Properties

Label 702.2.bb.a.89.4
Level $702$
Weight $2$
Character 702.89
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(71,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 89.4
Character \(\chi\) \(=\) 702.89
Dual form 702.2.bb.a.71.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-0.650628 - 0.174335i) q^{5} +(-1.73068 - 0.463733i) q^{7} +(0.707107 + 0.707107i) q^{8} +O(q^{10})\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-0.650628 - 0.174335i) q^{5} +(-1.73068 - 0.463733i) q^{7} +(0.707107 + 0.707107i) q^{8} +(0.583337 - 0.336790i) q^{10} +(-0.696978 - 0.696978i) q^{11} +(0.391864 + 3.58419i) q^{13} +(1.55168 - 0.895864i) q^{14} -1.00000 q^{16} +(1.20946 - 2.09485i) q^{17} +(6.33213 - 1.69669i) q^{19} +(-0.174335 + 0.650628i) q^{20} +0.985676 q^{22} +(3.16302 - 5.47852i) q^{23} +(-3.93720 - 2.27315i) q^{25} +(-2.81150 - 2.25732i) q^{26} +(-0.463733 + 1.73068i) q^{28} -4.29257i q^{29} +(1.49861 - 5.59289i) q^{31} +(0.707107 - 0.707107i) q^{32} +(0.626062 + 2.33650i) q^{34} +(1.04518 + 0.603436i) q^{35} +(6.83094 + 1.83034i) q^{37} +(-3.27775 + 5.67724i) q^{38} +(-0.336790 - 0.583337i) q^{40} +(-1.28786 - 4.80634i) q^{41} +(-0.772736 + 0.446139i) q^{43} +(-0.696978 + 0.696978i) q^{44} +(1.63730 + 6.11049i) q^{46} +(3.66378 - 0.981707i) q^{47} +(-3.28199 - 1.89486i) q^{49} +(4.39138 - 1.17667i) q^{50} +(3.58419 - 0.391864i) q^{52} -9.00014i q^{53} +(0.331966 + 0.574981i) q^{55} +(-0.895864 - 1.55168i) q^{56} +(3.03531 + 3.03531i) q^{58} +(3.33959 + 3.33959i) q^{59} +(-2.38199 - 4.12572i) q^{61} +(2.89509 + 5.01445i) q^{62} +1.00000i q^{64} +(0.369894 - 2.40029i) q^{65} +(10.6950 - 2.86571i) q^{67} +(-2.09485 - 1.20946i) q^{68} +(-1.16575 + 0.312361i) q^{70} +(1.70900 + 6.37808i) q^{71} +(-8.01788 + 8.01788i) q^{73} +(-6.12445 + 3.53595i) q^{74} +(-1.69669 - 6.33213i) q^{76} +(0.883031 + 1.52946i) q^{77} +(-0.807117 + 1.39797i) q^{79} +(0.650628 + 0.174335i) q^{80} +(4.30925 + 2.48795i) q^{82} +(1.95885 + 7.31055i) q^{83} +(-1.15211 + 1.15211i) q^{85} +(0.230939 - 0.861875i) q^{86} -0.985676i q^{88} +(0.440877 - 1.64537i) q^{89} +(0.983920 - 6.38480i) q^{91} +(-5.47852 - 3.16302i) q^{92} +(-1.89651 + 3.28485i) q^{94} -4.41566 q^{95} +(-0.497183 + 1.85551i) q^{97} +(3.66058 - 0.980849i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73} - 48 q^{74} + 4 q^{76} + 24 q^{77} - 24 q^{79} + 60 q^{83} - 48 q^{86} + 4 q^{91} + 24 q^{92} + 20 q^{97} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −0.650628 0.174335i −0.290970 0.0779651i 0.110382 0.993889i \(-0.464793\pi\)
−0.401351 + 0.915924i \(0.631459\pi\)
\(6\) 0 0
\(7\) −1.73068 0.463733i −0.654134 0.175275i −0.0835368 0.996505i \(-0.526622\pi\)
−0.570597 + 0.821230i \(0.693288\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 0.583337 0.336790i 0.184467 0.106502i
\(11\) −0.696978 0.696978i −0.210147 0.210147i 0.594183 0.804330i \(-0.297475\pi\)
−0.804330 + 0.594183i \(0.797475\pi\)
\(12\) 0 0
\(13\) 0.391864 + 3.58419i 0.108684 + 0.994076i
\(14\) 1.55168 0.895864i 0.414704 0.239430i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.20946 2.09485i 0.293337 0.508075i −0.681260 0.732042i \(-0.738568\pi\)
0.974597 + 0.223967i \(0.0719009\pi\)
\(18\) 0 0
\(19\) 6.33213 1.69669i 1.45269 0.389247i 0.555732 0.831361i \(-0.312438\pi\)
0.896959 + 0.442114i \(0.145771\pi\)
\(20\) −0.174335 + 0.650628i −0.0389826 + 0.145485i
\(21\) 0 0
\(22\) 0.985676 0.210147
\(23\) 3.16302 5.47852i 0.659536 1.14235i −0.321200 0.947011i \(-0.604086\pi\)
0.980736 0.195338i \(-0.0625805\pi\)
\(24\) 0 0
\(25\) −3.93720 2.27315i −0.787441 0.454629i
\(26\) −2.81150 2.25732i −0.551380 0.442696i
\(27\) 0 0
\(28\) −0.463733 + 1.73068i −0.0876374 + 0.327067i
\(29\) 4.29257i 0.797111i −0.917144 0.398555i \(-0.869512\pi\)
0.917144 0.398555i \(-0.130488\pi\)
\(30\) 0 0
\(31\) 1.49861 5.59289i 0.269158 1.00451i −0.690498 0.723335i \(-0.742608\pi\)
0.959656 0.281178i \(-0.0907250\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 0.626062 + 2.33650i 0.107369 + 0.400706i
\(35\) 1.04518 + 0.603436i 0.176668 + 0.101999i
\(36\) 0 0
\(37\) 6.83094 + 1.83034i 1.12300 + 0.300907i 0.772096 0.635505i \(-0.219208\pi\)
0.350902 + 0.936412i \(0.385875\pi\)
\(38\) −3.27775 + 5.67724i −0.531722 + 0.920969i
\(39\) 0 0
\(40\) −0.336790 0.583337i −0.0532512 0.0922337i
\(41\) −1.28786 4.80634i −0.201129 0.750625i −0.990595 0.136830i \(-0.956309\pi\)
0.789465 0.613795i \(-0.210358\pi\)
\(42\) 0 0
\(43\) −0.772736 + 0.446139i −0.117841 + 0.0680356i −0.557762 0.830001i \(-0.688340\pi\)
0.439921 + 0.898037i \(0.355006\pi\)
\(44\) −0.696978 + 0.696978i −0.105073 + 0.105073i
\(45\) 0 0
\(46\) 1.63730 + 6.11049i 0.241407 + 0.900943i
\(47\) 3.66378 0.981707i 0.534417 0.143197i 0.0184899 0.999829i \(-0.494114\pi\)
0.515927 + 0.856632i \(0.327447\pi\)
\(48\) 0 0
\(49\) −3.28199 1.89486i −0.468855 0.270694i
\(50\) 4.39138 1.17667i 0.621035 0.166406i
\(51\) 0 0
\(52\) 3.58419 0.391864i 0.497038 0.0543418i
\(53\) 9.00014i 1.23626i −0.786074 0.618132i \(-0.787890\pi\)
0.786074 0.618132i \(-0.212110\pi\)
\(54\) 0 0
\(55\) 0.331966 + 0.574981i 0.0447622 + 0.0775305i
\(56\) −0.895864 1.55168i −0.119715 0.207352i
\(57\) 0 0
\(58\) 3.03531 + 3.03531i 0.398555 + 0.398555i
\(59\) 3.33959 + 3.33959i 0.434777 + 0.434777i 0.890250 0.455473i \(-0.150530\pi\)
−0.455473 + 0.890250i \(0.650530\pi\)
\(60\) 0 0
\(61\) −2.38199 4.12572i −0.304982 0.528245i 0.672275 0.740301i \(-0.265317\pi\)
−0.977257 + 0.212057i \(0.931984\pi\)
\(62\) 2.89509 + 5.01445i 0.367677 + 0.636835i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 0.369894 2.40029i 0.0458797 0.297720i
\(66\) 0 0
\(67\) 10.6950 2.86571i 1.30660 0.350102i 0.462658 0.886537i \(-0.346896\pi\)
0.843942 + 0.536434i \(0.180229\pi\)
\(68\) −2.09485 1.20946i −0.254037 0.146669i
\(69\) 0 0
\(70\) −1.16575 + 0.312361i −0.139334 + 0.0373343i
\(71\) 1.70900 + 6.37808i 0.202821 + 0.756939i 0.990103 + 0.140345i \(0.0448212\pi\)
−0.787281 + 0.616594i \(0.788512\pi\)
\(72\) 0 0
\(73\) −8.01788 + 8.01788i −0.938421 + 0.938421i −0.998211 0.0597896i \(-0.980957\pi\)
0.0597896 + 0.998211i \(0.480957\pi\)
\(74\) −6.12445 + 3.53595i −0.711953 + 0.411046i
\(75\) 0 0
\(76\) −1.69669 6.33213i −0.194624 0.726346i
\(77\) 0.883031 + 1.52946i 0.100631 + 0.174298i
\(78\) 0 0
\(79\) −0.807117 + 1.39797i −0.0908078 + 0.157284i −0.907851 0.419292i \(-0.862278\pi\)
0.817043 + 0.576576i \(0.195612\pi\)
\(80\) 0.650628 + 0.174335i 0.0727424 + 0.0194913i
\(81\) 0 0
\(82\) 4.30925 + 2.48795i 0.475877 + 0.274748i
\(83\) 1.95885 + 7.31055i 0.215012 + 0.802437i 0.986162 + 0.165783i \(0.0530152\pi\)
−0.771150 + 0.636653i \(0.780318\pi\)
\(84\) 0 0
\(85\) −1.15211 + 1.15211i −0.124964 + 0.124964i
\(86\) 0.230939 0.861875i 0.0249028 0.0929384i
\(87\) 0 0
\(88\) 0.985676i 0.105073i
\(89\) 0.440877 1.64537i 0.0467329 0.174409i −0.938615 0.344967i \(-0.887890\pi\)
0.985348 + 0.170557i \(0.0545568\pi\)
\(90\) 0 0
\(91\) 0.983920 6.38480i 0.103143 0.669309i
\(92\) −5.47852 3.16302i −0.571175 0.329768i
\(93\) 0 0
\(94\) −1.89651 + 3.28485i −0.195610 + 0.338807i
\(95\) −4.41566 −0.453037
\(96\) 0 0
\(97\) −0.497183 + 1.85551i −0.0504812 + 0.188399i −0.986562 0.163386i \(-0.947758\pi\)
0.936081 + 0.351785i \(0.114425\pi\)
\(98\) 3.66058 0.980849i 0.369774 0.0990807i
\(99\) 0 0
\(100\) −2.27315 + 3.93720i −0.227315 + 0.393720i
\(101\) 14.8919 1.48180 0.740902 0.671613i \(-0.234398\pi\)
0.740902 + 0.671613i \(0.234398\pi\)
\(102\) 0 0
\(103\) 9.08751 5.24668i 0.895419 0.516971i 0.0197081 0.999806i \(-0.493726\pi\)
0.875711 + 0.482835i \(0.160393\pi\)
\(104\) −2.25732 + 2.81150i −0.221348 + 0.275690i
\(105\) 0 0
\(106\) 6.36406 + 6.36406i 0.618132 + 0.618132i
\(107\) 1.87899 1.08484i 0.181649 0.104875i −0.406418 0.913687i \(-0.633222\pi\)
0.588067 + 0.808812i \(0.299889\pi\)
\(108\) 0 0
\(109\) −8.28528 8.28528i −0.793586 0.793586i 0.188489 0.982075i \(-0.439641\pi\)
−0.982075 + 0.188489i \(0.939641\pi\)
\(110\) −0.641308 0.171838i −0.0611463 0.0163841i
\(111\) 0 0
\(112\) 1.73068 + 0.463733i 0.163534 + 0.0438187i
\(113\) 11.0857i 1.04285i 0.853296 + 0.521427i \(0.174600\pi\)
−0.853296 + 0.521427i \(0.825400\pi\)
\(114\) 0 0
\(115\) −3.01305 + 3.01305i −0.280968 + 0.280968i
\(116\) −4.29257 −0.398555
\(117\) 0 0
\(118\) −4.72289 −0.434777
\(119\) −3.06463 + 3.06463i −0.280934 + 0.280934i
\(120\) 0 0
\(121\) 10.0284i 0.911677i
\(122\) 4.60165 + 1.23301i 0.416614 + 0.111631i
\(123\) 0 0
\(124\) −5.59289 1.49861i −0.502256 0.134579i
\(125\) 4.54683 + 4.54683i 0.406681 + 0.406681i
\(126\) 0 0
\(127\) 4.33197 2.50106i 0.384400 0.221933i −0.295331 0.955395i \(-0.595430\pi\)
0.679731 + 0.733462i \(0.262097\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) 1.43571 + 1.95882i 0.125920 + 0.171800i
\(131\) −19.0361 + 10.9905i −1.66319 + 0.960242i −0.692010 + 0.721888i \(0.743275\pi\)
−0.971178 + 0.238354i \(0.923392\pi\)
\(132\) 0 0
\(133\) −11.7457 −1.01848
\(134\) −5.53613 + 9.58886i −0.478249 + 0.828351i
\(135\) 0 0
\(136\) 2.33650 0.626062i 0.200353 0.0536844i
\(137\) −3.25829 + 12.1601i −0.278374 + 1.03891i 0.675172 + 0.737660i \(0.264069\pi\)
−0.953546 + 0.301246i \(0.902597\pi\)
\(138\) 0 0
\(139\) −19.6965 −1.67063 −0.835316 0.549770i \(-0.814715\pi\)
−0.835316 + 0.549770i \(0.814715\pi\)
\(140\) 0.603436 1.04518i 0.0509996 0.0883340i
\(141\) 0 0
\(142\) −5.71843 3.30154i −0.479880 0.277059i
\(143\) 2.22498 2.77122i 0.186062 0.231741i
\(144\) 0 0
\(145\) −0.748347 + 2.79287i −0.0621468 + 0.231935i
\(146\) 11.3390i 0.938421i
\(147\) 0 0
\(148\) 1.83034 6.83094i 0.150453 0.561499i
\(149\) 6.83755 6.83755i 0.560154 0.560154i −0.369197 0.929351i \(-0.620367\pi\)
0.929351 + 0.369197i \(0.120367\pi\)
\(150\) 0 0
\(151\) −1.28698 4.80308i −0.104733 0.390869i 0.893582 0.448900i \(-0.148184\pi\)
−0.998315 + 0.0580316i \(0.981518\pi\)
\(152\) 5.67724 + 3.27775i 0.460485 + 0.265861i
\(153\) 0 0
\(154\) −1.70589 0.457091i −0.137464 0.0368334i
\(155\) −1.95008 + 3.37763i −0.156634 + 0.271298i
\(156\) 0 0
\(157\) −4.86181 8.42090i −0.388015 0.672061i 0.604168 0.796857i \(-0.293506\pi\)
−0.992182 + 0.124796i \(0.960172\pi\)
\(158\) −0.417795 1.55923i −0.0332380 0.124046i
\(159\) 0 0
\(160\) −0.583337 + 0.336790i −0.0461169 + 0.0266256i
\(161\) −8.01474 + 8.01474i −0.631650 + 0.631650i
\(162\) 0 0
\(163\) 1.24717 + 4.65451i 0.0976861 + 0.364570i 0.997413 0.0718838i \(-0.0229011\pi\)
−0.899727 + 0.436453i \(0.856234\pi\)
\(164\) −4.80634 + 1.28786i −0.375312 + 0.100565i
\(165\) 0 0
\(166\) −6.55446 3.78422i −0.508724 0.293712i
\(167\) −13.6676 + 3.66224i −1.05763 + 0.283392i −0.745403 0.666614i \(-0.767743\pi\)
−0.312231 + 0.950006i \(0.601076\pi\)
\(168\) 0 0
\(169\) −12.6929 + 2.80903i −0.976376 + 0.216079i
\(170\) 1.62934i 0.124964i
\(171\) 0 0
\(172\) 0.446139 + 0.772736i 0.0340178 + 0.0589206i
\(173\) −11.5989 20.0900i −0.881852 1.52741i −0.849280 0.527942i \(-0.822964\pi\)
−0.0325714 0.999469i \(-0.510370\pi\)
\(174\) 0 0
\(175\) 5.75989 + 5.75989i 0.435407 + 0.435407i
\(176\) 0.696978 + 0.696978i 0.0525367 + 0.0525367i
\(177\) 0 0
\(178\) 0.851709 + 1.47520i 0.0638383 + 0.110571i
\(179\) 2.78545 + 4.82455i 0.208194 + 0.360603i 0.951146 0.308742i \(-0.0999080\pi\)
−0.742951 + 0.669345i \(0.766575\pi\)
\(180\) 0 0
\(181\) 20.8410i 1.54910i 0.632514 + 0.774549i \(0.282023\pi\)
−0.632514 + 0.774549i \(0.717977\pi\)
\(182\) 3.81900 + 5.21047i 0.283083 + 0.386226i
\(183\) 0 0
\(184\) 6.11049 1.63730i 0.450471 0.120703i
\(185\) −4.12531 2.38175i −0.303298 0.175109i
\(186\) 0 0
\(187\) −2.30303 + 0.617094i −0.168414 + 0.0451264i
\(188\) −0.981707 3.66378i −0.0715983 0.267209i
\(189\) 0 0
\(190\) 3.12234 3.12234i 0.226518 0.226518i
\(191\) 15.6514 9.03635i 1.13250 0.653847i 0.187935 0.982181i \(-0.439821\pi\)
0.944562 + 0.328334i \(0.106487\pi\)
\(192\) 0 0
\(193\) 1.90556 + 7.11166i 0.137165 + 0.511908i 0.999980 + 0.00638720i \(0.00203312\pi\)
−0.862814 + 0.505521i \(0.831300\pi\)
\(194\) −0.960483 1.66361i −0.0689587 0.119440i
\(195\) 0 0
\(196\) −1.89486 + 3.28199i −0.135347 + 0.234428i
\(197\) −23.6473 6.33628i −1.68480 0.451441i −0.715761 0.698345i \(-0.753920\pi\)
−0.969040 + 0.246904i \(0.920587\pi\)
\(198\) 0 0
\(199\) −6.97794 4.02871i −0.494653 0.285588i 0.231850 0.972752i \(-0.425522\pi\)
−0.726503 + 0.687164i \(0.758856\pi\)
\(200\) −1.17667 4.39138i −0.0832029 0.310517i
\(201\) 0 0
\(202\) −10.5302 + 10.5302i −0.740902 + 0.740902i
\(203\) −1.99061 + 7.42905i −0.139713 + 0.521417i
\(204\) 0 0
\(205\) 3.35166i 0.234090i
\(206\) −2.71588 + 10.1358i −0.189224 + 0.706195i
\(207\) 0 0
\(208\) −0.391864 3.58419i −0.0271709 0.248519i
\(209\) −5.59591 3.23080i −0.387077 0.223479i
\(210\) 0 0
\(211\) 7.04091 12.1952i 0.484716 0.839553i −0.515130 0.857112i \(-0.672256\pi\)
0.999846 + 0.0175594i \(0.00558961\pi\)
\(212\) −9.00014 −0.618132
\(213\) 0 0
\(214\) −0.561553 + 2.09574i −0.0383870 + 0.143262i
\(215\) 0.580542 0.155556i 0.0395926 0.0106088i
\(216\) 0 0
\(217\) −5.18722 + 8.98452i −0.352131 + 0.609909i
\(218\) 11.7172 0.793586
\(219\) 0 0
\(220\) 0.574981 0.331966i 0.0387652 0.0223811i
\(221\) 7.98227 + 3.51404i 0.536946 + 0.236380i
\(222\) 0 0
\(223\) 16.7879 + 16.7879i 1.12420 + 1.12420i 0.991103 + 0.133096i \(0.0424918\pi\)
0.133096 + 0.991103i \(0.457508\pi\)
\(224\) −1.55168 + 0.895864i −0.103676 + 0.0598574i
\(225\) 0 0
\(226\) −7.83876 7.83876i −0.521427 0.521427i
\(227\) 23.1257 + 6.19651i 1.53491 + 0.411277i 0.924616 0.380901i \(-0.124386\pi\)
0.610291 + 0.792178i \(0.291053\pi\)
\(228\) 0 0
\(229\) −19.8362 5.31509i −1.31081 0.351231i −0.465284 0.885161i \(-0.654048\pi\)
−0.845529 + 0.533930i \(0.820714\pi\)
\(230\) 4.26110i 0.280968i
\(231\) 0 0
\(232\) 3.03531 3.03531i 0.199278 0.199278i
\(233\) −2.79071 −0.182825 −0.0914126 0.995813i \(-0.529138\pi\)
−0.0914126 + 0.995813i \(0.529138\pi\)
\(234\) 0 0
\(235\) −2.55490 −0.166664
\(236\) 3.33959 3.33959i 0.217389 0.217389i
\(237\) 0 0
\(238\) 4.33405i 0.280934i
\(239\) −7.58852 2.03334i −0.490861 0.131526i 0.00489453 0.999988i \(-0.498442\pi\)
−0.495755 + 0.868462i \(0.665109\pi\)
\(240\) 0 0
\(241\) 22.4869 + 6.02534i 1.44851 + 0.388126i 0.895504 0.445054i \(-0.146815\pi\)
0.553002 + 0.833180i \(0.313482\pi\)
\(242\) 7.09118 + 7.09118i 0.455838 + 0.455838i
\(243\) 0 0
\(244\) −4.12572 + 2.38199i −0.264122 + 0.152491i
\(245\) 1.80501 + 1.80501i 0.115318 + 0.115318i
\(246\) 0 0
\(247\) 8.56260 + 22.0307i 0.544825 + 1.40178i
\(248\) 5.01445 2.89509i 0.318418 0.183839i
\(249\) 0 0
\(250\) −6.43019 −0.406681
\(251\) 13.0241 22.5583i 0.822071 1.42387i −0.0820668 0.996627i \(-0.526152\pi\)
0.904138 0.427241i \(-0.140515\pi\)
\(252\) 0 0
\(253\) −6.02296 + 1.61385i −0.378660 + 0.101462i
\(254\) −1.29465 + 4.83168i −0.0812333 + 0.303167i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 3.60078 6.23673i 0.224610 0.389036i −0.731592 0.681743i \(-0.761222\pi\)
0.956202 + 0.292706i \(0.0945558\pi\)
\(258\) 0 0
\(259\) −10.9733 6.33546i −0.681851 0.393667i
\(260\) −2.40029 0.369894i −0.148860 0.0229398i
\(261\) 0 0
\(262\) 5.68909 21.2320i 0.351473 1.31172i
\(263\) 11.4549i 0.706342i −0.935559 0.353171i \(-0.885103\pi\)
0.935559 0.353171i \(-0.114897\pi\)
\(264\) 0 0
\(265\) −1.56904 + 5.85574i −0.0963855 + 0.359715i
\(266\) 8.30546 8.30546i 0.509240 0.509240i
\(267\) 0 0
\(268\) −2.86571 10.6950i −0.175051 0.653300i
\(269\) −21.7795 12.5744i −1.32792 0.766674i −0.342941 0.939357i \(-0.611423\pi\)
−0.984977 + 0.172683i \(0.944756\pi\)
\(270\) 0 0
\(271\) 6.17248 + 1.65391i 0.374952 + 0.100468i 0.441373 0.897324i \(-0.354492\pi\)
−0.0664215 + 0.997792i \(0.521158\pi\)
\(272\) −1.20946 + 2.09485i −0.0733343 + 0.127019i
\(273\) 0 0
\(274\) −6.29452 10.9024i −0.380266 0.658640i
\(275\) 1.15981 + 4.32848i 0.0699393 + 0.261017i
\(276\) 0 0
\(277\) 16.8380 9.72143i 1.01170 0.584104i 0.100010 0.994986i \(-0.468113\pi\)
0.911688 + 0.410882i \(0.134779\pi\)
\(278\) 13.9275 13.9275i 0.835316 0.835316i
\(279\) 0 0
\(280\) 0.312361 + 1.16575i 0.0186672 + 0.0696668i
\(281\) −28.7919 + 7.71478i −1.71758 + 0.460225i −0.977263 0.212030i \(-0.931993\pi\)
−0.740320 + 0.672255i \(0.765326\pi\)
\(282\) 0 0
\(283\) 19.1183 + 11.0380i 1.13647 + 0.656139i 0.945553 0.325467i \(-0.105522\pi\)
0.190914 + 0.981607i \(0.438855\pi\)
\(284\) 6.37808 1.70900i 0.378470 0.101411i
\(285\) 0 0
\(286\) 0.386251 + 3.53285i 0.0228395 + 0.208902i
\(287\) 8.91545i 0.526262i
\(288\) 0 0
\(289\) 5.57442 + 9.65517i 0.327907 + 0.567951i
\(290\) −1.44570 2.50402i −0.0848941 0.147041i
\(291\) 0 0
\(292\) 8.01788 + 8.01788i 0.469211 + 0.469211i
\(293\) 6.70889 + 6.70889i 0.391938 + 0.391938i 0.875378 0.483440i \(-0.160613\pi\)
−0.483440 + 0.875378i \(0.660613\pi\)
\(294\) 0 0
\(295\) −1.59062 2.75504i −0.0926096 0.160404i
\(296\) 3.53595 + 6.12445i 0.205523 + 0.355976i
\(297\) 0 0
\(298\) 9.66976i 0.560154i
\(299\) 20.8755 + 9.19005i 1.20726 + 0.531475i
\(300\) 0 0
\(301\) 1.54425 0.413779i 0.0890088 0.0238498i
\(302\) 4.30632 + 2.48626i 0.247801 + 0.143068i
\(303\) 0 0
\(304\) −6.33213 + 1.69669i −0.363173 + 0.0973119i
\(305\) 0.830529 + 3.09958i 0.0475560 + 0.177481i
\(306\) 0 0
\(307\) 3.35703 3.35703i 0.191596 0.191596i −0.604790 0.796385i \(-0.706743\pi\)
0.796385 + 0.604790i \(0.206743\pi\)
\(308\) 1.52946 0.883031i 0.0871488 0.0503154i
\(309\) 0 0
\(310\) −1.00943 3.76726i −0.0573320 0.213966i
\(311\) 10.5634 + 18.2964i 0.598996 + 1.03749i 0.992970 + 0.118370i \(0.0377669\pi\)
−0.393973 + 0.919122i \(0.628900\pi\)
\(312\) 0 0
\(313\) −5.16590 + 8.94760i −0.291994 + 0.505748i −0.974281 0.225336i \(-0.927652\pi\)
0.682287 + 0.731084i \(0.260985\pi\)
\(314\) 9.39229 + 2.51666i 0.530038 + 0.142023i
\(315\) 0 0
\(316\) 1.39797 + 0.807117i 0.0786419 + 0.0454039i
\(317\) 4.33708 + 16.1862i 0.243595 + 0.909108i 0.974084 + 0.226185i \(0.0726253\pi\)
−0.730490 + 0.682924i \(0.760708\pi\)
\(318\) 0 0
\(319\) −2.99183 + 2.99183i −0.167510 + 0.167510i
\(320\) 0.174335 0.650628i 0.00974564 0.0363712i
\(321\) 0 0
\(322\) 11.3346i 0.631650i
\(323\) 4.10416 15.3169i 0.228361 0.852256i
\(324\) 0 0
\(325\) 6.60454 15.0025i 0.366354 0.832187i
\(326\) −4.17312 2.40935i −0.231128 0.133442i
\(327\) 0 0
\(328\) 2.48795 4.30925i 0.137374 0.237939i
\(329\) −6.79607 −0.374679
\(330\) 0 0
\(331\) 3.81878 14.2519i 0.209899 0.783354i −0.778001 0.628263i \(-0.783766\pi\)
0.987900 0.155091i \(-0.0495671\pi\)
\(332\) 7.31055 1.95885i 0.401218 0.107506i
\(333\) 0 0
\(334\) 7.07490 12.2541i 0.387121 0.670513i
\(335\) −7.45805 −0.407477
\(336\) 0 0
\(337\) 3.36489 1.94272i 0.183297 0.105827i −0.405544 0.914076i \(-0.632918\pi\)
0.588841 + 0.808249i \(0.299584\pi\)
\(338\) 6.98894 10.9615i 0.380148 0.596228i
\(339\) 0 0
\(340\) 1.15211 + 1.15211i 0.0624822 + 0.0624822i
\(341\) −4.94262 + 2.85362i −0.267658 + 0.154532i
\(342\) 0 0
\(343\) 13.6699 + 13.6699i 0.738108 + 0.738108i
\(344\) −0.861875 0.230939i −0.0464692 0.0124514i
\(345\) 0 0
\(346\) 22.4074 + 6.00406i 1.20463 + 0.322780i
\(347\) 32.3179i 1.73492i 0.497510 + 0.867459i \(0.334248\pi\)
−0.497510 + 0.867459i \(0.665752\pi\)
\(348\) 0 0
\(349\) 13.4101 13.4101i 0.717828 0.717828i −0.250332 0.968160i \(-0.580540\pi\)
0.968160 + 0.250332i \(0.0805399\pi\)
\(350\) −8.14572 −0.435407
\(351\) 0 0
\(352\) −0.985676 −0.0525367
\(353\) 13.8574 13.8574i 0.737554 0.737554i −0.234550 0.972104i \(-0.575362\pi\)
0.972104 + 0.234550i \(0.0753617\pi\)
\(354\) 0 0
\(355\) 4.44770i 0.236059i
\(356\) −1.64537 0.440877i −0.0872047 0.0233664i
\(357\) 0 0
\(358\) −5.38108 1.44186i −0.284399 0.0762045i
\(359\) −19.2085 19.2085i −1.01379 1.01379i −0.999904 0.0138835i \(-0.995581\pi\)
−0.0138835 0.999904i \(-0.504419\pi\)
\(360\) 0 0
\(361\) 20.7627 11.9873i 1.09277 0.630913i
\(362\) −14.7368 14.7368i −0.774549 0.774549i
\(363\) 0 0
\(364\) −6.38480 0.983920i −0.334654 0.0515714i
\(365\) 6.61445 3.81886i 0.346216 0.199888i
\(366\) 0 0
\(367\) 7.69429 0.401639 0.200819 0.979628i \(-0.435640\pi\)
0.200819 + 0.979628i \(0.435640\pi\)
\(368\) −3.16302 + 5.47852i −0.164884 + 0.285587i
\(369\) 0 0
\(370\) 4.60118 1.23288i 0.239204 0.0640945i
\(371\) −4.17366 + 15.5763i −0.216686 + 0.808683i
\(372\) 0 0
\(373\) −16.0980 −0.833521 −0.416760 0.909016i \(-0.636835\pi\)
−0.416760 + 0.909016i \(0.636835\pi\)
\(374\) 1.19213 2.06484i 0.0616438 0.106770i
\(375\) 0 0
\(376\) 3.28485 + 1.89651i 0.169403 + 0.0978051i
\(377\) 15.3854 1.68210i 0.792389 0.0866328i
\(378\) 0 0
\(379\) 6.71919 25.0764i 0.345142 1.28809i −0.547305 0.836933i \(-0.684346\pi\)
0.892446 0.451153i \(-0.148987\pi\)
\(380\) 4.41566i 0.226518i
\(381\) 0 0
\(382\) −4.67756 + 17.4569i −0.239325 + 0.893172i
\(383\) 22.2443 22.2443i 1.13663 1.13663i 0.147581 0.989050i \(-0.452851\pi\)
0.989050 0.147581i \(-0.0471487\pi\)
\(384\) 0 0
\(385\) −0.307887 1.14905i −0.0156914 0.0585610i
\(386\) −6.37614 3.68127i −0.324537 0.187372i
\(387\) 0 0
\(388\) 1.85551 + 0.497183i 0.0941993 + 0.0252406i
\(389\) −12.6984 + 21.9943i −0.643836 + 1.11516i 0.340733 + 0.940160i \(0.389325\pi\)
−0.984569 + 0.174997i \(0.944009\pi\)
\(390\) 0 0
\(391\) −7.65110 13.2521i −0.386933 0.670187i
\(392\) −0.980849 3.66058i −0.0495404 0.184887i
\(393\) 0 0
\(394\) 21.2016 12.2407i 1.06812 0.616680i
\(395\) 0.768848 0.768848i 0.0386850 0.0386850i
\(396\) 0 0
\(397\) 0.337126 + 1.25817i 0.0169199 + 0.0631458i 0.973870 0.227108i \(-0.0729270\pi\)
−0.956950 + 0.290254i \(0.906260\pi\)
\(398\) 7.78288 2.08542i 0.390120 0.104532i
\(399\) 0 0
\(400\) 3.93720 + 2.27315i 0.196860 + 0.113657i
\(401\) −1.38859 + 0.372073i −0.0693431 + 0.0185804i −0.293324 0.956013i \(-0.594761\pi\)
0.223981 + 0.974594i \(0.428095\pi\)
\(402\) 0 0
\(403\) 20.6332 + 3.17966i 1.02782 + 0.158390i
\(404\) 14.8919i 0.740902i
\(405\) 0 0
\(406\) −3.84556 6.66071i −0.190852 0.330565i
\(407\) −3.48530 6.03672i −0.172760 0.299229i
\(408\) 0 0
\(409\) 16.2435 + 16.2435i 0.803189 + 0.803189i 0.983593 0.180404i \(-0.0577405\pi\)
−0.180404 + 0.983593i \(0.557741\pi\)
\(410\) −2.36998 2.36998i −0.117045 0.117045i
\(411\) 0 0
\(412\) −5.24668 9.08751i −0.258485 0.447710i
\(413\) −4.23107 7.32842i −0.208197 0.360608i
\(414\) 0 0
\(415\) 5.09794i 0.250248i
\(416\) 2.81150 + 2.25732i 0.137845 + 0.110674i
\(417\) 0 0
\(418\) 6.24143 1.67239i 0.305278 0.0817991i
\(419\) 5.72052 + 3.30274i 0.279466 + 0.161350i 0.633182 0.774003i \(-0.281749\pi\)
−0.353716 + 0.935353i \(0.615082\pi\)
\(420\) 0 0
\(421\) 9.08681 2.43480i 0.442864 0.118665i −0.0304944 0.999535i \(-0.509708\pi\)
0.473359 + 0.880870i \(0.343042\pi\)
\(422\) 3.64464 + 13.6020i 0.177418 + 0.662134i
\(423\) 0 0
\(424\) 6.36406 6.36406i 0.309066 0.309066i
\(425\) −9.52378 + 5.49855i −0.461971 + 0.266719i
\(426\) 0 0
\(427\) 2.20921 + 8.24490i 0.106911 + 0.398999i
\(428\) −1.08484 1.87899i −0.0524376 0.0908246i
\(429\) 0 0
\(430\) −0.300510 + 0.520499i −0.0144919 + 0.0251007i
\(431\) 1.92865 + 0.516780i 0.0928998 + 0.0248924i 0.304970 0.952362i \(-0.401354\pi\)
−0.212070 + 0.977255i \(0.568020\pi\)
\(432\) 0 0
\(433\) −27.7623 16.0286i −1.33417 0.770285i −0.348236 0.937407i \(-0.613219\pi\)
−0.985936 + 0.167122i \(0.946553\pi\)
\(434\) −2.68510 10.0209i −0.128889 0.481020i
\(435\) 0 0
\(436\) −8.28528 + 8.28528i −0.396793 + 0.396793i
\(437\) 10.7333 40.0574i 0.513445 1.91620i
\(438\) 0 0
\(439\) 26.1293i 1.24708i 0.781790 + 0.623542i \(0.214307\pi\)
−0.781790 + 0.623542i \(0.785693\pi\)
\(440\) −0.171838 + 0.641308i −0.00819206 + 0.0305732i
\(441\) 0 0
\(442\) −8.12912 + 3.15952i −0.386663 + 0.150283i
\(443\) −9.85727 5.69110i −0.468333 0.270392i 0.247209 0.968962i \(-0.420487\pi\)
−0.715542 + 0.698570i \(0.753820\pi\)
\(444\) 0 0
\(445\) −0.573694 + 0.993667i −0.0271957 + 0.0471043i
\(446\) −23.7416 −1.12420
\(447\) 0 0
\(448\) 0.463733 1.73068i 0.0219093 0.0817668i
\(449\) −13.3760 + 3.58409i −0.631253 + 0.169144i −0.560238 0.828331i \(-0.689290\pi\)
−0.0710148 + 0.997475i \(0.522624\pi\)
\(450\) 0 0
\(451\) −2.45231 + 4.24752i −0.115475 + 0.200008i
\(452\) 11.0857 0.521427
\(453\) 0 0
\(454\) −20.7339 + 11.9707i −0.973092 + 0.561815i
\(455\) −1.75326 + 3.98260i −0.0821942 + 0.186707i
\(456\) 0 0
\(457\) 23.8139 + 23.8139i 1.11397 + 1.11397i 0.992609 + 0.121357i \(0.0387244\pi\)
0.121357 + 0.992609i \(0.461276\pi\)
\(458\) 17.7846 10.2680i 0.831022 0.479791i
\(459\) 0 0
\(460\) 3.01305 + 3.01305i 0.140484 + 0.140484i
\(461\) −8.68738 2.32778i −0.404612 0.108415i 0.0507728 0.998710i \(-0.483832\pi\)
−0.455385 + 0.890295i \(0.650498\pi\)
\(462\) 0 0
\(463\) −18.3164 4.90786i −0.851234 0.228087i −0.193278 0.981144i \(-0.561912\pi\)
−0.657956 + 0.753057i \(0.728579\pi\)
\(464\) 4.29257i 0.199278i
\(465\) 0 0
\(466\) 1.97333 1.97333i 0.0914126 0.0914126i
\(467\) 33.1417 1.53362 0.766808 0.641877i \(-0.221844\pi\)
0.766808 + 0.641877i \(0.221844\pi\)
\(468\) 0 0
\(469\) −19.8385 −0.916056
\(470\) 1.80659 1.80659i 0.0833318 0.0833318i
\(471\) 0 0
\(472\) 4.72289i 0.217389i
\(473\) 0.849529 + 0.227631i 0.0390614 + 0.0104665i
\(474\) 0 0
\(475\) −28.7877 7.71365i −1.32087 0.353926i
\(476\) 3.06463 + 3.06463i 0.140467 + 0.140467i
\(477\) 0 0
\(478\) 6.80368 3.92811i 0.311193 0.179667i
\(479\) 21.8028 + 21.8028i 0.996195 + 0.996195i 0.999993 0.00379781i \(-0.00120888\pi\)
−0.00379781 + 0.999993i \(0.501209\pi\)
\(480\) 0 0
\(481\) −3.88351 + 25.2006i −0.177073 + 1.14905i
\(482\) −20.1612 + 11.6401i −0.918316 + 0.530190i
\(483\) 0 0
\(484\) −10.0284 −0.455838
\(485\) 0.646962 1.12057i 0.0293770 0.0508825i
\(486\) 0 0
\(487\) −19.5417 + 5.23619i −0.885520 + 0.237274i −0.672787 0.739836i \(-0.734903\pi\)
−0.212733 + 0.977110i \(0.568236\pi\)
\(488\) 1.23301 4.60165i 0.0558156 0.208307i
\(489\) 0 0
\(490\) −2.55267 −0.115318
\(491\) 7.55120 13.0791i 0.340781 0.590250i −0.643797 0.765196i \(-0.722642\pi\)
0.984578 + 0.174946i \(0.0559752\pi\)
\(492\) 0 0
\(493\) −8.99228 5.19169i −0.404992 0.233822i
\(494\) −21.6327 9.52340i −0.973303 0.428478i
\(495\) 0 0
\(496\) −1.49861 + 5.59289i −0.0672896 + 0.251128i
\(497\) 11.8309i 0.530689i
\(498\) 0 0
\(499\) −10.8485 + 40.4871i −0.485645 + 1.81245i 0.0914956 + 0.995805i \(0.470835\pi\)
−0.577140 + 0.816645i \(0.695831\pi\)
\(500\) 4.54683 4.54683i 0.203340 0.203340i
\(501\) 0 0
\(502\) 6.74174 + 25.1605i 0.300899 + 1.12297i
\(503\) 10.9025 + 6.29458i 0.486120 + 0.280661i 0.722963 0.690886i \(-0.242780\pi\)
−0.236843 + 0.971548i \(0.576113\pi\)
\(504\) 0 0
\(505\) −9.68912 2.59619i −0.431160 0.115529i
\(506\) 3.11771 5.40004i 0.138599 0.240061i
\(507\) 0 0
\(508\) −2.50106 4.33197i −0.110967 0.192200i
\(509\) −8.59675 32.0835i −0.381044 1.42208i −0.844309 0.535857i \(-0.819989\pi\)
0.463264 0.886220i \(-0.346678\pi\)
\(510\) 0 0
\(511\) 17.5945 10.1582i 0.778335 0.449372i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 1.86390 + 6.95616i 0.0822130 + 0.306823i
\(515\) −6.82727 + 1.82936i −0.300846 + 0.0806113i
\(516\) 0 0
\(517\) −3.23780 1.86935i −0.142398 0.0822137i
\(518\) 12.2392 3.27948i 0.537759 0.144092i
\(519\) 0 0
\(520\) 1.95882 1.43571i 0.0858998 0.0629600i
\(521\) 17.5549i 0.769094i 0.923105 + 0.384547i \(0.125642\pi\)
−0.923105 + 0.384547i \(0.874358\pi\)
\(522\) 0 0
\(523\) −4.19432 7.26477i −0.183405 0.317666i 0.759633 0.650352i \(-0.225379\pi\)
−0.943038 + 0.332686i \(0.892045\pi\)
\(524\) 10.9905 + 19.0361i 0.480121 + 0.831594i
\(525\) 0 0
\(526\) 8.09986 + 8.09986i 0.353171 + 0.353171i
\(527\) −9.90373 9.90373i −0.431413 0.431413i
\(528\) 0 0
\(529\) −8.50943 14.7388i −0.369975 0.640816i
\(530\) −3.03116 5.25012i −0.131665 0.228050i
\(531\) 0 0
\(532\) 11.7457i 0.509240i
\(533\) 16.7222 6.49936i 0.724319 0.281518i
\(534\) 0 0
\(535\) −1.41165 + 0.378251i −0.0610310 + 0.0163532i
\(536\) 9.58886 + 5.53613i 0.414176 + 0.239124i
\(537\) 0 0
\(538\) 24.2918 6.50898i 1.04730 0.280622i
\(539\) 0.966799 + 3.60814i 0.0416430 + 0.155414i
\(540\) 0 0
\(541\) 1.43745 1.43745i 0.0618007 0.0618007i −0.675531 0.737332i \(-0.736086\pi\)
0.737332 + 0.675531i \(0.236086\pi\)
\(542\) −5.53410 + 3.19511i −0.237710 + 0.137242i
\(543\) 0 0
\(544\) −0.626062 2.33650i −0.0268422 0.100176i
\(545\) 3.94622 + 6.83505i 0.169037 + 0.292781i
\(546\) 0 0
\(547\) 5.93332 10.2768i 0.253691 0.439405i −0.710848 0.703345i \(-0.751689\pi\)
0.964539 + 0.263940i \(0.0850222\pi\)
\(548\) 12.1601 + 3.25829i 0.519453 + 0.139187i
\(549\) 0 0
\(550\) −3.88080 2.24058i −0.165478 0.0955388i
\(551\) −7.28317 27.1811i −0.310273 1.15796i
\(552\) 0 0
\(553\) 2.04514 2.04514i 0.0869683 0.0869683i
\(554\) −5.03218 + 18.7804i −0.213797 + 0.797901i
\(555\) 0 0
\(556\) 19.6965i 0.835316i
\(557\) −9.18337 + 34.2728i −0.389112 + 1.45219i 0.442470 + 0.896783i \(0.354102\pi\)
−0.831582 + 0.555402i \(0.812564\pi\)
\(558\) 0 0
\(559\) −1.90186 2.59481i −0.0804400 0.109749i
\(560\) −1.04518 0.603436i −0.0441670 0.0254998i
\(561\) 0 0
\(562\) 14.9038 25.8141i 0.628679 1.08890i
\(563\) −36.9752 −1.55832 −0.779159 0.626826i \(-0.784353\pi\)
−0.779159 + 0.626826i \(0.784353\pi\)
\(564\) 0 0
\(565\) 1.93263 7.21266i 0.0813062 0.303439i
\(566\) −21.3237 + 5.71368i −0.896303 + 0.240164i
\(567\) 0 0
\(568\) −3.30154 + 5.71843i −0.138529 + 0.239940i
\(569\) −24.5310 −1.02840 −0.514198 0.857672i \(-0.671910\pi\)
−0.514198 + 0.857672i \(0.671910\pi\)
\(570\) 0 0
\(571\) −7.42838 + 4.28878i −0.310868 + 0.179480i −0.647315 0.762223i \(-0.724108\pi\)
0.336447 + 0.941702i \(0.390775\pi\)
\(572\) −2.77122 2.22498i −0.115871 0.0930312i
\(573\) 0 0
\(574\) −6.30417 6.30417i −0.263131 0.263131i
\(575\) −24.9069 + 14.3800i −1.03869 + 0.599688i
\(576\) 0 0
\(577\) −0.991168 0.991168i −0.0412629 0.0412629i 0.686174 0.727437i \(-0.259289\pi\)
−0.727437 + 0.686174i \(0.759289\pi\)
\(578\) −10.7689 2.88553i −0.447929 0.120022i
\(579\) 0 0
\(580\) 2.79287 + 0.748347i 0.115968 + 0.0310734i
\(581\) 13.5606i 0.562587i
\(582\) 0 0
\(583\) −6.27290 + 6.27290i −0.259797 + 0.259797i
\(584\) −11.3390 −0.469211
\(585\) 0 0
\(586\) −9.48781 −0.391938
\(587\) 26.9762 26.9762i 1.11343 1.11343i 0.120743 0.992684i \(-0.461472\pi\)
0.992684 0.120743i \(-0.0385277\pi\)
\(588\) 0 0
\(589\) 37.9576i 1.56402i
\(590\) 3.07284 + 0.823366i 0.126507 + 0.0338975i
\(591\) 0 0
\(592\) −6.83094 1.83034i −0.280750 0.0752267i
\(593\) 22.4411 + 22.4411i 0.921547 + 0.921547i 0.997139 0.0755923i \(-0.0240847\pi\)
−0.0755923 + 0.997139i \(0.524085\pi\)
\(594\) 0 0
\(595\) 2.52821 1.45966i 0.103647 0.0598403i
\(596\) −6.83755 6.83755i −0.280077 0.280077i
\(597\) 0 0
\(598\) −21.2596 + 8.26289i −0.869369 + 0.337895i
\(599\) −12.9383 + 7.46992i −0.528644 + 0.305213i −0.740464 0.672096i \(-0.765394\pi\)
0.211820 + 0.977309i \(0.432061\pi\)
\(600\) 0 0
\(601\) −9.43517 −0.384869 −0.192434 0.981310i \(-0.561638\pi\)
−0.192434 + 0.981310i \(0.561638\pi\)
\(602\) −0.799360 + 1.38453i −0.0325795 + 0.0564293i
\(603\) 0 0
\(604\) −4.80308 + 1.28698i −0.195434 + 0.0523665i
\(605\) −1.74831 + 6.52479i −0.0710790 + 0.265270i
\(606\) 0 0
\(607\) 8.22930 0.334017 0.167008 0.985955i \(-0.446589\pi\)
0.167008 + 0.985955i \(0.446589\pi\)
\(608\) 3.27775 5.67724i 0.132930 0.230242i
\(609\) 0 0
\(610\) −2.77901 1.60446i −0.112519 0.0649627i
\(611\) 4.95433 + 12.7470i 0.200431 + 0.515688i
\(612\) 0 0
\(613\) −5.26589 + 19.6526i −0.212687 + 0.793760i 0.774280 + 0.632843i \(0.218112\pi\)
−0.986968 + 0.160918i \(0.948555\pi\)
\(614\) 4.74755i 0.191596i
\(615\) 0 0
\(616\) −0.457091 + 1.70589i −0.0184167 + 0.0687321i
\(617\) −23.1593 + 23.1593i −0.932360 + 0.932360i −0.997853 0.0654935i \(-0.979138\pi\)
0.0654935 + 0.997853i \(0.479138\pi\)
\(618\) 0 0
\(619\) 2.50985 + 9.36687i 0.100879 + 0.376486i 0.997845 0.0656133i \(-0.0209004\pi\)
−0.896966 + 0.442100i \(0.854234\pi\)
\(620\) 3.37763 + 1.95008i 0.135649 + 0.0783169i
\(621\) 0 0
\(622\) −20.4069 5.46802i −0.818244 0.219248i
\(623\) −1.52603 + 2.64316i −0.0611391 + 0.105896i
\(624\) 0 0
\(625\) 9.20010 + 15.9350i 0.368004 + 0.637402i
\(626\) −2.67407 9.97975i −0.106877 0.398871i
\(627\) 0 0
\(628\) −8.42090 + 4.86181i −0.336030 + 0.194007i
\(629\) 12.0960 12.0960i 0.482300 0.482300i
\(630\) 0 0
\(631\) −5.85572 21.8539i −0.233113 0.869988i −0.978991 0.203906i \(-0.934636\pi\)
0.745878 0.666083i \(-0.232030\pi\)
\(632\) −1.55923 + 0.417795i −0.0620229 + 0.0166190i
\(633\) 0 0
\(634\) −14.5122 8.37860i −0.576352 0.332757i
\(635\) −3.25452 + 0.872047i −0.129152 + 0.0346061i
\(636\) 0 0
\(637\) 5.50544 12.5058i 0.218133 0.495498i
\(638\) 4.23108i 0.167510i
\(639\) 0 0
\(640\) 0.336790 + 0.583337i 0.0133128 + 0.0230584i
\(641\) −5.39399 9.34267i −0.213050 0.369013i 0.739618 0.673027i \(-0.235006\pi\)
−0.952668 + 0.304014i \(0.901673\pi\)
\(642\) 0 0
\(643\) 7.58253 + 7.58253i 0.299026 + 0.299026i 0.840632 0.541606i \(-0.182184\pi\)
−0.541606 + 0.840632i \(0.682184\pi\)
\(644\) 8.01474 + 8.01474i 0.315825 + 0.315825i
\(645\) 0 0
\(646\) 7.92862 + 13.7328i 0.311947 + 0.540309i
\(647\) −2.44136 4.22856i −0.0959799 0.166242i 0.814037 0.580813i \(-0.197265\pi\)
−0.910017 + 0.414571i \(0.863932\pi\)
\(648\) 0 0
\(649\) 4.65524i 0.182734i
\(650\) 5.93822 + 15.2785i 0.232916 + 0.599270i
\(651\) 0 0
\(652\) 4.65451 1.24717i 0.182285 0.0488431i
\(653\) 19.0037 + 10.9718i 0.743673 + 0.429360i 0.823403 0.567457i \(-0.192073\pi\)
−0.0797303 + 0.996816i \(0.525406\pi\)
\(654\) 0 0
\(655\) 14.3014 3.83206i 0.558803 0.149731i
\(656\) 1.28786 + 4.80634i 0.0502823 + 0.187656i
\(657\) 0 0
\(658\) 4.80554 4.80554i 0.187340 0.187340i
\(659\) −36.6396 + 21.1539i −1.42728 + 0.824038i −0.996905 0.0786138i \(-0.974951\pi\)
−0.430371 + 0.902652i \(0.641617\pi\)
\(660\) 0 0
\(661\) −8.10585 30.2514i −0.315281 1.17664i −0.923728 0.383050i \(-0.874874\pi\)
0.608447 0.793595i \(-0.291793\pi\)
\(662\) 7.37732 + 12.7779i 0.286728 + 0.496627i
\(663\) 0 0
\(664\) −3.78422 + 6.55446i −0.146856 + 0.254362i
\(665\) 7.64207 + 2.04769i 0.296347 + 0.0794059i
\(666\) 0 0
\(667\) −23.5169 13.5775i −0.910579 0.525723i
\(668\) 3.66224 + 13.6676i 0.141696 + 0.528817i
\(669\) 0 0
\(670\) 5.27364 5.27364i 0.203738 0.203738i
\(671\) −1.21535 + 4.53573i −0.0469179 + 0.175100i
\(672\) 0 0
\(673\) 38.0352i 1.46615i 0.680148 + 0.733075i \(0.261915\pi\)
−0.680148 + 0.733075i \(0.738085\pi\)
\(674\) −1.00563 + 3.75304i −0.0387352 + 0.144562i
\(675\) 0 0
\(676\) 2.80903 + 12.6929i 0.108040 + 0.488188i
\(677\) 4.73877 + 2.73593i 0.182126 + 0.105150i 0.588291 0.808649i \(-0.299801\pi\)
−0.406165 + 0.913800i \(0.633134\pi\)
\(678\) 0 0
\(679\) 1.72092 2.98073i 0.0660430 0.114390i
\(680\) −1.62934 −0.0624822
\(681\) 0 0
\(682\) 1.47714 5.51277i 0.0565627 0.211095i
\(683\) 24.9699 6.69067i 0.955447 0.256011i 0.252775 0.967525i \(-0.418657\pi\)
0.702672 + 0.711514i \(0.251990\pi\)
\(684\) 0 0
\(685\) 4.23986 7.34366i 0.161997 0.280587i
\(686\) −19.3322 −0.738108
\(687\) 0 0
\(688\) 0.772736 0.446139i 0.0294603 0.0170089i
\(689\) 32.2582 3.52683i 1.22894 0.134362i
\(690\) 0 0
\(691\) −23.9424 23.9424i −0.910811 0.910811i 0.0855252 0.996336i \(-0.472743\pi\)
−0.996336 + 0.0855252i \(0.972743\pi\)
\(692\) −20.0900 + 11.5989i −0.763706 + 0.440926i
\(693\) 0 0
\(694\) −22.8522 22.8522i −0.867459 0.867459i
\(695\) 12.8151 + 3.43379i 0.486103 + 0.130251i
\(696\) 0 0
\(697\) −11.6262 3.11522i −0.440372 0.117997i
\(698\) 18.9648i 0.717828i
\(699\) 0 0
\(700\) 5.75989 5.75989i 0.217703 0.217703i
\(701\) 29.4689 1.11303 0.556513 0.830839i \(-0.312139\pi\)
0.556513 + 0.830839i \(0.312139\pi\)
\(702\) 0 0
\(703\) 46.3599 1.74850
\(704\) 0.696978 0.696978i 0.0262683 0.0262683i
\(705\) 0 0
\(706\) 19.5973i 0.737554i
\(707\) −25.7731 6.90589i −0.969298 0.259723i
\(708\) 0 0
\(709\) −12.5359 3.35900i −0.470797 0.126150i 0.0156169 0.999878i \(-0.495029\pi\)
−0.486414 + 0.873728i \(0.661695\pi\)
\(710\) 3.14500 + 3.14500i 0.118030 + 0.118030i
\(711\) 0 0
\(712\) 1.47520 0.851709i 0.0552856 0.0319191i
\(713\) −25.9006 25.9006i −0.969985 0.969985i
\(714\) 0 0
\(715\) −1.93076 + 1.41514i −0.0722063 + 0.0529234i
\(716\) 4.82455 2.78545i 0.180302 0.104097i
\(717\) 0 0
\(718\) 27.1650 1.01379
\(719\) −1.46802 + 2.54269i −0.0547480 + 0.0948263i −0.892101 0.451837i \(-0.850769\pi\)
0.837353 + 0.546663i \(0.184102\pi\)
\(720\) 0 0
\(721\) −18.1606 + 4.86612i −0.676336 + 0.181224i
\(722\) −6.20510 + 23.1578i −0.230930 + 0.861843i
\(723\) 0 0
\(724\) 20.8410 0.774549
\(725\) −9.75764 + 16.9007i −0.362390 + 0.627677i
\(726\) 0 0
\(727\) −34.7895 20.0857i −1.29027 0.744938i −0.311569 0.950224i \(-0.600854\pi\)
−0.978702 + 0.205285i \(0.934188\pi\)
\(728\) 5.21047 3.81900i 0.193113 0.141541i
\(729\) 0 0
\(730\) −1.97679 + 7.37746i −0.0731641 + 0.273052i
\(731\) 2.15835i 0.0798294i
\(732\) 0 0
\(733\) −3.39197 + 12.6590i −0.125285 + 0.467571i −0.999850 0.0173384i \(-0.994481\pi\)
0.874564 + 0.484909i \(0.161147\pi\)
\(734\) −5.44068 + 5.44068i −0.200819 + 0.200819i
\(735\) 0 0
\(736\) −1.63730 6.11049i −0.0603517 0.225236i
\(737\) −9.45150 5.45683i −0.348151 0.201005i
\(738\) 0 0
\(739\) −20.2177 5.41732i −0.743721 0.199279i −0.132990 0.991117i \(-0.542458\pi\)
−0.610731 + 0.791838i \(0.709124\pi\)
\(740\) −2.38175 + 4.12531i −0.0875547 + 0.151649i
\(741\) 0 0
\(742\) −8.06290 13.9654i −0.295998 0.512684i
\(743\) 4.33508 + 16.1787i 0.159039 + 0.593540i 0.998726 + 0.0504696i \(0.0160718\pi\)
−0.839687 + 0.543071i \(0.817262\pi\)
\(744\) 0 0
\(745\) −5.64073 + 3.25668i −0.206660 + 0.119315i
\(746\) 11.3830 11.3830i 0.416760 0.416760i
\(747\) 0 0
\(748\) 0.617094 + 2.30303i 0.0225632 + 0.0842070i
\(749\) −3.75500 + 1.00615i −0.137205 + 0.0367639i
\(750\) 0 0
\(751\) −8.11367 4.68443i −0.296072 0.170937i 0.344605 0.938748i \(-0.388013\pi\)
−0.640677 + 0.767810i \(0.721346\pi\)
\(752\) −3.66378 + 0.981707i −0.133604 + 0.0357992i
\(753\) 0 0
\(754\) −9.68970 + 12.0686i −0.352878 + 0.439511i
\(755\) 3.34938i 0.121897i
\(756\) 0 0
\(757\) 1.46922 + 2.54477i 0.0533999 + 0.0924913i 0.891490 0.453041i \(-0.149661\pi\)
−0.838090 + 0.545532i \(0.816328\pi\)
\(758\) 12.9805 + 22.4829i 0.471472 + 0.816614i
\(759\) 0 0
\(760\) −3.12234 3.12234i −0.113259 0.113259i
\(761\) 7.31204 + 7.31204i 0.265061 + 0.265061i 0.827106 0.562045i \(-0.189985\pi\)
−0.562045 + 0.827106i \(0.689985\pi\)
\(762\) 0 0
\(763\) 10.4970 + 18.1813i 0.380016 + 0.658207i
\(764\) −9.03635 15.6514i −0.326924 0.566248i
\(765\) 0 0
\(766\) 31.4582i 1.13663i
\(767\) −10.6611 + 13.2784i −0.384949 + 0.479455i
\(768\) 0 0
\(769\) −0.0675077 + 0.0180886i −0.00243439 + 0.000652292i −0.260036 0.965599i \(-0.583734\pi\)
0.257602 + 0.966251i \(0.417068\pi\)
\(770\) 1.03021 + 0.594792i 0.0371262 + 0.0214348i
\(771\) 0 0
\(772\) 7.11166 1.90556i 0.255954 0.0685827i
\(773\) 6.52883 + 24.3659i 0.234826 + 0.876382i 0.978227 + 0.207536i \(0.0665445\pi\)
−0.743402 + 0.668845i \(0.766789\pi\)
\(774\) 0 0
\(775\) −18.6138 + 18.6138i −0.668627 + 0.668627i
\(776\) −1.66361 + 0.960483i −0.0597199 + 0.0344793i
\(777\) 0 0
\(778\) −6.57319 24.5315i −0.235660 0.879496i
\(779\) −16.3098 28.2493i −0.584358 1.01214i
\(780\) 0 0
\(781\) 3.25425 5.63652i 0.116446 0.201691i
\(782\) 14.7808 + 3.96050i 0.528560 + 0.141627i
\(783\) 0 0
\(784\) 3.28199 + 1.89486i