Properties

Label 702.2.bc.a.665.2
Level $702$
Weight $2$
Character 702.665
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(305,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.305"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([2, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bc (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 665.2
Character \(\chi\) \(=\) 702.665
Dual form 702.2.bc.a.683.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.965926 + 0.258819i) q^{2} +(0.866025 - 0.500000i) q^{4} +(-1.48652 + 0.398313i) q^{5} +(1.01155 + 1.01155i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(1.33278 - 0.769482i) q^{10} +(-0.128439 - 0.479340i) q^{11} +(3.02688 - 1.95909i) q^{13} +(-1.23890 - 0.715277i) q^{14} +(0.500000 - 0.866025i) q^{16} +(-1.10510 + 1.91408i) q^{17} +(0.805124 + 3.00476i) q^{19} +(-1.08821 + 1.08821i) q^{20} +(0.248125 + 0.429765i) q^{22} +1.77557 q^{23} +(-2.27902 + 1.31580i) q^{25} +(-2.41669 + 2.67575i) q^{26} +(1.38181 + 0.370254i) q^{28} +(4.07958 + 2.35535i) q^{29} +(-0.0814346 - 0.303918i) q^{31} +(-0.258819 + 0.965926i) q^{32} +(0.572040 - 2.13488i) q^{34} +(-1.90661 - 1.10078i) q^{35} +(-2.95350 + 11.0226i) q^{37} +(-1.55538 - 2.69400i) q^{38} +(0.769482 - 1.33278i) q^{40} +(5.69511 + 5.69511i) q^{41} +1.62219i q^{43} +(-0.350901 - 0.350901i) q^{44} +(-1.71507 + 0.459552i) q^{46} +(11.8388 + 3.17219i) q^{47} -4.95352i q^{49} +(1.86082 - 1.86082i) q^{50} +(1.64181 - 3.21006i) q^{52} -2.02719i q^{53} +(0.381855 + 0.661392i) q^{55} -1.43055 q^{56} +(-4.55018 - 1.21922i) q^{58} +(2.70586 + 0.725033i) q^{59} +6.79318 q^{61} +(0.157320 + 0.272485i) q^{62} -1.00000i q^{64} +(-3.71920 + 4.11787i) q^{65} +(-5.60189 + 5.60189i) q^{67} +2.21019i q^{68} +(2.12655 + 0.569808i) q^{70} +(-10.8566 + 2.90902i) q^{71} +(4.45270 + 4.45270i) q^{73} -11.4115i q^{74} +(2.19964 + 2.19964i) q^{76} +(0.354956 - 0.614801i) q^{77} +(4.77307 + 8.26720i) q^{79} +(-0.398313 + 1.48652i) q^{80} +(-6.97505 - 4.02705i) q^{82} +(-2.17883 + 8.13149i) q^{83} +(0.880349 - 3.28551i) q^{85} +(-0.419853 - 1.56691i) q^{86} +(0.429765 + 0.248125i) q^{88} +(-3.41203 - 0.914251i) q^{89} +(5.04357 + 1.08013i) q^{91} +(1.53769 - 0.887787i) q^{92} -12.2564 q^{94} +(-2.39367 - 4.14596i) q^{95} +(5.21001 - 5.21001i) q^{97} +(1.28206 + 4.78473i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 8 q^{7} + 24 q^{11} + 28 q^{16} - 8 q^{19} - 4 q^{28} - 4 q^{31} + 24 q^{35} - 4 q^{37} - 36 q^{38} + 48 q^{41} + 36 q^{47} + 24 q^{50} + 8 q^{52} + 36 q^{65} + 28 q^{67} + 24 q^{71} + 28 q^{73}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.965926 + 0.258819i −0.683013 + 0.183013i
\(3\) 0 0
\(4\) 0.866025 0.500000i 0.433013 0.250000i
\(5\) −1.48652 + 0.398313i −0.664794 + 0.178131i −0.575409 0.817866i \(-0.695157\pi\)
−0.0893855 + 0.995997i \(0.528490\pi\)
\(6\) 0 0
\(7\) 1.01155 + 1.01155i 0.382331 + 0.382331i 0.871941 0.489610i \(-0.162861\pi\)
−0.489610 + 0.871941i \(0.662861\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) 1.33278 0.769482i 0.421463 0.243332i
\(11\) −0.128439 0.479340i −0.0387258 0.144527i 0.943856 0.330357i \(-0.107169\pi\)
−0.982582 + 0.185830i \(0.940502\pi\)
\(12\) 0 0
\(13\) 3.02688 1.95909i 0.839504 0.543353i
\(14\) −1.23890 0.715277i −0.331109 0.191166i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −1.10510 + 1.91408i −0.268025 + 0.464233i −0.968352 0.249589i \(-0.919704\pi\)
0.700327 + 0.713823i \(0.253038\pi\)
\(18\) 0 0
\(19\) 0.805124 + 3.00476i 0.184708 + 0.689340i 0.994693 + 0.102889i \(0.0328086\pi\)
−0.809985 + 0.586451i \(0.800525\pi\)
\(20\) −1.08821 + 1.08821i −0.243332 + 0.243332i
\(21\) 0 0
\(22\) 0.248125 + 0.429765i 0.0529004 + 0.0916262i
\(23\) 1.77557 0.370233 0.185116 0.982717i \(-0.440734\pi\)
0.185116 + 0.982717i \(0.440734\pi\)
\(24\) 0 0
\(25\) −2.27902 + 1.31580i −0.455805 + 0.263159i
\(26\) −2.41669 + 2.67575i −0.473952 + 0.524757i
\(27\) 0 0
\(28\) 1.38181 + 0.370254i 0.261137 + 0.0699715i
\(29\) 4.07958 + 2.35535i 0.757559 + 0.437377i 0.828419 0.560109i \(-0.189241\pi\)
−0.0708596 + 0.997486i \(0.522574\pi\)
\(30\) 0 0
\(31\) −0.0814346 0.303918i −0.0146261 0.0545853i 0.958227 0.286008i \(-0.0923285\pi\)
−0.972853 + 0.231423i \(0.925662\pi\)
\(32\) −0.258819 + 0.965926i −0.0457532 + 0.170753i
\(33\) 0 0
\(34\) 0.572040 2.13488i 0.0981040 0.366129i
\(35\) −1.90661 1.10078i −0.322277 0.186067i
\(36\) 0 0
\(37\) −2.95350 + 11.0226i −0.485553 + 1.81211i 0.0920063 + 0.995758i \(0.470672\pi\)
−0.577559 + 0.816349i \(0.695995\pi\)
\(38\) −1.55538 2.69400i −0.252316 0.437024i
\(39\) 0 0
\(40\) 0.769482 1.33278i 0.121666 0.210731i
\(41\) 5.69511 + 5.69511i 0.889426 + 0.889426i 0.994468 0.105041i \(-0.0334975\pi\)
−0.105041 + 0.994468i \(0.533498\pi\)
\(42\) 0 0
\(43\) 1.62219i 0.247381i 0.992321 + 0.123691i \(0.0394731\pi\)
−0.992321 + 0.123691i \(0.960527\pi\)
\(44\) −0.350901 0.350901i −0.0529004 0.0529004i
\(45\) 0 0
\(46\) −1.71507 + 0.459552i −0.252874 + 0.0677573i
\(47\) 11.8388 + 3.17219i 1.72686 + 0.462711i 0.979456 0.201656i \(-0.0646324\pi\)
0.747406 + 0.664368i \(0.231299\pi\)
\(48\) 0 0
\(49\) 4.95352i 0.707645i
\(50\) 1.86082 1.86082i 0.263159 0.263159i
\(51\) 0 0
\(52\) 1.64181 3.21006i 0.227678 0.445155i
\(53\) 2.02719i 0.278456i −0.990260 0.139228i \(-0.955538\pi\)
0.990260 0.139228i \(-0.0444621\pi\)
\(54\) 0 0
\(55\) 0.381855 + 0.661392i 0.0514893 + 0.0891821i
\(56\) −1.43055 −0.191166
\(57\) 0 0
\(58\) −4.55018 1.21922i −0.597468 0.160091i
\(59\) 2.70586 + 0.725033i 0.352273 + 0.0943913i 0.430616 0.902535i \(-0.358296\pi\)
−0.0783431 + 0.996926i \(0.524963\pi\)
\(60\) 0 0
\(61\) 6.79318 0.869777 0.434888 0.900484i \(-0.356788\pi\)
0.434888 + 0.900484i \(0.356788\pi\)
\(62\) 0.157320 + 0.272485i 0.0199796 + 0.0346057i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −3.71920 + 4.11787i −0.461310 + 0.510760i
\(66\) 0 0
\(67\) −5.60189 + 5.60189i −0.684379 + 0.684379i −0.960984 0.276604i \(-0.910791\pi\)
0.276604 + 0.960984i \(0.410791\pi\)
\(68\) 2.21019i 0.268025i
\(69\) 0 0
\(70\) 2.12655 + 0.569808i 0.254172 + 0.0681051i
\(71\) −10.8566 + 2.90902i −1.28844 + 0.345237i −0.837069 0.547097i \(-0.815733\pi\)
−0.451374 + 0.892335i \(0.649066\pi\)
\(72\) 0 0
\(73\) 4.45270 + 4.45270i 0.521149 + 0.521149i 0.917918 0.396769i \(-0.129869\pi\)
−0.396769 + 0.917918i \(0.629869\pi\)
\(74\) 11.4115i 1.32655i
\(75\) 0 0
\(76\) 2.19964 + 2.19964i 0.252316 + 0.252316i
\(77\) 0.354956 0.614801i 0.0404510 0.0700631i
\(78\) 0 0
\(79\) 4.77307 + 8.26720i 0.537012 + 0.930133i 0.999063 + 0.0432790i \(0.0137805\pi\)
−0.462051 + 0.886853i \(0.652886\pi\)
\(80\) −0.398313 + 1.48652i −0.0445328 + 0.166199i
\(81\) 0 0
\(82\) −6.97505 4.02705i −0.770266 0.444713i
\(83\) −2.17883 + 8.13149i −0.239157 + 0.892547i 0.737073 + 0.675813i \(0.236207\pi\)
−0.976231 + 0.216734i \(0.930460\pi\)
\(84\) 0 0
\(85\) 0.880349 3.28551i 0.0954872 0.356363i
\(86\) −0.419853 1.56691i −0.0452739 0.168965i
\(87\) 0 0
\(88\) 0.429765 + 0.248125i 0.0458131 + 0.0264502i
\(89\) −3.41203 0.914251i −0.361674 0.0969104i 0.0734055 0.997302i \(-0.476613\pi\)
−0.435080 + 0.900392i \(0.643280\pi\)
\(90\) 0 0
\(91\) 5.04357 + 1.08013i 0.528710 + 0.113228i
\(92\) 1.53769 0.887787i 0.160315 0.0925582i
\(93\) 0 0
\(94\) −12.2564 −1.26415
\(95\) −2.39367 4.14596i −0.245586 0.425367i
\(96\) 0 0
\(97\) 5.21001 5.21001i 0.528996 0.528996i −0.391277 0.920273i \(-0.627967\pi\)
0.920273 + 0.391277i \(0.127967\pi\)
\(98\) 1.28206 + 4.78473i 0.129508 + 0.483331i
\(99\) 0 0
\(100\) −1.31580 + 2.27902i −0.131580 + 0.227902i
\(101\) −2.75939 + 4.77940i −0.274569 + 0.475568i −0.970026 0.243000i \(-0.921869\pi\)
0.695457 + 0.718568i \(0.255202\pi\)
\(102\) 0 0
\(103\) −13.0560 7.53787i −1.28644 0.742729i −0.308426 0.951248i \(-0.599802\pi\)
−0.978018 + 0.208520i \(0.933135\pi\)
\(104\) −0.755042 + 3.52561i −0.0740379 + 0.345714i
\(105\) 0 0
\(106\) 0.524676 + 1.95812i 0.0509610 + 0.190189i
\(107\) 10.8647 6.27276i 1.05033 0.606411i 0.127591 0.991827i \(-0.459276\pi\)
0.922743 + 0.385416i \(0.125942\pi\)
\(108\) 0 0
\(109\) −6.92733 + 6.92733i −0.663518 + 0.663518i −0.956208 0.292690i \(-0.905450\pi\)
0.292690 + 0.956208i \(0.405450\pi\)
\(110\) −0.540025 0.540025i −0.0514893 0.0514893i
\(111\) 0 0
\(112\) 1.38181 0.370254i 0.130569 0.0349858i
\(113\) 12.3898 7.15327i 1.16554 0.672923i 0.212912 0.977071i \(-0.431705\pi\)
0.952625 + 0.304149i \(0.0983720\pi\)
\(114\) 0 0
\(115\) −2.63943 + 0.707234i −0.246128 + 0.0659499i
\(116\) 4.71069 0.437377
\(117\) 0 0
\(118\) −2.80131 −0.257882
\(119\) −3.05406 + 0.818333i −0.279965 + 0.0750165i
\(120\) 0 0
\(121\) 9.31301 5.37687i 0.846637 0.488806i
\(122\) −6.56170 + 1.75820i −0.594069 + 0.159180i
\(123\) 0 0
\(124\) −0.222483 0.222483i −0.0199796 0.0199796i
\(125\) 8.30479 8.30479i 0.742803 0.742803i
\(126\) 0 0
\(127\) 2.50743 1.44766i 0.222498 0.128459i −0.384608 0.923080i \(-0.625663\pi\)
0.607106 + 0.794621i \(0.292330\pi\)
\(128\) 0.258819 + 0.965926i 0.0228766 + 0.0853766i
\(129\) 0 0
\(130\) 2.52668 4.94016i 0.221605 0.433281i
\(131\) −11.3218 6.53662i −0.989186 0.571107i −0.0841553 0.996453i \(-0.526819\pi\)
−0.905031 + 0.425346i \(0.860153\pi\)
\(132\) 0 0
\(133\) −2.22505 + 3.85391i −0.192937 + 0.334176i
\(134\) 3.96113 6.86088i 0.342190 0.592690i
\(135\) 0 0
\(136\) −0.572040 2.13488i −0.0490520 0.183065i
\(137\) −4.60469 + 4.60469i −0.393405 + 0.393405i −0.875899 0.482494i \(-0.839731\pi\)
0.482494 + 0.875899i \(0.339731\pi\)
\(138\) 0 0
\(139\) −8.34095 14.4469i −0.707470 1.22537i −0.965793 0.259316i \(-0.916503\pi\)
0.258322 0.966059i \(-0.416830\pi\)
\(140\) −2.20157 −0.186067
\(141\) 0 0
\(142\) 9.73378 5.61980i 0.816840 0.471603i
\(143\) −1.32784 1.19928i −0.111039 0.100289i
\(144\) 0 0
\(145\) −7.00256 1.87633i −0.581531 0.155821i
\(146\) −5.45342 3.14853i −0.451328 0.260575i
\(147\) 0 0
\(148\) 2.95350 + 11.0226i 0.242776 + 0.906054i
\(149\) 2.72321 10.1632i 0.223094 0.832599i −0.760065 0.649847i \(-0.774833\pi\)
0.983159 0.182752i \(-0.0585005\pi\)
\(150\) 0 0
\(151\) 4.44836 16.6015i 0.362002 1.35101i −0.509437 0.860508i \(-0.670146\pi\)
0.871440 0.490503i \(-0.163187\pi\)
\(152\) −2.69400 1.55538i −0.218512 0.126158i
\(153\) 0 0
\(154\) −0.183739 + 0.685722i −0.0148061 + 0.0552570i
\(155\) 0.242109 + 0.419345i 0.0194467 + 0.0336826i
\(156\) 0 0
\(157\) −10.9518 + 18.9690i −0.874046 + 1.51389i −0.0162709 + 0.999868i \(0.505179\pi\)
−0.857775 + 0.514025i \(0.828154\pi\)
\(158\) −6.75014 6.75014i −0.537012 0.537012i
\(159\) 0 0
\(160\) 1.53896i 0.121666i
\(161\) 1.79609 + 1.79609i 0.141552 + 0.141552i
\(162\) 0 0
\(163\) 5.13664 1.37636i 0.402333 0.107805i −0.0519776 0.998648i \(-0.516552\pi\)
0.454310 + 0.890844i \(0.349886\pi\)
\(164\) 7.77966 + 2.08455i 0.607490 + 0.162776i
\(165\) 0 0
\(166\) 8.41834i 0.653390i
\(167\) −7.67161 + 7.67161i −0.593647 + 0.593647i −0.938615 0.344968i \(-0.887890\pi\)
0.344968 + 0.938615i \(0.387890\pi\)
\(168\) 0 0
\(169\) 5.32396 11.8598i 0.409536 0.912294i
\(170\) 3.40141i 0.260876i
\(171\) 0 0
\(172\) 0.811094 + 1.40486i 0.0618453 + 0.107119i
\(173\) −1.60584 −0.122090 −0.0610448 0.998135i \(-0.519443\pi\)
−0.0610448 + 0.998135i \(0.519443\pi\)
\(174\) 0 0
\(175\) −3.63635 0.974358i −0.274882 0.0736545i
\(176\) −0.479340 0.128439i −0.0361316 0.00968144i
\(177\) 0 0
\(178\) 3.53239 0.264764
\(179\) −5.02903 8.71053i −0.375887 0.651056i 0.614572 0.788861i \(-0.289329\pi\)
−0.990459 + 0.137805i \(0.955995\pi\)
\(180\) 0 0
\(181\) 11.9484i 0.888116i −0.895998 0.444058i \(-0.853538\pi\)
0.895998 0.444058i \(-0.146462\pi\)
\(182\) −5.15127 + 0.262049i −0.381838 + 0.0194244i
\(183\) 0 0
\(184\) −1.25552 + 1.25552i −0.0925582 + 0.0925582i
\(185\) 17.5618i 1.29117i
\(186\) 0 0
\(187\) 1.05943 + 0.283875i 0.0774735 + 0.0207590i
\(188\) 11.8388 3.17219i 0.863431 0.231356i
\(189\) 0 0
\(190\) 3.38516 + 3.38516i 0.245586 + 0.245586i
\(191\) 21.8456i 1.58069i −0.612659 0.790347i \(-0.709900\pi\)
0.612659 0.790347i \(-0.290100\pi\)
\(192\) 0 0
\(193\) 9.25729 + 9.25729i 0.666354 + 0.666354i 0.956870 0.290516i \(-0.0938269\pi\)
−0.290516 + 0.956870i \(0.593827\pi\)
\(194\) −3.68403 + 6.38093i −0.264498 + 0.458124i
\(195\) 0 0
\(196\) −2.47676 4.28987i −0.176911 0.306419i
\(197\) 0.638138 2.38157i 0.0454655 0.169680i −0.939460 0.342659i \(-0.888673\pi\)
0.984926 + 0.172979i \(0.0553393\pi\)
\(198\) 0 0
\(199\) −18.1467 10.4770i −1.28639 0.742697i −0.308380 0.951263i \(-0.599787\pi\)
−0.978008 + 0.208567i \(0.933120\pi\)
\(200\) 0.681106 2.54192i 0.0481615 0.179741i
\(201\) 0 0
\(202\) 1.42836 5.33073i 0.100499 0.375069i
\(203\) 1.74416 + 6.50928i 0.122416 + 0.456862i
\(204\) 0 0
\(205\) −10.7344 6.19748i −0.749720 0.432851i
\(206\) 14.5621 + 3.90189i 1.01459 + 0.271858i
\(207\) 0 0
\(208\) −0.183180 3.60090i −0.0127013 0.249677i
\(209\) 1.33689 0.771857i 0.0924750 0.0533904i
\(210\) 0 0
\(211\) −14.1278 −0.972599 −0.486299 0.873792i \(-0.661654\pi\)
−0.486299 + 0.873792i \(0.661654\pi\)
\(212\) −1.01360 1.75560i −0.0696140 0.120575i
\(213\) 0 0
\(214\) −8.87102 + 8.87102i −0.606411 + 0.606411i
\(215\) −0.646139 2.41142i −0.0440663 0.164458i
\(216\) 0 0
\(217\) 0.225054 0.389805i 0.0152777 0.0264617i
\(218\) 4.89836 8.48421i 0.331759 0.574623i
\(219\) 0 0
\(220\) 0.661392 + 0.381855i 0.0445911 + 0.0257447i
\(221\) 0.404863 + 7.95867i 0.0272341 + 0.535358i
\(222\) 0 0
\(223\) −2.37228 8.85346i −0.158859 0.592872i −0.998744 0.0501063i \(-0.984044\pi\)
0.839884 0.542765i \(-0.182623\pi\)
\(224\) −1.23890 + 0.715277i −0.0827772 + 0.0477914i
\(225\) 0 0
\(226\) −10.1162 + 10.1162i −0.672923 + 0.672923i
\(227\) −18.6738 18.6738i −1.23943 1.23943i −0.960236 0.279190i \(-0.909934\pi\)
−0.279190 0.960236i \(-0.590066\pi\)
\(228\) 0 0
\(229\) 13.7346 3.68017i 0.907607 0.243193i 0.225327 0.974283i \(-0.427655\pi\)
0.682280 + 0.731091i \(0.260988\pi\)
\(230\) 2.36645 1.36627i 0.156039 0.0900893i
\(231\) 0 0
\(232\) −4.55018 + 1.21922i −0.298734 + 0.0800455i
\(233\) 21.4490 1.40517 0.702586 0.711599i \(-0.252029\pi\)
0.702586 + 0.711599i \(0.252029\pi\)
\(234\) 0 0
\(235\) −18.8622 −1.23043
\(236\) 2.70586 0.725033i 0.176137 0.0471956i
\(237\) 0 0
\(238\) 2.73820 1.58090i 0.177491 0.102474i
\(239\) −7.59513 + 2.03511i −0.491288 + 0.131640i −0.495954 0.868349i \(-0.665181\pi\)
0.00466587 + 0.999989i \(0.498515\pi\)
\(240\) 0 0
\(241\) 13.0877 + 13.0877i 0.843051 + 0.843051i 0.989255 0.146203i \(-0.0467054\pi\)
−0.146203 + 0.989255i \(0.546705\pi\)
\(242\) −7.60404 + 7.60404i −0.488806 + 0.488806i
\(243\) 0 0
\(244\) 5.88306 3.39659i 0.376624 0.217444i
\(245\) 1.97305 + 7.36353i 0.126054 + 0.470438i
\(246\) 0 0
\(247\) 8.32360 + 7.51774i 0.529618 + 0.478342i
\(248\) 0.272485 + 0.157320i 0.0173028 + 0.00998980i
\(249\) 0 0
\(250\) −5.87237 + 10.1712i −0.371401 + 0.643286i
\(251\) −11.0446 + 19.1298i −0.697127 + 1.20746i 0.272331 + 0.962204i \(0.412205\pi\)
−0.969458 + 0.245256i \(0.921128\pi\)
\(252\) 0 0
\(253\) −0.228053 0.851104i −0.0143375 0.0535084i
\(254\) −2.04731 + 2.04731i −0.128459 + 0.128459i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 30.2080 1.88432 0.942162 0.335158i \(-0.108790\pi\)
0.942162 + 0.335158i \(0.108790\pi\)
\(258\) 0 0
\(259\) −14.1376 + 8.16235i −0.878468 + 0.507183i
\(260\) −1.16198 + 5.42578i −0.0720631 + 0.336493i
\(261\) 0 0
\(262\) 12.6278 + 3.38360i 0.780147 + 0.209040i
\(263\) 4.77357 + 2.75602i 0.294351 + 0.169943i 0.639902 0.768456i \(-0.278975\pi\)
−0.345552 + 0.938400i \(0.612308\pi\)
\(264\) 0 0
\(265\) 0.807457 + 3.01347i 0.0496017 + 0.185116i
\(266\) 1.15177 4.29847i 0.0706197 0.263556i
\(267\) 0 0
\(268\) −2.05043 + 7.65232i −0.125250 + 0.467440i
\(269\) −16.8180 9.70985i −1.02541 0.592020i −0.109743 0.993960i \(-0.535003\pi\)
−0.915666 + 0.401940i \(0.868336\pi\)
\(270\) 0 0
\(271\) 5.79813 21.6389i 0.352212 1.31447i −0.531746 0.846904i \(-0.678464\pi\)
0.883957 0.467567i \(-0.154869\pi\)
\(272\) 1.10510 + 1.91408i 0.0670063 + 0.116058i
\(273\) 0 0
\(274\) 3.25601 5.63957i 0.196703 0.340699i
\(275\) 0.923429 + 0.923429i 0.0556849 + 0.0556849i
\(276\) 0 0
\(277\) 8.82351i 0.530153i −0.964227 0.265077i \(-0.914603\pi\)
0.964227 0.265077i \(-0.0853973\pi\)
\(278\) 11.7959 + 11.7959i 0.707470 + 0.707470i
\(279\) 0 0
\(280\) 2.12655 0.569808i 0.127086 0.0340525i
\(281\) 17.2960 + 4.63444i 1.03179 + 0.276467i 0.734707 0.678384i \(-0.237320\pi\)
0.297083 + 0.954852i \(0.403986\pi\)
\(282\) 0 0
\(283\) 7.31258i 0.434688i 0.976095 + 0.217344i \(0.0697393\pi\)
−0.976095 + 0.217344i \(0.930261\pi\)
\(284\) −7.94760 + 7.94760i −0.471603 + 0.471603i
\(285\) 0 0
\(286\) 1.59299 + 0.814747i 0.0941954 + 0.0481770i
\(287\) 11.5218i 0.680111i
\(288\) 0 0
\(289\) 6.05752 + 10.4919i 0.356325 + 0.617173i
\(290\) 7.24959 0.425710
\(291\) 0 0
\(292\) 6.08250 + 1.62980i 0.355952 + 0.0953769i
\(293\) −13.7781 3.69183i −0.804925 0.215679i −0.167180 0.985926i \(-0.553466\pi\)
−0.637745 + 0.770247i \(0.720133\pi\)
\(294\) 0 0
\(295\) −4.31112 −0.251003
\(296\) −5.70573 9.88261i −0.331639 0.574415i
\(297\) 0 0
\(298\) 10.5217i 0.609505i
\(299\) 5.37444 3.47850i 0.310812 0.201167i
\(300\) 0 0
\(301\) −1.64093 + 1.64093i −0.0945817 + 0.0945817i
\(302\) 17.1871i 0.989008i
\(303\) 0 0
\(304\) 3.00476 + 0.805124i 0.172335 + 0.0461770i
\(305\) −10.0982 + 2.70581i −0.578223 + 0.154934i
\(306\) 0 0
\(307\) 15.5883 + 15.5883i 0.889669 + 0.889669i 0.994491 0.104822i \(-0.0334273\pi\)
−0.104822 + 0.994491i \(0.533427\pi\)
\(308\) 0.709911i 0.0404510i
\(309\) 0 0
\(310\) −0.342394 0.342394i −0.0194467 0.0194467i
\(311\) −12.3786 + 21.4403i −0.701923 + 1.21577i 0.265867 + 0.964010i \(0.414342\pi\)
−0.967790 + 0.251757i \(0.918992\pi\)
\(312\) 0 0
\(313\) 16.0705 + 27.8349i 0.908359 + 1.57332i 0.816344 + 0.577566i \(0.195997\pi\)
0.0920148 + 0.995758i \(0.470669\pi\)
\(314\) 5.66905 21.1572i 0.319923 1.19397i
\(315\) 0 0
\(316\) 8.26720 + 4.77307i 0.465066 + 0.268506i
\(317\) −7.74554 + 28.9067i −0.435033 + 1.62356i 0.305956 + 0.952046i \(0.401024\pi\)
−0.740988 + 0.671518i \(0.765643\pi\)
\(318\) 0 0
\(319\) 0.605036 2.25803i 0.0338755 0.126425i
\(320\) 0.398313 + 1.48652i 0.0222664 + 0.0830993i
\(321\) 0 0
\(322\) −2.19975 1.27003i −0.122587 0.0707758i
\(323\) −6.64110 1.77948i −0.369521 0.0990128i
\(324\) 0 0
\(325\) −4.32057 + 8.44756i −0.239662 + 0.468586i
\(326\) −4.60538 + 2.65892i −0.255069 + 0.147264i
\(327\) 0 0
\(328\) −8.05410 −0.444713
\(329\) 8.76671 + 15.1844i 0.483325 + 0.837143i
\(330\) 0 0
\(331\) 4.69098 4.69098i 0.257839 0.257839i −0.566335 0.824175i \(-0.691639\pi\)
0.824175 + 0.566335i \(0.191639\pi\)
\(332\) 2.17883 + 8.13149i 0.119579 + 0.446273i
\(333\) 0 0
\(334\) 5.42465 9.39577i 0.296824 0.514113i
\(335\) 6.09604 10.5586i 0.333062 0.576881i
\(336\) 0 0
\(337\) 20.1675 + 11.6437i 1.09859 + 0.634274i 0.935851 0.352395i \(-0.114633\pi\)
0.162743 + 0.986669i \(0.447966\pi\)
\(338\) −2.07300 + 12.8337i −0.112757 + 0.698059i
\(339\) 0 0
\(340\) −0.880349 3.28551i −0.0477436 0.178182i
\(341\) −0.135221 + 0.0780698i −0.00732262 + 0.00422772i
\(342\) 0 0
\(343\) 12.0916 12.0916i 0.652886 0.652886i
\(344\) −1.14706 1.14706i −0.0618453 0.0618453i
\(345\) 0 0
\(346\) 1.55112 0.415621i 0.0833887 0.0223439i
\(347\) 17.4763 10.0899i 0.938175 0.541655i 0.0487871 0.998809i \(-0.484464\pi\)
0.889388 + 0.457154i \(0.151131\pi\)
\(348\) 0 0
\(349\) −24.2443 + 6.49625i −1.29777 + 0.347736i −0.840606 0.541647i \(-0.817801\pi\)
−0.457163 + 0.889383i \(0.651134\pi\)
\(350\) 3.76463 0.201228
\(351\) 0 0
\(352\) 0.496250 0.0264502
\(353\) −25.2002 + 6.75238i −1.34127 + 0.359393i −0.856906 0.515472i \(-0.827616\pi\)
−0.484366 + 0.874865i \(0.660950\pi\)
\(354\) 0 0
\(355\) 14.9799 8.64867i 0.795052 0.459024i
\(356\) −3.41203 + 0.914251i −0.180837 + 0.0484552i
\(357\) 0 0
\(358\) 7.11212 + 7.11212i 0.375887 + 0.375887i
\(359\) −23.1726 + 23.1726i −1.22300 + 1.22300i −0.256444 + 0.966559i \(0.582551\pi\)
−0.966559 + 0.256444i \(0.917449\pi\)
\(360\) 0 0
\(361\) 8.07411 4.66159i 0.424953 0.245347i
\(362\) 3.09247 + 11.5412i 0.162537 + 0.606594i
\(363\) 0 0
\(364\) 4.90792 1.58637i 0.257245 0.0831482i
\(365\) −8.39262 4.84548i −0.439290 0.253624i
\(366\) 0 0
\(367\) −0.292660 + 0.506902i −0.0152767 + 0.0264601i −0.873563 0.486712i \(-0.838196\pi\)
0.858286 + 0.513172i \(0.171530\pi\)
\(368\) 0.887787 1.53769i 0.0462791 0.0801577i
\(369\) 0 0
\(370\) 4.54533 + 16.9634i 0.236301 + 0.881886i
\(371\) 2.05061 2.05061i 0.106463 0.106463i
\(372\) 0 0
\(373\) −13.6890 23.7100i −0.708790 1.22766i −0.965306 0.261120i \(-0.915908\pi\)
0.256517 0.966540i \(-0.417425\pi\)
\(374\) −1.09681 −0.0567145
\(375\) 0 0
\(376\) −10.6144 + 6.12820i −0.547393 + 0.316038i
\(377\) 16.9627 0.862906i 0.873624 0.0444419i
\(378\) 0 0
\(379\) 3.11912 + 0.835766i 0.160219 + 0.0429304i 0.338037 0.941133i \(-0.390237\pi\)
−0.177818 + 0.984063i \(0.556904\pi\)
\(380\) −4.14596 2.39367i −0.212683 0.122793i
\(381\) 0 0
\(382\) 5.65407 + 21.1013i 0.289287 + 1.07963i
\(383\) −3.64974 + 13.6210i −0.186493 + 0.696001i 0.807813 + 0.589439i \(0.200651\pi\)
−0.994306 + 0.106562i \(0.966016\pi\)
\(384\) 0 0
\(385\) −0.282767 + 1.05530i −0.0144111 + 0.0537831i
\(386\) −11.3378 6.54589i −0.577080 0.333177i
\(387\) 0 0
\(388\) 1.90700 7.11700i 0.0968130 0.361311i
\(389\) −9.97462 17.2765i −0.505733 0.875956i −0.999978 0.00663286i \(-0.997889\pi\)
0.494245 0.869323i \(-0.335445\pi\)
\(390\) 0 0
\(391\) −1.96218 + 3.39859i −0.0992317 + 0.171874i
\(392\) 3.50267 + 3.50267i 0.176911 + 0.176911i
\(393\) 0 0
\(394\) 2.46558i 0.124214i
\(395\) −10.3882 10.3882i −0.522688 0.522688i
\(396\) 0 0
\(397\) 17.9027 4.79700i 0.898509 0.240755i 0.220133 0.975470i \(-0.429351\pi\)
0.678376 + 0.734715i \(0.262684\pi\)
\(398\) 20.2401 + 5.42331i 1.01454 + 0.271846i
\(399\) 0 0
\(400\) 2.63159i 0.131580i
\(401\) 11.1565 11.1565i 0.557131 0.557131i −0.371359 0.928489i \(-0.621108\pi\)
0.928489 + 0.371359i \(0.121108\pi\)
\(402\) 0 0
\(403\) −0.841894 0.760385i −0.0419377 0.0378775i
\(404\) 5.51878i 0.274569i
\(405\) 0 0
\(406\) −3.36945 5.83606i −0.167223 0.289639i
\(407\) 5.66293 0.280701
\(408\) 0 0
\(409\) −10.7473 2.87972i −0.531418 0.142393i −0.0168752 0.999858i \(-0.505372\pi\)
−0.514543 + 0.857464i \(0.672038\pi\)
\(410\) 11.9726 + 3.20805i 0.591285 + 0.158434i
\(411\) 0 0
\(412\) −15.0757 −0.742729
\(413\) 2.00371 + 3.47053i 0.0985963 + 0.170774i
\(414\) 0 0
\(415\) 12.9555i 0.635961i
\(416\) 1.10892 + 3.43079i 0.0543692 + 0.168208i
\(417\) 0 0
\(418\) −1.09157 + 1.09157i −0.0533904 + 0.0533904i
\(419\) 0.458051i 0.0223772i −0.999937 0.0111886i \(-0.996438\pi\)
0.999937 0.0111886i \(-0.00356152\pi\)
\(420\) 0 0
\(421\) 4.37413 + 1.17205i 0.213182 + 0.0571220i 0.363829 0.931466i \(-0.381469\pi\)
−0.150647 + 0.988588i \(0.548136\pi\)
\(422\) 13.6464 3.65655i 0.664297 0.177998i
\(423\) 0 0
\(424\) 1.43344 + 1.43344i 0.0696140 + 0.0696140i
\(425\) 5.81632i 0.282133i
\(426\) 0 0
\(427\) 6.87166 + 6.87166i 0.332543 + 0.332543i
\(428\) 6.27276 10.8647i 0.303205 0.525167i
\(429\) 0 0
\(430\) 1.24824 + 2.16202i 0.0601957 + 0.104262i
\(431\) −3.86478 + 14.4235i −0.186160 + 0.694758i 0.808220 + 0.588881i \(0.200431\pi\)
−0.994379 + 0.105876i \(0.966235\pi\)
\(432\) 0 0
\(433\) −3.91621 2.26103i −0.188201 0.108658i 0.402939 0.915227i \(-0.367989\pi\)
−0.591140 + 0.806569i \(0.701322\pi\)
\(434\) −0.116497 + 0.434771i −0.00559201 + 0.0208697i
\(435\) 0 0
\(436\) −2.53558 + 9.46291i −0.121432 + 0.453191i
\(437\) 1.42956 + 5.33518i 0.0683850 + 0.255216i
\(438\) 0 0
\(439\) −11.5668 6.67809i −0.552053 0.318728i 0.197897 0.980223i \(-0.436589\pi\)
−0.749949 + 0.661495i \(0.769922\pi\)
\(440\) −0.737687 0.197663i −0.0351679 0.00942320i
\(441\) 0 0
\(442\) −2.45092 7.58270i −0.116579 0.360672i
\(443\) −26.7016 + 15.4162i −1.26863 + 0.732445i −0.974729 0.223390i \(-0.928288\pi\)
−0.293903 + 0.955835i \(0.594954\pi\)
\(444\) 0 0
\(445\) 5.43623 0.257702
\(446\) 4.58289 + 7.93780i 0.217006 + 0.375865i
\(447\) 0 0
\(448\) 1.01155 1.01155i 0.0477914 0.0477914i
\(449\) −10.3894 38.7738i −0.490306 1.82985i −0.554874 0.831934i \(-0.687234\pi\)
0.0645682 0.997913i \(-0.479433\pi\)
\(450\) 0 0
\(451\) 1.99842 3.46137i 0.0941020 0.162989i
\(452\) 7.15327 12.3898i 0.336461 0.582768i
\(453\) 0 0
\(454\) 22.8707 + 13.2044i 1.07337 + 0.619713i
\(455\) −7.92762 + 0.403284i −0.371653 + 0.0189062i
\(456\) 0 0
\(457\) −4.27321 15.9478i −0.199892 0.746008i −0.990946 0.134261i \(-0.957134\pi\)
0.791054 0.611747i \(-0.209533\pi\)
\(458\) −12.3141 + 7.10955i −0.575400 + 0.332207i
\(459\) 0 0
\(460\) −1.93220 + 1.93220i −0.0900893 + 0.0900893i
\(461\) 9.76161 + 9.76161i 0.454643 + 0.454643i 0.896892 0.442249i \(-0.145819\pi\)
−0.442249 + 0.896892i \(0.645819\pi\)
\(462\) 0 0
\(463\) 37.1831 9.96318i 1.72805 0.463028i 0.748314 0.663345i \(-0.230864\pi\)
0.979731 + 0.200316i \(0.0641970\pi\)
\(464\) 4.07958 2.35535i 0.189390 0.109344i
\(465\) 0 0
\(466\) −20.7182 + 5.55141i −0.959750 + 0.257164i
\(467\) −8.54433 −0.395385 −0.197692 0.980264i \(-0.563345\pi\)
−0.197692 + 0.980264i \(0.563345\pi\)
\(468\) 0 0
\(469\) −11.3332 −0.523319
\(470\) 18.2194 4.88188i 0.840400 0.225185i
\(471\) 0 0
\(472\) −2.42601 + 1.40066i −0.111666 + 0.0644704i
\(473\) 0.777580 0.208352i 0.0357532 0.00958003i
\(474\) 0 0
\(475\) −5.78855 5.78855i −0.265597 0.265597i
\(476\) −2.23573 + 2.23573i −0.102474 + 0.102474i
\(477\) 0 0
\(478\) 6.80960 3.93153i 0.311464 0.179824i
\(479\) −2.29400 8.56132i −0.104816 0.391177i 0.893509 0.449046i \(-0.148236\pi\)
−0.998324 + 0.0578691i \(0.981569\pi\)
\(480\) 0 0
\(481\) 12.6544 + 39.1503i 0.576990 + 1.78510i
\(482\) −16.0291 9.25438i −0.730104 0.421526i
\(483\) 0 0
\(484\) 5.37687 9.31301i 0.244403 0.423319i
\(485\) −5.66959 + 9.82002i −0.257443 + 0.445904i
\(486\) 0 0
\(487\) −2.81256 10.4966i −0.127449 0.475648i 0.872466 0.488675i \(-0.162520\pi\)
−0.999915 + 0.0130276i \(0.995853\pi\)
\(488\) −4.80350 + 4.80350i −0.217444 + 0.217444i
\(489\) 0 0
\(490\) −3.81164 6.60196i −0.172192 0.298246i
\(491\) 17.3462 0.782822 0.391411 0.920216i \(-0.371987\pi\)
0.391411 + 0.920216i \(0.371987\pi\)
\(492\) 0 0
\(493\) −9.01666 + 5.20577i −0.406090 + 0.234456i
\(494\) −9.98571 5.10727i −0.449279 0.229787i
\(495\) 0 0
\(496\) −0.303918 0.0814346i −0.0136463 0.00365652i
\(497\) −13.9247 8.03942i −0.624607 0.360617i
\(498\) 0 0
\(499\) −3.05648 11.4069i −0.136827 0.510644i −0.999984 0.00570844i \(-0.998183\pi\)
0.863157 0.504936i \(-0.168484\pi\)
\(500\) 3.03976 11.3445i 0.135942 0.507344i
\(501\) 0 0
\(502\) 5.71709 21.3365i 0.255166 0.952294i
\(503\) 20.1247 + 11.6190i 0.897316 + 0.518066i 0.876329 0.481714i \(-0.159986\pi\)
0.0209877 + 0.999780i \(0.493319\pi\)
\(504\) 0 0
\(505\) 2.19820 8.20380i 0.0978186 0.365064i
\(506\) 0.440564 + 0.763079i 0.0195855 + 0.0339230i
\(507\) 0 0
\(508\) 1.44766 2.50743i 0.0642297 0.111249i
\(509\) 2.53125 + 2.53125i 0.112195 + 0.112195i 0.760976 0.648780i \(-0.224721\pi\)
−0.648780 + 0.760976i \(0.724721\pi\)
\(510\) 0 0
\(511\) 9.00829i 0.398503i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −29.1787 + 7.81841i −1.28702 + 0.344855i
\(515\) 22.4105 + 6.00487i 0.987523 + 0.264606i
\(516\) 0 0
\(517\) 6.08223i 0.267496i
\(518\) 11.5433 11.5433i 0.507183 0.507183i
\(519\) 0 0
\(520\) −0.281908 5.54165i −0.0123625 0.243017i
\(521\) 4.89726i 0.214553i 0.994229 + 0.107277i \(0.0342130\pi\)
−0.994229 + 0.107277i \(0.965787\pi\)
\(522\) 0 0
\(523\) 0.745466 + 1.29119i 0.0325970 + 0.0564596i 0.881864 0.471504i \(-0.156289\pi\)
−0.849267 + 0.527964i \(0.822956\pi\)
\(524\) −13.0732 −0.571107
\(525\) 0 0
\(526\) −5.32422 1.42662i −0.232147 0.0622036i
\(527\) 0.671717 + 0.179986i 0.0292605 + 0.00784032i
\(528\) 0 0
\(529\) −19.8473 −0.862928
\(530\) −1.55989 2.70180i −0.0677572 0.117359i
\(531\) 0 0
\(532\) 4.45011i 0.192937i
\(533\) 28.3956 + 6.08118i 1.22995 + 0.263405i
\(534\) 0 0
\(535\) −13.6522 + 13.6522i −0.590235 + 0.590235i
\(536\) 7.92226i 0.342190i
\(537\) 0 0
\(538\) 18.7580 + 5.02619i 0.808714 + 0.216694i
\(539\) −2.37442 + 0.636224i −0.102274 + 0.0274041i
\(540\) 0 0
\(541\) −1.70268 1.70268i −0.0732039 0.0732039i 0.669557 0.742761i \(-0.266484\pi\)
−0.742761 + 0.669557i \(0.766484\pi\)
\(542\) 22.4023i 0.962260i
\(543\) 0 0
\(544\) −1.56284 1.56284i −0.0670063 0.0670063i
\(545\) 7.53840 13.0569i 0.322910 0.559296i
\(546\) 0 0
\(547\) 6.38104 + 11.0523i 0.272833 + 0.472561i 0.969586 0.244750i \(-0.0787059\pi\)
−0.696753 + 0.717311i \(0.745373\pi\)
\(548\) −1.68543 + 6.29012i −0.0719981 + 0.268701i
\(549\) 0 0
\(550\) −1.13097 0.652963i −0.0482245 0.0278424i
\(551\) −3.79269 + 14.1545i −0.161574 + 0.603003i
\(552\) 0 0
\(553\) −3.53450 + 13.1909i −0.150302 + 0.560936i
\(554\) 2.28369 + 8.52286i 0.0970248 + 0.362102i
\(555\) 0 0
\(556\) −14.4469 8.34095i −0.612687 0.353735i
\(557\) 11.2158 + 3.00527i 0.475229 + 0.127337i 0.488480 0.872575i \(-0.337551\pi\)
−0.0132513 + 0.999912i \(0.504218\pi\)
\(558\) 0 0
\(559\) 3.17801 + 4.91016i 0.134415 + 0.207678i
\(560\) −1.90661 + 1.10078i −0.0805692 + 0.0465166i
\(561\) 0 0
\(562\) −17.9061 −0.755323
\(563\) −20.4323 35.3898i −0.861119 1.49150i −0.870849 0.491550i \(-0.836431\pi\)
0.00973001 0.999953i \(-0.496903\pi\)
\(564\) 0 0
\(565\) −15.5685 + 15.5685i −0.654973 + 0.654973i
\(566\) −1.89264 7.06341i −0.0795534 0.296897i
\(567\) 0 0
\(568\) 5.61980 9.73378i 0.235802 0.408420i
\(569\) 3.20683 5.55440i 0.134437 0.232852i −0.790945 0.611887i \(-0.790411\pi\)
0.925382 + 0.379035i \(0.123744\pi\)
\(570\) 0 0
\(571\) 11.8701 + 6.85319i 0.496747 + 0.286797i 0.727369 0.686246i \(-0.240743\pi\)
−0.230622 + 0.973043i \(0.574076\pi\)
\(572\) −1.74958 0.374689i −0.0731537 0.0156665i
\(573\) 0 0
\(574\) −2.98207 11.1292i −0.124469 0.464525i
\(575\) −4.04658 + 2.33629i −0.168754 + 0.0974301i
\(576\) 0 0
\(577\) −10.8626 + 10.8626i −0.452214 + 0.452214i −0.896089 0.443875i \(-0.853604\pi\)
0.443875 + 0.896089i \(0.353604\pi\)
\(578\) −8.56663 8.56663i −0.356325 0.356325i
\(579\) 0 0
\(580\) −7.00256 + 1.87633i −0.290766 + 0.0779104i
\(581\) −10.4294 + 6.02144i −0.432686 + 0.249811i
\(582\) 0 0
\(583\) −0.971715 + 0.260370i −0.0402443 + 0.0107834i
\(584\) −6.29707 −0.260575
\(585\) 0 0
\(586\) 14.2641 0.589246
\(587\) −2.47016 + 0.661876i −0.101954 + 0.0273186i −0.309435 0.950920i \(-0.600140\pi\)
0.207481 + 0.978239i \(0.433473\pi\)
\(588\) 0 0
\(589\) 0.847637 0.489383i 0.0349263 0.0201647i
\(590\) 4.16422 1.11580i 0.171438 0.0459368i
\(591\) 0 0
\(592\) 8.06912 + 8.06912i 0.331639 + 0.331639i
\(593\) 15.9796 15.9796i 0.656204 0.656204i −0.298276 0.954480i \(-0.596412\pi\)
0.954480 + 0.298276i \(0.0964115\pi\)
\(594\) 0 0
\(595\) 4.21399 2.43295i 0.172757 0.0997411i
\(596\) −2.72321 10.1632i −0.111547 0.416299i
\(597\) 0 0
\(598\) −4.29101 + 4.75098i −0.175472 + 0.194282i
\(599\) −20.6867 11.9435i −0.845237 0.487998i 0.0138036 0.999905i \(-0.495606\pi\)
−0.859041 + 0.511907i \(0.828939\pi\)
\(600\) 0 0
\(601\) 12.7060 22.0074i 0.518287 0.897700i −0.481487 0.876453i \(-0.659903\pi\)
0.999774 0.0212465i \(-0.00676348\pi\)
\(602\) 1.16031 2.00972i 0.0472908 0.0819101i
\(603\) 0 0
\(604\) −4.44836 16.6015i −0.181001 0.675505i
\(605\) −11.7023 + 11.7023i −0.475768 + 0.475768i
\(606\) 0 0
\(607\) −10.3003 17.8407i −0.418078 0.724132i 0.577668 0.816272i \(-0.303963\pi\)
−0.995746 + 0.0921396i \(0.970629\pi\)
\(608\) −3.11076 −0.126158
\(609\) 0 0
\(610\) 9.05382 5.22722i 0.366578 0.211644i
\(611\) 42.0491 13.5913i 1.70112 0.549847i
\(612\) 0 0
\(613\) −6.32348 1.69437i −0.255403 0.0684350i 0.128846 0.991665i \(-0.458873\pi\)
−0.384249 + 0.923230i \(0.625539\pi\)
\(614\) −19.0916 11.0226i −0.770476 0.444835i
\(615\) 0 0
\(616\) 0.183739 + 0.685722i 0.00740304 + 0.0276285i
\(617\) 4.13493 15.4318i 0.166466 0.621260i −0.831383 0.555700i \(-0.812450\pi\)
0.997849 0.0655593i \(-0.0208831\pi\)
\(618\) 0 0
\(619\) 5.84160 21.8012i 0.234794 0.876263i −0.743448 0.668794i \(-0.766811\pi\)
0.978242 0.207469i \(-0.0665225\pi\)
\(620\) 0.419345 + 0.242109i 0.0168413 + 0.00972334i
\(621\) 0 0
\(622\) 6.40761 23.9135i 0.256922 0.958845i
\(623\) −2.52664 4.37627i −0.101228 0.175331i
\(624\) 0 0
\(625\) −2.45839 + 4.25805i −0.0983355 + 0.170322i
\(626\) −22.7271 22.7271i −0.908359 0.908359i
\(627\) 0 0
\(628\) 21.9035i 0.874046i
\(629\) −17.8343 17.8343i −0.711100 0.711100i
\(630\) 0 0
\(631\) −16.8737 + 4.52128i −0.671730 + 0.179989i −0.578534 0.815658i \(-0.696375\pi\)
−0.0931960 + 0.995648i \(0.529708\pi\)
\(632\) −9.22086 2.47072i −0.366786 0.0982801i
\(633\) 0 0
\(634\) 29.9265i 1.18853i
\(635\) −3.15073 + 3.15073i −0.125033 + 0.125033i
\(636\) 0 0
\(637\) −9.70437 14.9937i −0.384501 0.594072i
\(638\) 2.33768i 0.0925496i
\(639\) 0 0
\(640\) −0.769482 1.33278i −0.0304164 0.0526828i
\(641\) 36.5684 1.44436 0.722182 0.691703i \(-0.243139\pi\)
0.722182 + 0.691703i \(0.243139\pi\)
\(642\) 0 0
\(643\) −33.7924 9.05466i −1.33264 0.357081i −0.478944 0.877846i \(-0.658980\pi\)
−0.853700 + 0.520765i \(0.825647\pi\)
\(644\) 2.45350 + 0.657414i 0.0966815 + 0.0259057i
\(645\) 0 0
\(646\) 6.87538 0.270508
\(647\) 9.58684 + 16.6049i 0.376897 + 0.652806i 0.990609 0.136725i \(-0.0436576\pi\)
−0.613712 + 0.789530i \(0.710324\pi\)
\(648\) 0 0
\(649\) 1.39015i 0.0545682i
\(650\) 1.98696 9.27796i 0.0779350 0.363911i
\(651\) 0 0
\(652\) 3.76028 3.76028i 0.147264 0.147264i
\(653\) 6.63054i 0.259473i −0.991548 0.129737i \(-0.958587\pi\)
0.991548 0.129737i \(-0.0414132\pi\)
\(654\) 0 0
\(655\) 19.4337 + 5.20724i 0.759337 + 0.203464i
\(656\) 7.77966 2.08455i 0.303745 0.0813882i
\(657\) 0 0
\(658\) −12.3980 12.3980i −0.483325 0.483325i
\(659\) 21.6577i 0.843665i −0.906674 0.421833i \(-0.861387\pi\)
0.906674 0.421833i \(-0.138613\pi\)
\(660\) 0 0
\(661\) 7.30997 + 7.30997i 0.284325 + 0.284325i 0.834831 0.550506i \(-0.185565\pi\)
−0.550506 + 0.834831i \(0.685565\pi\)
\(662\) −3.31702 + 5.74525i −0.128920 + 0.223295i
\(663\) 0 0
\(664\) −4.20917 7.29049i −0.163347 0.282926i
\(665\) 1.77254 6.61519i 0.0687360 0.256526i
\(666\) 0 0
\(667\) 7.24360 + 4.18209i 0.280473 + 0.161931i
\(668\) −2.80800 + 10.4796i −0.108645 + 0.405469i
\(669\) 0 0
\(670\) −3.15554 + 11.7766i −0.121909 + 0.454971i
\(671\) −0.872508 3.25624i −0.0336828 0.125706i
\(672\) 0 0
\(673\) 22.7770 + 13.1503i 0.877990 + 0.506908i 0.869995 0.493060i \(-0.164122\pi\)
0.00799497 + 0.999968i \(0.497455\pi\)
\(674\) −22.4939 6.02723i −0.866434 0.232160i
\(675\) 0 0
\(676\) −1.31923 12.9329i −0.0507394 0.497419i
\(677\) 0.260338 0.150306i 0.0100056 0.00577673i −0.494989 0.868899i \(-0.664828\pi\)
0.504994 + 0.863123i \(0.331495\pi\)
\(678\) 0 0
\(679\) 10.5404 0.404504
\(680\) 1.70070 + 2.94570i 0.0652190 + 0.112963i
\(681\) 0 0
\(682\) 0.110407 0.110407i 0.00422772 0.00422772i
\(683\) −0.894421 3.33802i −0.0342241 0.127726i 0.946700 0.322116i \(-0.104394\pi\)
−0.980924 + 0.194390i \(0.937727\pi\)
\(684\) 0 0
\(685\) 5.01088 8.67909i 0.191456 0.331611i
\(686\) −8.55007 + 14.8092i −0.326443 + 0.565416i
\(687\) 0 0
\(688\) 1.40486 + 0.811094i 0.0535596 + 0.0309227i
\(689\) −3.97144 6.13606i −0.151300 0.233765i
\(690\) 0 0
\(691\) 8.65698 + 32.3083i 0.329327 + 1.22906i 0.909890 + 0.414849i \(0.136166\pi\)
−0.580563 + 0.814215i \(0.697168\pi\)
\(692\) −1.39070 + 0.802919i −0.0528663 + 0.0305224i
\(693\) 0 0
\(694\) −14.2693 + 14.2693i −0.541655 + 0.541655i
\(695\) 18.1534 + 18.1534i 0.688599 + 0.688599i
\(696\) 0 0
\(697\) −17.1946 + 4.60727i −0.651290 + 0.174513i
\(698\) 21.7369 12.5498i 0.822752 0.475016i
\(699\) 0 0
\(700\) −3.63635 + 0.974358i −0.137441 + 0.0368273i
\(701\) −14.8908 −0.562418 −0.281209 0.959647i \(-0.590735\pi\)
−0.281209 + 0.959647i \(0.590735\pi\)
\(702\) 0 0
\(703\) −35.4983 −1.33884
\(704\) −0.479340 + 0.128439i −0.0180658 + 0.00484072i
\(705\) 0 0
\(706\) 22.5939 13.0446i 0.850333 0.490940i
\(707\) −7.62589 + 2.04335i −0.286801 + 0.0768481i
\(708\) 0 0
\(709\) −17.4183 17.4183i −0.654157 0.654157i 0.299834 0.953991i \(-0.403069\pi\)
−0.953991 + 0.299834i \(0.903069\pi\)
\(710\) −12.2311 + 12.2311i −0.459024 + 0.459024i
\(711\) 0 0
\(712\) 3.05914 1.76620i 0.114646 0.0661910i
\(713\) −0.144593 0.539629i −0.00541505 0.0202093i
\(714\) 0 0
\(715\) 2.45155 + 1.25387i 0.0916829 + 0.0468919i
\(716\) −8.71053 5.02903i −0.325528 0.187944i
\(717\) 0 0
\(718\) 16.3855 28.3805i 0.611502 1.05915i
\(719\) 17.8371 30.8948i 0.665213 1.15218i −0.314014 0.949418i \(-0.601674\pi\)
0.979227 0.202765i \(-0.0649928\pi\)
\(720\) 0 0
\(721\) −5.58186 20.8318i −0.207879 0.775816i
\(722\) −6.59248 + 6.59248i −0.245347 + 0.245347i
\(723\) 0 0
\(724\) −5.97419 10.3476i −0.222029 0.384565i
\(725\) −12.3966 −0.460399
\(726\) 0 0
\(727\) −8.14708 + 4.70372i −0.302159 + 0.174451i −0.643412 0.765520i \(-0.722482\pi\)
0.341254 + 0.939971i \(0.389149\pi\)
\(728\) −4.33011 + 2.80258i −0.160484 + 0.103870i
\(729\) 0 0
\(730\) 9.36075 + 2.50821i 0.346457 + 0.0928328i
\(731\) −3.10500 1.79267i −0.114843 0.0663044i
\(732\) 0 0
\(733\) −8.37893 31.2706i −0.309483 1.15501i −0.929017 0.370037i \(-0.879345\pi\)
0.619534 0.784970i \(-0.287322\pi\)
\(734\) 0.151492 0.565376i 0.00559167 0.0208684i
\(735\) 0 0
\(736\) −0.459552 + 1.71507i −0.0169393 + 0.0632184i
\(737\) 3.40471 + 1.96571i 0.125414 + 0.0724079i
\(738\) 0 0
\(739\) 7.68766 28.6907i 0.282795 1.05541i −0.667640 0.744484i \(-0.732696\pi\)
0.950436 0.310922i \(-0.100638\pi\)
\(740\) −8.78091 15.2090i −0.322793 0.559093i
\(741\) 0 0
\(742\) −1.45000 + 2.51148i −0.0532313 + 0.0921993i
\(743\) 17.4277 + 17.4277i 0.639359 + 0.639359i 0.950397 0.311038i \(-0.100677\pi\)
−0.311038 + 0.950397i \(0.600677\pi\)
\(744\) 0 0
\(745\) 16.1925i 0.593247i
\(746\) 19.3592 + 19.3592i 0.708790 + 0.708790i
\(747\) 0 0
\(748\) 1.05943 0.283875i 0.0387368 0.0103795i
\(749\) 17.3355 + 4.64503i 0.633425 + 0.169726i
\(750\) 0 0
\(751\) 22.1321i 0.807610i 0.914845 + 0.403805i \(0.132313\pi\)
−0.914845 + 0.403805i \(0.867687\pi\)
\(752\) 8.66658 8.66658i 0.316038 0.316038i
\(753\) 0 0
\(754\) −16.1614 + 5.22378i −0.588563 + 0.190239i
\(755\) 26.4504i 0.962628i
\(756\) 0 0
\(757\) 25.1440 + 43.5507i 0.913875 + 1.58288i 0.808540 + 0.588442i \(0.200258\pi\)
0.105336 + 0.994437i \(0.466408\pi\)
\(758\) −3.22915 −0.117288
\(759\) 0 0
\(760\) 4.62422 + 1.23906i 0.167738 + 0.0449453i
\(761\) −8.09766 2.16976i −0.293540 0.0786538i 0.109044 0.994037i \(-0.465221\pi\)
−0.402584 + 0.915383i \(0.631888\pi\)
\(762\) 0 0
\(763\) −14.0147 −0.507368
\(764\) −10.9228 18.9189i −0.395174 0.684461i
\(765\) 0 0
\(766\) 14.1015i 0.509508i
\(767\) 9.61071 3.10643i 0.347023 0.112167i
\(768\) 0 0
\(769\) −10.9600 + 10.9600i −0.395229 + 0.395229i −0.876547 0.481317i \(-0.840159\pi\)
0.481317 + 0.876547i \(0.340159\pi\)
\(770\) 1.09253i 0.0393720i
\(771\) 0 0
\(772\) 12.6457 + 3.38840i 0.455128 + 0.121951i
\(773\) 6.28210 1.68328i 0.225951 0.0605435i −0.144067 0.989568i \(-0.546018\pi\)
0.370018 + 0.929024i \(0.379351\pi\)
\(774\) 0 0
\(775\) 0.585485 + 0.585485i 0.0210313 + 0.0210313i
\(776\) 7.36806i 0.264498i
\(777\) 0 0
\(778\) 14.1062 + 14.1062i 0.505733 + 0.505733i
\(779\) −12.5272 + 21.6977i −0.448833 + 0.777401i
\(780\) 0 0
\(781\) 2.78882 + 4.83038i 0.0997919 + 0.172845i
\(782\) 1.01570 3.79064i 0.0363213 0.135553i
\(783\) 0 0
\(784\) −4.28987 2.47676i −0.153210 0.0884557i
\(785\) 8.72447 32.5601i 0.311390 1.16212i
\(786\) 0 0
\(787\) −13.8656 + 51.7471i −0.494255 + 1.84458i 0.0399086 + 0.999203i \(0.487293\pi\)
−0.534164 + 0.845381i \(0.679373\pi\)
\(788\) −0.638138 2.38157i −0.0227327 0.0848398i
\(789\) 0 0
\(790\) 12.7229 + 7.34558i 0.452661 + 0.261344i
\(791\) 19.7689 + 5.29706i 0.702901 + 0.188342i
\(792\) 0 0
\(793\) 20.5621 13.3084i 0.730182 0.472596i
\(794\) −16.0511 + 9.26710i −0.569632 + 0.328877i
\(795\) 0 0
\(796\) −20.9541 −0.742697
\(797\) 23.3358 + 40.4188i 0.826597 + 1.43171i 0.900692 + 0.434457i \(0.143060\pi\)
−0.0740951 + 0.997251i \(0.523607\pi\)
\(798\) 0 0
\(799\) −19.1548 + 19.1548i −0.677649 + 0.677649i
\(800\) −0.681106 2.54192i −0.0240807 0.0898705i
\(801\) 0 0
\(802\) −7.88886 + 13.6639i −0.278565 + 0.482489i
\(803\) 1.56246 2.70626i 0.0551380 0.0955018i
\(804\) 0 0
\(805\) −3.38533 1.95452i −0.119317 0.0688879i
\(806\) 1.01001 + 0.516577i 0.0355761 + 0.0181957i
\(807\) 0 0
\(808\) −1.42836 5.33073i −0.0502497 0.187534i
\(809\) −3.13155 + 1.80800i −0.110099 + 0.0635659i −0.554039 0.832491i \(-0.686914\pi\)
0.443939 + 0.896057i \(0.353581\pi\)
\(810\) 0 0
\(811\) 0.430194 0.430194i 0.0151062 0.0151062i −0.699513 0.714620i \(-0.746600\pi\)
0.714620 + 0.699513i \(0.246600\pi\)
\(812\) 4.76512 + 4.76512i 0.167223 + 0.167223i
\(813\) 0 0
\(814\) −5.46997 + 1.46567i −0.191722 + 0.0513719i
\(815\) −7.08752 + 4.09198i −0.248265 + 0.143336i
\(816\) 0 0
\(817\) −4.87429 + 1.30606i −0.170530 + 0.0456933i
\(818\) 11.1264 0.389025
\(819\) 0 0
\(820\) −12.3950 −0.432851
\(821\) −49.9310 + 13.3790i −1.74260 + 0.466929i −0.983022 0.183485i \(-0.941262\pi\)
−0.759580 + 0.650414i \(0.774595\pi\)
\(822\) 0 0
\(823\) 16.1344 9.31518i 0.562408 0.324707i −0.191703 0.981453i \(-0.561401\pi\)
0.754112 + 0.656746i \(0.228068\pi\)
\(824\) 14.5621 3.90189i 0.507293 0.135929i
\(825\) 0 0
\(826\) −2.83368 2.83368i −0.0985963 0.0985963i
\(827\) 23.9908 23.9908i 0.834244 0.834244i −0.153851 0.988094i \(-0.549167\pi\)
0.988094 + 0.153851i \(0.0491675\pi\)
\(828\) 0 0
\(829\) −11.0843 + 6.39953i −0.384974 + 0.222265i −0.679980 0.733230i \(-0.738012\pi\)
0.295006 + 0.955495i \(0.404678\pi\)
\(830\) 3.35313 + 12.5141i 0.116389 + 0.434370i
\(831\) 0 0
\(832\) −1.95909 3.02688i −0.0679191 0.104938i
\(833\) 9.48144 + 5.47411i 0.328513 + 0.189667i
\(834\) 0 0
\(835\) 8.34834 14.4597i 0.288906 0.500400i
\(836\) 0.771857 1.33689i 0.0266952 0.0462375i
\(837\) 0 0
\(838\) 0.118552 + 0.442443i 0.00409532 + 0.0152839i
\(839\) 14.9217 14.9217i 0.515155 0.515155i −0.400946 0.916102i \(-0.631319\pi\)
0.916102 + 0.400946i \(0.131319\pi\)
\(840\) 0 0
\(841\) −3.40468 5.89708i −0.117403 0.203348i
\(842\) −4.52844 −0.156060
\(843\) 0 0
\(844\) −12.2350 + 7.06391i −0.421148 + 0.243150i
\(845\) −3.19028 + 19.7505i −0.109749 + 0.679439i
\(846\) 0 0
\(847\) 14.8596 + 3.98162i 0.510582 + 0.136810i
\(848\) −1.75560 1.01360i −0.0602875 0.0348070i
\(849\) 0 0
\(850\) 1.50537 + 5.61814i 0.0516339 + 0.192700i
\(851\) −5.24416 + 19.5715i −0.179767 + 0.670901i
\(852\) 0 0
\(853\) −2.43856 + 9.10083i −0.0834947 + 0.311606i −0.995025 0.0996268i \(-0.968235\pi\)
0.911530 + 0.411233i \(0.134902\pi\)
\(854\) −8.41603 4.85900i −0.287991 0.166272i
\(855\) 0 0
\(856\) −3.24702 + 12.1180i −0.110981 + 0.414186i
\(857\) −7.45337 12.9096i −0.254602 0.440984i 0.710185 0.704015i \(-0.248611\pi\)
−0.964787 + 0.263031i \(0.915278\pi\)
\(858\) 0 0
\(859\) 17.7711 30.7804i 0.606341 1.05021i −0.385497 0.922709i \(-0.625970\pi\)
0.991838 0.127504i \(-0.0406967\pi\)
\(860\) −1.76528 1.76528i −0.0601957 0.0601957i
\(861\) 0 0
\(862\) 14.9323i 0.508598i
\(863\) 0.118264 + 0.118264i 0.00402577 + 0.00402577i 0.709117 0.705091i \(-0.249094\pi\)
−0.705091 + 0.709117i \(0.749094\pi\)
\(864\) 0 0
\(865\) 2.38712 0.639626i 0.0811644 0.0217479i
\(866\) 4.36797 + 1.17039i 0.148430 + 0.0397716i
\(867\) 0 0
\(868\) 0.450108i 0.0152777i
\(869\) 3.34975 3.34975i 0.113633 0.113633i
\(870\) 0 0
\(871\) −5.98164 + 27.9308i −0.202680 + 0.946399i
\(872\) 9.79673i 0.331759i
\(873\) 0 0
\(874\) −2.76169 4.78339i −0.0934156 0.161801i
\(875\) 16.8015 0.567994
\(876\) 0 0
\(877\) −41.3195 11.0715i −1.39526 0.373859i −0.518619 0.855005i \(-0.673554\pi\)
−0.876640 + 0.481147i \(0.840220\pi\)
\(878\) 12.9011 + 3.45683i 0.435390 + 0.116662i
\(879\) 0 0
\(880\) 0.763710 0.0257447
\(881\) 13.3432 + 23.1111i 0.449544 + 0.778633i 0.998356 0.0573124i \(-0.0182531\pi\)
−0.548812 + 0.835946i \(0.684920\pi\)
\(882\) 0 0
\(883\) 11.8585i 0.399071i 0.979891 + 0.199536i \(0.0639433\pi\)
−0.979891 + 0.199536i \(0.936057\pi\)
\(884\) 4.32996 + 6.68998i 0.145632 + 0.225008i
\(885\) 0 0
\(886\) 21.8018 21.8018i 0.732445 0.732445i
\(887\) 52.7911i 1.77255i −0.463156 0.886277i \(-0.653283\pi\)
0.463156 0.886277i \(-0.346717\pi\)
\(888\) 0 0
\(889\) 4.00079 + 1.07201i 0.134182 + 0.0359540i
\(890\) −5.25099 + 1.40700i −0.176014 + 0.0471627i
\(891\) 0 0
\(892\) −6.48118 6.48118i −0.217006 0.217006i
\(893\) 38.1267i 1.27586i
\(894\) 0 0
\(895\) 10.9453 + 10.9453i 0.365861 + 0.365861i
\(896\) −0.715277 + 1.23890i −0.0238957 + 0.0413886i
\(897\) 0 0
\(898\) 20.0708 + 34.7636i 0.669771 + 1.16008i
\(899\) 0.383613 1.43167i 0.0127942 0.0477487i
\(900\) 0 0
\(901\) 3.88021 + 2.24024i 0.129269 + 0.0746333i
\(902\) −1.03446 + 3.86065i −0.0344437 + 0.128546i
\(903\) 0 0
\(904\) −3.70280 + 13.8190i −0.123153 + 0.459615i
\(905\) 4.75920 + 17.7616i 0.158201 + 0.590414i
\(906\) 0 0
\(907\) −15.9624 9.21592i −0.530024 0.306009i 0.211002 0.977486i \(-0.432327\pi\)
−0.741026 + 0.671476i \(0.765661\pi\)
\(908\) −25.5089 6.83510i −0.846544 0.226831i
\(909\) 0 0
\(910\) 7.55312 2.44136i 0.250383 0.0809303i
\(911\) 37.3282 21.5514i 1.23674 0.714030i 0.268311 0.963332i \(-0.413534\pi\)
0.968426 + 0.249302i \(0.0802011\pi\)
\(912\) 0 0
\(913\) 4.17760 0.138258
\(914\) 8.25520 + 14.2984i 0.273058 + 0.472950i
\(915\) 0 0
\(916\) 10.0544 10.0544i 0.332207 0.332207i
\(917\) −4.84042 18.0647i −0.159845 0.596549i
\(918\) 0 0
\(919\) −25.3781 + 43.9562i −0.837147 + 1.44998i 0.0551224 + 0.998480i \(0.482445\pi\)
−0.892270 + 0.451502i \(0.850888\pi\)
\(920\) 1.36627 2.36645i 0.0450446 0.0780196i
\(921\) 0 0
\(922\) −11.9555 6.90250i −0.393733 0.227322i
\(923\) −27.1626 + 30.0743i −0.894068 + 0.989908i
\(924\) 0 0
\(925\) −7.77241 29.0070i −0.255555 0.953745i
\(926\) −33.3375 + 19.2474i −1.09554 + 0.632508i
\(927\) 0 0
\(928\) −3.33096 + 3.33096i −0.109344 + 0.109344i
\(929\) −32.8640 32.8640i −1.07823 1.07823i −0.996668 0.0815633i \(-0.974009\pi\)
−0.0815633 0.996668i \(-0.525991\pi\)
\(930\) 0 0
\(931\) 14.8841 3.98820i 0.487808 0.130708i
\(932\) 18.5754 10.7245i 0.608457 0.351293i
\(933\) 0 0
\(934\) 8.25319 2.21144i 0.270053 0.0723604i
\(935\) −1.68795 −0.0552018
\(936\) 0 0
\(937\) −13.9838 −0.456832 −0.228416 0.973564i \(-0.573355\pi\)
−0.228416 + 0.973564i \(0.573355\pi\)
\(938\) 10.9471 2.93325i 0.357434 0.0957741i
\(939\) 0 0
\(940\) −16.3351 + 9.43108i −0.532792 + 0.307608i
\(941\) −24.7787 + 6.63944i −0.807764 + 0.216440i −0.638990 0.769215i \(-0.720647\pi\)
−0.168774 + 0.985655i \(0.553981\pi\)
\(942\) 0 0
\(943\) 10.1121 + 10.1121i 0.329295 + 0.329295i
\(944\) 1.98083 1.98083i 0.0644704 0.0644704i
\(945\) 0 0
\(946\) −0.697159 + 0.402505i −0.0226666 + 0.0130866i
\(947\) −0.714319 2.66588i −0.0232123 0.0866293i 0.953348 0.301873i \(-0.0976120\pi\)
−0.976560 + 0.215244i \(0.930945\pi\)
\(948\) 0 0
\(949\) 22.2010 + 4.75455i 0.720675 + 0.154339i
\(950\) 7.08950 + 4.09312i 0.230014 + 0.132798i
\(951\) 0 0
\(952\) 1.58090 2.73820i 0.0512372 0.0887455i
\(953\) −14.2452 + 24.6735i −0.461448 + 0.799252i −0.999033 0.0439575i \(-0.986003\pi\)
0.537585 + 0.843210i \(0.319337\pi\)
\(954\) 0 0
\(955\) 8.70140 + 32.4741i 0.281571 + 1.05084i
\(956\) −5.56002 + 5.56002i −0.179824 + 0.179824i
\(957\) 0 0
\(958\) 4.43167 + 7.67587i 0.143181 + 0.247996i
\(959\) −9.31578 −0.300822
\(960\) 0 0
\(961\) 26.7611 15.4505i 0.863260 0.498403i
\(962\) −22.3560 34.5411i −0.720787 1.11365i
\(963\) 0 0
\(964\) 17.8781 + 4.79042i 0.575815 + 0.154289i
\(965\) −17.4485 10.0739i −0.561687 0.324290i
\(966\) 0 0
\(967\) −2.73120 10.1930i −0.0878293 0.327783i 0.908006 0.418958i \(-0.137605\pi\)
−0.995835 + 0.0911745i \(0.970938\pi\)
\(968\) −2.78327 + 10.3873i −0.0894577 + 0.333861i
\(969\) 0 0
\(970\) 2.93480 10.9528i 0.0942306 0.351674i
\(971\) 36.5800 + 21.1195i 1.17391 + 0.677756i 0.954597 0.297899i \(-0.0962859\pi\)
0.219310 + 0.975655i \(0.429619\pi\)
\(972\) 0 0
\(973\) 6.17655 23.0512i 0.198011 0.738987i
\(974\) 5.43346 + 9.41102i 0.174099 + 0.301549i
\(975\) 0 0
\(976\) 3.39659 5.88306i 0.108722 0.188312i
\(977\) 37.3318 + 37.3318i 1.19435 + 1.19435i 0.975833 + 0.218516i \(0.0701217\pi\)
0.218516 + 0.975833i \(0.429878\pi\)
\(978\) 0 0
\(979\) 1.75295i 0.0560245i
\(980\) 5.39048 + 5.39048i 0.172192 + 0.172192i
\(981\) 0 0
\(982\) −16.7551 + 4.48952i −0.534678 + 0.143266i
\(983\) −32.7120 8.76515i −1.04335 0.279565i −0.303849 0.952720i \(-0.598272\pi\)
−0.739501 + 0.673155i \(0.764939\pi\)
\(984\) 0 0
\(985\) 3.79443i 0.120901i
\(986\) 7.36207 7.36207i 0.234456 0.234456i
\(987\) 0 0
\(988\) 10.9673 + 2.34875i 0.348917 + 0.0747238i
\(989\) 2.88031i 0.0915887i
\(990\) 0 0
\(991\) 20.3156 + 35.1877i 0.645347 + 1.11777i 0.984221 + 0.176942i \(0.0566205\pi\)
−0.338874 + 0.940832i \(0.610046\pi\)
\(992\) 0.314639 0.00998980
\(993\) 0 0
\(994\) 15.5310 + 4.16151i 0.492612 + 0.131995i
\(995\) 31.1487 + 8.34627i 0.987481 + 0.264595i
\(996\) 0 0
\(997\) 15.3421 0.485888 0.242944 0.970040i \(-0.421887\pi\)
0.242944 + 0.970040i \(0.421887\pi\)
\(998\) 5.90466 + 10.2272i 0.186909 + 0.323735i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bc.a.665.2 56
3.2 odd 2 234.2.z.a.41.8 yes 56
9.2 odd 6 702.2.bb.a.197.2 56
9.7 even 3 234.2.y.a.119.12 yes 56
13.7 odd 12 702.2.bb.a.449.2 56
39.20 even 12 234.2.y.a.59.12 56
117.7 odd 12 234.2.z.a.137.8 yes 56
117.20 even 12 inner 702.2.bc.a.683.2 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.y.a.59.12 56 39.20 even 12
234.2.y.a.119.12 yes 56 9.7 even 3
234.2.z.a.41.8 yes 56 3.2 odd 2
234.2.z.a.137.8 yes 56 117.7 odd 12
702.2.bb.a.197.2 56 9.2 odd 6
702.2.bb.a.449.2 56 13.7 odd 12
702.2.bc.a.665.2 56 1.1 even 1 trivial
702.2.bc.a.683.2 56 117.20 even 12 inner