.41678 1.41678i 0.0596042 0.0596042i
\(566\) 6.11299 + 22.8140i 0.256948 + 0.958943i
\(567\) 0 0
\(568\) 4.82940 8.36477i 0.202637 0.350978i
\(569\) 4.45227 7.71156i 0.186649 0.323285i −0.757482 0.652856i \(-0.773571\pi\)
0.944131 + 0.329571i \(0.106904\pi\)
\(570\) 0 0
\(571\) 0.862884 + 0.498186i 0.0361106 + 0.0208484i 0.517947 0.855413i \(-0.326697\pi\)
−0.481836 + 0.876261i \(0.660030\pi\)
\(572\) −5.92254 + 14.5275i −0.247634 + 0.607424i
\(573\) 0 0
\(574\) 0.0370572 + 0.138299i 0.00154674 + 0.00577250i
\(575\) −3.13576 + 1.81043i −0.130770 + 0.0755003i
\(576\) 0 0
\(577\) −15.1503 + 15.1503i −0.630713 + 0.630713i −0.948247 0.317534i \(-0.897145\pi\)
0.317534 + 0.948247i \(0.397145\pi\)
\(578\) −19.8199 19.8199i −0.824401 0.824401i
\(579\) 0 0
\(580\) −27.6282 + 7.40295i −1.14720 + 0.307391i
\(581\) −0.362511 + 0.209296i −0.0150395 + 0.00868306i
\(582\) 0 0
\(583\) 21.2905 5.70477i 0.881762 0.236267i
\(584\) 9.24490 0.382557
\(585\) 0 0
\(586\) 22.0863 0.912375
\(587\) 6.18262 1.65663i 0.255184 0.0683763i −0.128959 0.991650i \(-0.541164\pi\)
0.384143 + 0.923274i \(0.374497\pi\)
\(588\) 0 0
\(589\) −2.51746 + 1.45346i −0.103730 + 0.0598886i
\(590\) 47.5903 12.7518i 1.95926 0.524982i
\(591\) 0 0
\(592\) 5.73341 + 5.73341i 0.235642 + 0.235642i
\(593\) −24.4287 + 24.4287i −1.00317 + 1.00317i −0.00317304 + 0.999995i \(0.501010\pi\)
−0.999995 + 0.00317304i \(0.998990\pi\)
\(594\) 0 0
\(595\) −0.570177 + 0.329192i −0.0233750 + 0.0134955i
\(596\) −1.36845 5.10712i −0.0560538 0.209196i
\(597\) 0 0
\(598\) −1.16766 1.50423i −0.0477490 0.0615126i
\(599\) −36.9806 21.3507i −1.51099 0.872368i −0.999918 0.0128274i \(-0.995917\pi\)
−0.511068 0.859540i \(-0.670750\pi\)
\(600\) 0 0
\(601\) 13.5165 23.4112i 0.551349 0.954965i −0.446829 0.894620i \(-0.647447\pi\)
0.998178 0.0603449i \(-0.0192201\pi\)
\(602\) 0.124832 0.216215i 0.00508777 0.00881228i
\(603\) 0 0
\(604\) 2.52008 + 9.40508i 0.102541 + 0.382687i
\(605\) 19.3138 19.3138i 0.785218 0.785218i
\(606\) 0 0
\(607\) −23.5378 40.7687i −0.955370 1.65475i −0.733519 0.679669i \(-0.762124\pi\)
−0.221851 0.975081i \(-0.571210\pi\)
\(608\) −2.01477 −0.0817098
\(609\) 0 0
\(610\) 0.0640921 0.0370036i 0.00259501 0.00149823i
\(611\) 0.394019 + 2.86884i 0.0159403 + 0.116061i
\(612\) 0 0
\(613\) 22.7568 + 6.09767i 0.919139 + 0.246283i 0.687217 0.726452i \(-0.258832\pi\)
0.231922 + 0.972734i \(0.425499\pi\)
\(614\) 3.67161 + 2.11981i 0.148174 + 0.0855484i
\(615\) 0 0
\(616\) −0.0320896 0.119760i −0.00129293 0.00482527i
\(617\) −1.25606 + 4.68769i −0.0505672 + 0.188719i −0.986589 0.163222i \(-0.947811\pi\)
0.936022 + 0.351941i \(0.114478\pi\)
\(618\) 0 0
\(619\) −6.61442 + 24.6854i −0.265856 + 0.992188i 0.695868 + 0.718170i \(0.255020\pi\)
−0.961724 + 0.274019i \(0.911647\pi\)
\(620\) 4.30232 + 2.48395i 0.172785 + 0.0997577i
\(621\) 0 0
\(622\) −7.83186 + 29.2289i −0.314029 + 1.17197i
\(623\) 0.160325 + 0.277691i 0.00642329 + 0.0111255i
\(624\) 0 0
\(625\) −6.13822 + 10.6317i −0.245529 + 0.425268i
\(626\) −23.6643 23.6643i −0.945817 0.945817i
\(627\) 0 0
\(628\) 9.62677i 0.384150i
\(629\) −38.4735 38.4735i −1.53404 1.53404i
\(630\) 0 0
\(631\) 18.8379 5.04759i 0.749924 0.200942i 0.136440 0.990648i \(-0.456434\pi\)
0.613484 + 0.789707i \(0.289767\pi\)
\(632\) 2.72294 + 0.729610i 0.108313 + 0.0290223i
\(633\) 0 0
\(634\) 11.1589i 0.443177i
\(635\) −24.0732 + 24.0732i −0.955317 + 0.955317i
\(636\) 0 0
\(637\) 23.2606 9.78757i 0.921619 0.387798i
\(638\) 36.1449i 1.43099i
\(639\) 0 0
\(640\) 1.72162 + 2.98193i 0.0680529 + 0.117871i
\(641\) 22.8781 0.903629 0.451814 0.892112i \(-0.350777\pi\)
0.451814 + 0.892112i \(0.350777\pi\)
\(642\) 0 0
\(643\) −12.7791 3.42415i −0.503959 0.135035i −0.00212223 0.999998i \(-0.500676\pi\)
−0.501837 + 0.864962i \(0.667342\pi\)
\(644\) 0.0145364 + 0.00389502i 0.000572815 + 0.000153485i
\(645\) 0 0
\(646\) 13.5200 0.531936
\(647\) −5.87399 10.1741i −0.230930 0.399983i 0.727152 0.686477i \(-0.240844\pi\)
−0.958082 + 0.286493i \(0.907510\pi\)
\(648\) 0 0
\(649\) 62.2606i 2.44394i
\(650\) 22.8901 + 9.33179i 0.897822 + 0.366023i
\(651\) 0 0
\(652\) 7.83779 7.83779i 0.306951 0.306951i
\(653\) 9.22206i 0.360887i 0.983585 + 0.180444i \(0.0577533\pi\)
−0.983585 + 0.180444i \(0.942247\pi\)
\(654\) 0 0
\(655\) −60.2811 16.1523i −2.35538 0.631122i
\(656\) −4.85352 + 1.30050i −0.189498 + 0.0507759i
\(657\) 0 0
\(658\) −0.0161823 0.0161823i −0.000630853 0.000630853i
\(659\) 4.26895i 0.166295i 0.996537 + 0.0831474i \(0.0264972\pi\)
−0.996537 + 0.0831474i \(0.973503\pi\)
\(660\) 0 0
\(661\) −31.5763 31.5763i −1.22818 1.22818i −0.964654 0.263522i \(-0.915116\pi\)
−0.263522 0.964654i \(-0.584884\pi\)
\(662\) 2.06979 3.58499i 0.0804448 0.139335i
\(663\) 0 0
\(664\) −7.34510 12.7221i −0.285045 0.493713i
\(665\) 0.0511626 0.190941i 0.00198400 0.00740438i
\(666\) 0 0
\(667\) −3.79947 2.19363i −0.147116 0.0849375i
\(668\) 3.86269 14.4157i 0.149452 0.557762i
\(669\) 0 0
\(670\) 0.842126 3.14286i 0.0325342 0.121419i
\(671\) −0.0242052 0.0903350i −0.000934431 0.00348734i
\(672\) 0 0
\(673\) −4.88433 2.81997i −0.188277 0.108702i 0.402899 0.915245i \(-0.368003\pi\)
−0.591176 + 0.806543i \(0.701336\pi\)
\(674\) −16.0573 4.30254i −0.618504 0.165728i
\(675\) 0 0
\(676\) −3.22404 + 12.5939i −0.124001 + 0.484380i
\(677\) 21.2676 12.2789i 0.817381 0.471915i −0.0321318 0.999484i \(-0.510230\pi\)
0.849512 + 0.527569i \(0.176896\pi\)
\(678\) 0 0
\(679\) −0.0134519 −0.000516235
\(680\) −11.5528 20.0100i −0.443028 0.767347i
\(681\) 0 0
\(682\) 4.43911 4.43911i 0.169982 0.169982i
\(683\) −7.16139 26.7267i −0.274023 1.02267i −0.956493 0.291755i \(-0.905761\pi\)
0.682470 0.730913i \(-0.260906\pi\)
\(684\) 0 0
\(685\) 28.7786 49.8460i 1.09957 1.90452i
\(686\) −0.199451 + 0.345459i −0.00761507 + 0.0131897i
\(687\) 0 0
\(688\) 7.58793 + 4.38090i 0.289287 + 0.167020i
\(689\) 16.8349 7.08375i 0.641357 0.269870i
\(690\) 0 0
\(691\) −2.04478 7.63123i −0.0777871 0.290306i 0.916064 0.401033i \(-0.131349\pi\)
−0.993851 + 0.110727i \(0.964682\pi\)
\(692\) 16.5067 9.53013i 0.627489 0.362281i
\(693\) 0 0
\(694\) 14.3923 14.3923i 0.546324 0.546324i
\(695\) 12.3802 + 12.3802i 0.469608 + 0.469608i
\(696\) 0 0
\(697\) 32.5691 8.72687i 1.23364 0.330554i
\(698\) 16.9381 9.77922i 0.641117 0.370149i
\(699\) 0 0
\(700\) −0.188699 + 0.0505617i −0.00713215 + 0.00191105i
\(701\) −39.9569 −1.50915 −0.754575 0.656214i \(-0.772157\pi\)
−0.754575 + 0.656214i \(0.772157\pi\)
\(702\) 0 0
\(703\) 16.3363 0.616136
\(704\) 4.20290 1.12616i 0.158403 0.0424439i
\(705\) 0 0
\(706\) 8.76479 5.06035i 0.329867 0.190449i
\(707\) −0.151129 + 0.0404949i −0.00568380 + 0.00152297i
\(708\) 0 0
\(709\) −35.9885 35.9885i −1.35158 1.35158i −0.883898 0.467680i \(-0.845090\pi\)
−0.467680 0.883898i \(-0.654910\pi\)
\(710\) −23.5166 + 23.5166i −0.882564 + 0.882564i
\(711\) 0 0
\(712\) −9.74539 + 5.62650i −0.365224 + 0.210862i
\(713\) 0.197221 + 0.736038i 0.00738597 + 0.0275648i
\(714\) 0 0
\(715\) 32.6444 43.0390i 1.22083 1.60957i
\(716\) 20.8769 + 12.0533i 0.780207 + 0.450453i
\(717\) 0 0
\(718\) 0.782034 1.35452i 0.0291853 0.0505504i
\(719\) 0.750575 1.30003i 0.0279917 0.0484831i −0.851690 0.524046i \(-0.824422\pi\)
0.879682 + 0.475563i \(0.157755\pi\)
\(720\) 0 0
\(721\) −0.0308606 0.115173i −0.00114931 0.00428928i
\(722\) 10.5647 10.5647i 0.393176 0.393176i
\(723\) 0 0
\(724\) −0.582526 1.00897i −0.0216494 0.0374979i
\(725\) 56.9514 2.11512
\(726\) 0 0
\(727\) 41.9032 24.1928i 1.55410 0.897261i 0.556301 0.830981i \(-0.312220\pi\)
0.997801 0.0662809i \(-0.0211133\pi\)
\(728\) −0.0398465 0.0946971i −0.00147681 0.00350971i
\(729\) 0 0
\(730\) −30.7477 8.23882i −1.13802 0.304932i
\(731\) −50.9182 29.3976i −1.88328 1.08731i
\(732\) 0 0
\(733\) −6.15729 22.9793i −0.227425 0.848761i −0.981419 0.191879i \(-0.938542\pi\)
0.753994 0.656882i \(-0.228125\pi\)
\(734\) 1.61338 6.02121i 0.0595509 0.222247i
\(735\) 0 0
\(736\) −0.136693 + 0.510146i −0.00503857 + 0.0188042i
\(737\) −3.56082 2.05584i −0.131164 0.0757279i
\(738\) 0 0
\(739\) 12.0076 44.8128i 0.441705 1.64847i −0.282786 0.959183i \(-0.591259\pi\)
0.724491 0.689284i \(-0.242075\pi\)
\(740\) −13.9593 24.1783i −0.513155 0.888811i
\(741\) 0 0
\(742\) −0.0721721 + 0.125006i −0.00264952 + 0.00458911i
\(743\) 25.5083 + 25.5083i 0.935809 + 0.935809i 0.998061 0.0622513i \(-0.0198280\pi\)
−0.0622513 + 0.998061i \(0.519828\pi\)
\(744\) 0 0
\(745\) 18.2053i 0.666992i
\(746\) 14.9264 + 14.9264i 0.546493 + 0.546493i
\(747\) 0 0
\(748\) −28.2032 + 7.55702i −1.03121 + 0.276312i
\(749\) −0.0906521 0.0242902i −0.00331236 0.000887543i
\(750\) 0 0
\(751\) 17.5054i 0.638780i 0.947623 + 0.319390i \(0.103478\pi\)
−0.947623 + 0.319390i \(0.896522\pi\)
\(752\) 0.567908 0.567908i 0.0207095 0.0207095i
\(753\) 0 0
\(754\) 4.07537 + 29.6726i 0.148416 + 1.08061i
\(755\) 33.5263i 1.22015i
\(756\) 0 0
\(757\) 0.816598 + 1.41439i 0.0296798 + 0.0514068i 0.880484 0.474076i \(-0.157218\pi\)
−0.850804 + 0.525483i \(0.823885\pi\)
\(758\) 1.33432 0.0484645
\(759\) 0 0
\(760\) 6.70095 + 1.79552i 0.243069 + 0.0651302i
\(761\) −17.1049 4.58324i −0.620051 0.166142i −0.0649002 0.997892i \(-0.520673\pi\)
−0.555151 + 0.831750i \(0.687340\pi\)
\(762\) 0 0
\(763\) 0.217734 0.00788249
\(764\) −5.78229 10.0152i −0.209196 0.362338i
\(765\) 0 0
\(766\) 25.8573i 0.934261i
\(767\) −7.01992 51.1118i −0.253475 1.84554i
\(768\) 0 0
\(769\) 14.4842 14.4842i 0.522312 0.522312i −0.395957 0.918269i \(-0.629587\pi\)
0.918269 + 0.395957i \(0.129587\pi\)
\(770\) 0.426909i 0.0153847i
\(771\) 0 0
\(772\) −1.39097 0.372710i −0.0500622 0.0134141i
\(773\) −8.74973 + 2.34448i −0.314706 + 0.0843252i −0.412715 0.910860i \(-0.635419\pi\)
0.0980088 + 0.995186i \(0.468753\pi\)
\(774\) 0 0
\(775\) −6.99444 6.99444i −0.251248 0.251248i
\(776\) 0.472084i 0.0169468i
\(777\) 0 0
\(778\) −10.3284 10.3284i −0.370292 0.370292i
\(779\) −5.06185 + 8.76738i −0.181360 + 0.314124i
\(780\) 0 0
\(781\) 21.0135 + 36.3965i 0.751923 + 1.30237i
\(782\) 0.917267 3.42329i 0.0328014 0.122416i
\(783\) 0 0
\(784\) −6.06147 3.49959i −0.216481 0.124986i
\(785\) −8.57914 + 32.0178i −0.306203 + 1.14276i
\(786\) 0 0
\(787\) −4.89695 + 18.2757i −0.174558 + 0.651458i 0.822069 + 0.569388i \(0.192820\pi\)
−0.996627 + 0.0820699i \(0.973847\pi\)
\(788\) −1.07594 4.01546i −0.0383288 0.143045i
\(789\) 0 0
\(790\) −8.40604 4.85323i −0.299074 0.172670i
\(791\) 0.0160161 + 0.00429150i 0.000569467 + 0.000152588i
\(792\) 0 0
\(793\) −0.0300562 0.0714299i −0.00106733 0.00253655i
\(794\) 2.58388 1.49180i 0.0916983 0.0529421i
\(795\) 0 0
\(796\) 2.06042 0.0730295
\(797\) −16.8536 29.1913i −0.596986 1.03401i −0.993263 0.115879i \(-0.963031\pi\)
0.396277 0.918131i \(-0.370302\pi\)
\(798\) 0 0
\(799\) −3.81090 + 3.81090i −0.134820 + 0.134820i
\(800\) −1.77443 6.62226i −0.0627355 0.234132i
\(801\) 0 0
\(802\) 5.53740 9.59106i 0.195533 0.338672i
\(803\) −20.1130 + 34.8368i −0.709773 + 1.22936i
\(804\) 0 0
\(805\) −0.0448757 0.0259090i −0.00158166 0.000913171i
\(806\) 3.14371 4.14473i 0.110732 0.145992i
\(807\) 0 0
\(808\) −1.42114 5.30377i −0.0499956 0.186586i
\(809\) 9.20764 5.31603i 0.323723 0.186902i −0.329328 0.944216i \(-0.606822\pi\)
0.653051 + 0.757314i \(0.273489\pi\)
\(810\) 0 0
\(811\) 7.65216 7.65216i 0.268704 0.268704i −0.559874 0.828578i \(-0.689151\pi\)
0.828578 + 0.559874i \(0.189151\pi\)
\(812\) −0.167375 0.167375i −0.00587371 0.00587371i
\(813\) 0 0
\(814\) −34.0782 + 9.13123i −1.19444 + 0.320049i
\(815\) −33.0526 + 19.0829i −1.15778 + 0.668446i
\(816\) 0 0
\(817\) 17.0515 4.56894i 0.596557 0.159847i
\(818\) −14.6788 −0.513233
\(819\) 0 0
\(820\) 17.3013 0.604189
\(821\) −14.8427 + 3.97709i −0.518013 + 0.138801i −0.508347 0.861152i \(-0.669743\pi\)
−0.00966583 + 0.999953i \(0.503077\pi\)
\(822\) 0 0
\(823\) 13.1817 7.61045i 0.459485 0.265284i −0.252343 0.967638i \(-0.581201\pi\)
0.711828 + 0.702354i \(0.247868\pi\)
\(824\) 4.04193 1.08303i 0.140807 0.0377292i
\(825\) 0 0
\(826\) 0.288307 + 0.288307i 0.0100315 + 0.0100315i
\(827\) −16.9790 + 16.9790i −0.590418 + 0.590418i −0.937744 0.347326i \(-0.887090\pi\)
0.347326 + 0.937744i \(0.387090\pi\)
\(828\) 0 0
\(829\) −14.6492 + 8.45773i −0.508788 + 0.293749i −0.732335 0.680944i \(-0.761570\pi\)
0.223547 + 0.974693i \(0.428236\pi\)
\(830\) 13.0915 + 48.8583i 0.454414 + 1.69590i
\(831\) 0 0
\(832\) 3.32333 1.39839i 0.115216 0.0484803i
\(833\) 40.6750 + 23.4837i 1.40930 + 0.813662i
\(834\) 0 0
\(835\) −25.6939 + 44.5031i −0.889174 + 1.54009i
\(836\) 4.38330 7.59210i 0.151600 0.262578i
\(837\) 0 0
\(838\) −7.28940 27.2044i −0.251808 0.939761i
\(839\) −16.7213 + 16.7213i −0.577282 + 0.577282i −0.934154 0.356871i \(-0.883844\pi\)
0.356871 + 0.934154i \(0.383844\pi\)
\(840\) 0 0
\(841\) 20.0028 + 34.6459i 0.689752 + 1.19469i
\(842\) 7.27909 0.250854
\(843\) 0 0
\(844\) 16.5841 9.57481i 0.570847 0.329579i
\(845\) 21.9462 39.0129i 0.754972 1.34208i
\(846\) 0 0
\(847\) 0.218335 + 0.0585027i 0.00750208 + 0.00201018i
\(848\) −4.38699 2.53283i −0.150650 0.0869778i
\(849\) 0 0
\(850\) 11.9071 + 44.4381i 0.408412 + 1.52421i
\(851\) 1.10834 4.13640i 0.0379935 0.141794i
\(852\) 0 0
\(853\) −14.8432 + 55.3955i −0.508221 + 1.89671i −0.0706986 + 0.997498i \(0.522523\pi\)
−0.437522 + 0.899208i \(0.644144\pi\)
\(854\) 0.000530397 0 0.000306225i 1.81498e−5 0 1.04788e-5i
\(855\) 0 0
\(856\) 0.852446 3.18137i 0.0291360 0.108737i
\(857\) −9.63613 16.6903i −0.329164 0.570129i 0.653182 0.757201i \(-0.273434\pi\)
−0.982346 + 0.187072i \(0.940100\pi\)
\(858\) 0 0
\(859\) −21.1198 + 36.5805i −0.720597 + 1.24811i 0.240164 + 0.970732i \(0.422799\pi\)
−0.960761 + 0.277378i \(0.910534\pi\)
\(860\) −21.3326 21.3326i −0.727437 0.727437i
\(861\) 0 0
\(862\) 18.9536i 0.645563i
\(863\) −4.51248 4.51248i −0.153607 0.153607i 0.626120 0.779727i \(-0.284642\pi\)
−0.779727 + 0.626120i \(0.784642\pi\)
\(864\) 0 0
\(865\) −63.3927 + 16.9860i −2.15542 + 0.577542i
\(866\) 30.4438 + 8.15738i 1.03452 + 0.277199i
\(867\) 0 0
\(868\) 0.0411120i 0.00139543i
\(869\) −8.67331 + 8.67331i −0.294222 + 0.294222i
\(870\) 0 0
\(871\) −3.15500 1.28623i −0.106903 0.0435821i
\(872\) 7.64122i 0.258764i
\(873\) 0 0
\(874\) 0.532043 + 0.921525i 0.0179966 + 0.0311711i
\(875\) 0.182086 0.00615563
\(876\) 0 0
\(877\) 11.6623 + 3.12491i 0.393808 + 0.105521i 0.450288 0.892883i \(-0.351321\pi\)
−0.0564803 + 0.998404i \(0.517988\pi\)
\(878\) 12.4481 + 3.33545i 0.420102 + 0.112566i
\(879\) 0 0
\(880\) −14.9821 −0.505046
\(881\) 23.1313 + 40.0646i 0.779314 + 1.34981i 0.932337 + 0.361589i \(0.117766\pi\)
−0.153023 + 0.988223i \(0.548901\pi\)
\(882\) 0 0
\(883\) 5.00836i 0.168545i 0.996443 + 0.0842723i \(0.0268566\pi\)
−0.996443 + 0.0842723i \(0.973143\pi\)
\(884\) −22.3009 + 9.38375i −0.750061 + 0.315610i
\(885\) 0 0
\(886\) 8.90127 8.90127i 0.299044 0.299044i
\(887\) 21.6986i 0.728567i 0.931288 + 0.364284i \(0.118686\pi\)
−0.931288 + 0.364284i \(0.881314\pi\)
\(888\) 0 0
\(889\) −0.272138 0.0729193i −0.00912723 0.00244563i
\(890\) 37.4265 10.0284i 1.25454 0.336153i
\(891\) 0 0
\(892\) 18.6817 + 18.6817i 0.625509 + 0.625509i
\(893\) 1.61815i 0.0541494i
\(894\) 0 0
\(895\) −58.6932 58.6932i −1.96190 1.96190i
\(896\) −0.0142473 + 0.0246771i −0.000475970 + 0.000824403i
\(897\) 0 0
\(898\) 2.25983 + 3.91414i 0.0754115 + 0.130616i
\(899\) 3.10202 11.5769i 0.103458 0.386111i
\(900\) 0 0
\(901\) 29.4385 + 16.9963i 0.980740 + 0.566230i
\(902\) 5.65867 21.1185i 0.188413 0.703167i
\(903\) 0 0
\(904\) −0.150607 + 0.562074i −0.00500912 + 0.0186943i
\(905\) 1.03827 + 3.87486i 0.0345131 + 0.128805i
\(906\) 0 0
\(907\) 26.6615 + 15.3930i 0.885282 + 0.511118i 0.872396 0.488799i \(-0.162565\pi\)
0.0128856 + 0.999917i \(0.495898\pi\)
\(908\) 4.95918 + 1.32881i 0.164576 + 0.0440981i
\(909\) 0 0
\(910\) 0.0481342 + 0.350464i 0.00159563 + 0.0116178i
\(911\) −13.1044 + 7.56582i −0.434168 + 0.250667i −0.701120 0.713043i \(-0.747316\pi\)
0.266953 + 0.963710i \(0.413983\pi\)
\(912\) 0 0
\(913\) 63.9194 2.11542
\(914\) 5.08543 + 8.80823i 0.168211 + 0.291350i
\(915\) 0 0
\(916\) −5.61498 + 5.61498i −0.185524 + 0.185524i
\(917\) −0.133669 0.498859i −0.00441414 0.0164738i
\(918\) 0 0
\(919\) −26.7304 + 46.2985i −0.881755 + 1.52724i −0.0323673 + 0.999476i \(0.510305\pi\)
−0.849388 + 0.527769i \(0.823029\pi\)
\(920\) 0.909258 1.57488i 0.0299773 0.0519223i
\(921\) 0 0
\(922\) 23.5621 + 13.6036i 0.775977 + 0.448011i
\(923\) 21.3544 + 27.5098i 0.702890 + 0.905497i
\(924\) 0 0
\(925\) 14.3875 + 53.6950i 0.473059 + 1.76548i
\(926\) 10.2633 5.92551i 0.337272 0.194724i
\(927\) 0 0
\(928\) 5.87391 5.87391i 0.192821 0.192821i
\(929\) −37.9968 37.9968i −1.24663 1.24663i −0.957197 0.289436i \(-0.906532\pi\)
−0.289436 0.957197i \(-0.593468\pi\)
\(930\) 0 0
\(931\) −13.6213 + 3.64981i −0.446419 + 0.119618i
\(932\) 0.208135 0.120167i 0.00681769 0.00393619i
\(933\) 0 0
\(934\) 0.594893 0.159401i 0.0194655 0.00521576i
\(935\) 100.536 3.28787
\(936\) 0 0
\(937\) −2.41921 −0.0790323 −0.0395162 0.999219i \(-0.512582\pi\)
−0.0395162 + 0.999219i \(0.512582\pi\)
\(938\) 0.0260088 0.00696905i 0.000849219 0.000227548i
\(939\) 0 0
\(940\) −2.39492 + 1.38271i −0.0781135 + 0.0450989i
\(941\) 0.0432503 0.0115889i 0.00140992 0.000377786i −0.258114 0.966114i \(-0.583101\pi\)
0.259524 + 0.965737i \(0.416434\pi\)
\(942\) 0 0
\(943\) 1.87650 + 1.87650i 0.0611072 + 0.0611072i
\(944\) −10.1180 + 10.1180i −0.329311 + 0.329311i
\(945\) 0 0
\(946\) −33.0163 + 19.0620i −1.07345 + 0.619759i
\(947\) 6.08611 + 22.7137i 0.197772 + 0.738095i 0.991532 + 0.129864i \(0.0414540\pi\)
−0.793760 + 0.608231i \(0.791879\pi\)
\(948\) 0 0
\(949\) −12.5836 + 30.8665i −0.408481 + 1.00197i
\(950\) −11.9624 6.90651i −0.388112 0.224077i
\(951\) 0 0
\(952\) 0.0956054 0.165593i 0.00309859 0.00536691i
\(953\) 13.8021 23.9060i 0.447095 0.774392i −0.551100 0.834439i \(-0.685792\pi\)
0.998196 + 0.0600474i \(0.0191252\pi\)
\(954\) 0 0
\(955\) 10.3061 + 38.4627i 0.333496 + 1.24462i
\(956\) 4.75542 4.75542i 0.153801 0.153801i
\(957\) 0 0
\(958\) −10.0202 17.3554i −0.323737 0.560729i
\(959\) 0.476318 0.0153811
\(960\) 0 0
\(961\) 25.0440 14.4592i 0.807871 0.466425i
\(962\) −26.9464 + 11.3385i −0.868788 + 0.365567i
\(963\) 0 0
\(964\) −25.0664 6.71652i −0.807335 0.216325i
\(965\) 4.29410 + 2.47920i 0.138232 + 0.0798083i
\(966\) 0 0
\(967\) −8.31034 31.0146i −0.267243 0.997363i −0.960863 0.277023i \(-0.910652\pi\)
0.693621 0.720340i \(-0.256014\pi\)
\(968\) −2.05311 + 7.66231i −0.0659895 + 0.246276i
\(969\) 0 0
\(970\) −0.420710 + 1.57011i −0.0135082 + 0.0504132i
\(971\) −16.6187 9.59478i −0.533318 0.307911i 0.209049 0.977905i \(-0.432963\pi\)
−0.742366 + 0.669994i \(0.766297\pi\)
\(972\) 0 0
\(973\) −0.0375004 + 0.139953i −0.00120221 + 0.00448670i
\(974\) −10.5733 18.3135i −0.338791 0.586804i
\(975\) 0 0
\(976\) −0.0107467 + 0.0186139i −0.000343995 + 0.000595817i
\(977\) −21.6436 21.6436i −0.692440 0.692440i 0.270328 0.962768i \(-0.412868\pi\)
−0.962768 + 0.270328i \(0.912868\pi\)
\(978\) 0 0
\(979\) 48.9637i 1.56489i
\(980\) 17.0412 + 17.0412i 0.544360 + 0.544360i
\(981\) 0 0
\(982\) 19.0783 5.11201i 0.608812 0.163131i
\(983\) 21.8828 + 5.86347i 0.697952 + 0.187016i 0.590313 0.807175i \(-0.299004\pi\)
0.107639 + 0.994190i \(0.465671\pi\)
\(984\) 0 0
\(985\) 14.3139i 0.456079i
\(986\) −39.4163 + 39.4163i −1.25527 + 1.25527i
\(987\) 0 0
\(988\) 2.74239 6.72684i 0.0872470 0.214009i
\(989\) 4.62747i 0.147145i
\(990\) 0 0
\(991\) −18.1139 31.3742i −0.575408 0.996636i −0.995997 0.0893845i \(-0.971510\pi\)
0.420589 0.907251i \(-0.361823\pi\)
\(992\) −1.44280 −0.0458089
\(993\) 0 0
\(994\) −0.265846 0.0712333i −0.00843213 0.00225938i
\(995\) −6.85276 1.83619i −0.217247 0.0582111i
\(996\) 0 0
\(997\) −17.7685 −0.562733 −0.281366 0.959600i \(-0.590788\pi\)
−0.281366 + 0.959600i \(0.590788\pi\)
\(998\) −2.65476 4.59817i −0.0840348 0.145553i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bc.a.665.8 56
3.2 odd 2 234.2.z.a.41.2 yes 56
9.2 odd 6 702.2.bb.a.197.8 56
9.7 even 3 234.2.y.a.119.3 yes 56
13.7 odd 12 702.2.bb.a.449.8 56
39.20 even 12 234.2.y.a.59.3 56
117.7 odd 12 234.2.z.a.137.2 yes 56
117.20 even 12 inner 702.2.bc.a.683.8 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.y.a.59.3 56 39.20 even 12
234.2.y.a.119.3 yes 56 9.7 even 3
234.2.z.a.41.2 yes 56 3.2 odd 2
234.2.z.a.137.2 yes 56 117.7 odd 12
702.2.bb.a.197.8 56 9.2 odd 6
702.2.bb.a.449.8 56 13.7 odd 12
702.2.bc.a.665.8 56 1.1 even 1 trivial
702.2.bc.a.683.8 56 117.20 even 12 inner