Properties

Label 702.2.bb.a.89.3
Level $702$
Weight $2$
Character 702.89
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(71,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 89.3
Character \(\chi\) \(=\) 702.89
Dual form 702.2.bb.a.71.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-1.35053 - 0.361873i) q^{5} +(0.977097 + 0.261812i) q^{7} +(0.707107 + 0.707107i) q^{8} +O(q^{10})\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-1.35053 - 0.361873i) q^{5} +(0.977097 + 0.261812i) q^{7} +(0.707107 + 0.707107i) q^{8} +(1.21085 - 0.699086i) q^{10} +(-4.11206 - 4.11206i) q^{11} +(3.22602 + 1.61022i) q^{13} +(-0.876041 + 0.505782i) q^{14} -1.00000 q^{16} +(-1.67305 + 2.89781i) q^{17} +(-7.07605 + 1.89602i) q^{19} +(-0.361873 + 1.35053i) q^{20} +5.81533 q^{22} +(-0.290218 + 0.502672i) q^{23} +(-2.63715 - 1.52256i) q^{25} +(-3.41974 + 1.14254i) q^{26} +(0.261812 - 0.977097i) q^{28} +1.03028i q^{29} +(2.28484 - 8.52714i) q^{31} +(0.707107 - 0.707107i) q^{32} +(-0.866036 - 3.23209i) q^{34} +(-1.22486 - 0.707171i) q^{35} +(-7.82443 - 2.09655i) q^{37} +(3.66283 - 6.34422i) q^{38} +(-0.699086 - 1.21085i) q^{40} +(0.423606 + 1.58092i) q^{41} +(-7.25776 + 4.19027i) q^{43} +(-4.11206 + 4.11206i) q^{44} +(-0.150228 - 0.560658i) q^{46} +(1.45080 - 0.388741i) q^{47} +(-5.17601 - 2.98837i) q^{49} +(2.94136 - 0.788134i) q^{50} +(1.61022 - 3.22602i) q^{52} +2.77082i q^{53} +(4.06542 + 7.04151i) q^{55} +(0.505782 + 0.876041i) q^{56} +(-0.728518 - 0.728518i) q^{58} +(-8.47432 - 8.47432i) q^{59} +(-1.41408 - 2.44926i) q^{61} +(4.41397 + 7.64523i) q^{62} +1.00000i q^{64} +(-3.77414 - 3.34206i) q^{65} +(1.09561 - 0.293568i) q^{67} +(2.89781 + 1.67305i) q^{68} +(1.36615 - 0.366058i) q^{70} +(-2.71495 - 10.1323i) q^{71} +(0.788181 - 0.788181i) q^{73} +(7.01519 - 4.05022i) q^{74} +(1.89602 + 7.07605i) q^{76} +(-2.94129 - 5.09447i) q^{77} +(-0.827245 + 1.43283i) q^{79} +(1.35053 + 0.361873i) q^{80} +(-1.41741 - 0.818343i) q^{82} +(4.21280 + 15.7224i) q^{83} +(3.30815 - 3.30815i) q^{85} +(2.16904 - 8.09498i) q^{86} -5.81533i q^{88} +(0.783797 - 2.92517i) q^{89} +(2.73056 + 2.41795i) q^{91} +(0.502672 + 0.290218i) q^{92} +(-0.750990 + 1.30075i) q^{94} +10.2425 q^{95} +(3.18620 - 11.8911i) q^{97} +(5.77308 - 1.54689i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73} - 48 q^{74} + 4 q^{76} + 24 q^{77} - 24 q^{79} + 60 q^{83} - 48 q^{86} + 4 q^{91} + 24 q^{92} + 20 q^{97} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −1.35053 0.361873i −0.603975 0.161835i −0.0561429 0.998423i \(-0.517880\pi\)
−0.547833 + 0.836588i \(0.684547\pi\)
\(6\) 0 0
\(7\) 0.977097 + 0.261812i 0.369308 + 0.0989557i 0.438700 0.898634i \(-0.355439\pi\)
−0.0693918 + 0.997589i \(0.522106\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 1.21085 0.699086i 0.382905 0.221070i
\(11\) −4.11206 4.11206i −1.23983 1.23983i −0.960069 0.279764i \(-0.909744\pi\)
−0.279764 0.960069i \(-0.590256\pi\)
\(12\) 0 0
\(13\) 3.22602 + 1.61022i 0.894736 + 0.446595i
\(14\) −0.876041 + 0.505782i −0.234132 + 0.135176i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −1.67305 + 2.89781i −0.405775 + 0.702823i −0.994411 0.105575i \(-0.966332\pi\)
0.588636 + 0.808398i \(0.299665\pi\)
\(18\) 0 0
\(19\) −7.07605 + 1.89602i −1.62336 + 0.434977i −0.951986 0.306143i \(-0.900961\pi\)
−0.671372 + 0.741120i \(0.734295\pi\)
\(20\) −0.361873 + 1.35053i −0.0809174 + 0.301988i
\(21\) 0 0
\(22\) 5.81533 1.23983
\(23\) −0.290218 + 0.502672i −0.0605146 + 0.104814i −0.894696 0.446676i \(-0.852608\pi\)
0.834181 + 0.551491i \(0.185941\pi\)
\(24\) 0 0
\(25\) −2.63715 1.52256i −0.527430 0.304512i
\(26\) −3.41974 + 1.14254i −0.670666 + 0.224071i
\(27\) 0 0
\(28\) 0.261812 0.977097i 0.0494779 0.184654i
\(29\) 1.03028i 0.191318i 0.995414 + 0.0956592i \(0.0304959\pi\)
−0.995414 + 0.0956592i \(0.969504\pi\)
\(30\) 0 0
\(31\) 2.28484 8.52714i 0.410369 1.53152i −0.383564 0.923514i \(-0.625303\pi\)
0.793933 0.608005i \(-0.208030\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) −0.866036 3.23209i −0.148524 0.554299i
\(35\) −1.22486 0.707171i −0.207038 0.119534i
\(36\) 0 0
\(37\) −7.82443 2.09655i −1.28633 0.344671i −0.450064 0.892996i \(-0.648599\pi\)
−0.836265 + 0.548326i \(0.815265\pi\)
\(38\) 3.66283 6.34422i 0.594190 1.02917i
\(39\) 0 0
\(40\) −0.699086 1.21085i −0.110535 0.191453i
\(41\) 0.423606 + 1.58092i 0.0661561 + 0.246898i 0.991083 0.133248i \(-0.0425406\pi\)
−0.924927 + 0.380146i \(0.875874\pi\)
\(42\) 0 0
\(43\) −7.25776 + 4.19027i −1.10680 + 0.639010i −0.937998 0.346640i \(-0.887322\pi\)
−0.168800 + 0.985650i \(0.553989\pi\)
\(44\) −4.11206 + 4.11206i −0.619916 + 0.619916i
\(45\) 0 0
\(46\) −0.150228 0.560658i −0.0221499 0.0826645i
\(47\) 1.45080 0.388741i 0.211621 0.0567037i −0.151451 0.988465i \(-0.548395\pi\)
0.363072 + 0.931761i \(0.381728\pi\)
\(48\) 0 0
\(49\) −5.17601 2.98837i −0.739429 0.426910i
\(50\) 2.94136 0.788134i 0.415971 0.111459i
\(51\) 0 0
\(52\) 1.61022 3.22602i 0.223297 0.447368i
\(53\) 2.77082i 0.380601i 0.981726 + 0.190300i \(0.0609462\pi\)
−0.981726 + 0.190300i \(0.939054\pi\)
\(54\) 0 0
\(55\) 4.06542 + 7.04151i 0.548180 + 0.949476i
\(56\) 0.505782 + 0.876041i 0.0675880 + 0.117066i
\(57\) 0 0
\(58\) −0.728518 0.728518i −0.0956592 0.0956592i
\(59\) −8.47432 8.47432i −1.10326 1.10326i −0.994014 0.109248i \(-0.965156\pi\)
−0.109248 0.994014i \(-0.534844\pi\)
\(60\) 0 0
\(61\) −1.41408 2.44926i −0.181054 0.313595i 0.761186 0.648534i \(-0.224618\pi\)
−0.942240 + 0.334939i \(0.891284\pi\)
\(62\) 4.41397 + 7.64523i 0.560575 + 0.970945i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −3.77414 3.34206i −0.468124 0.414532i
\(66\) 0 0
\(67\) 1.09561 0.293568i 0.133850 0.0358650i −0.191272 0.981537i \(-0.561261\pi\)
0.325122 + 0.945672i \(0.394595\pi\)
\(68\) 2.89781 + 1.67305i 0.351411 + 0.202887i
\(69\) 0 0
\(70\) 1.36615 0.366058i 0.163286 0.0437524i
\(71\) −2.71495 10.1323i −0.322205 1.20249i −0.917091 0.398677i \(-0.869470\pi\)
0.594886 0.803810i \(-0.297197\pi\)
\(72\) 0 0
\(73\) 0.788181 0.788181i 0.0922496 0.0922496i −0.659476 0.751726i \(-0.729222\pi\)
0.751726 + 0.659476i \(0.229222\pi\)
\(74\) 7.01519 4.05022i 0.815500 0.470829i
\(75\) 0 0
\(76\) 1.89602 + 7.07605i 0.217489 + 0.811679i
\(77\) −2.94129 5.09447i −0.335191 0.580568i
\(78\) 0 0
\(79\) −0.827245 + 1.43283i −0.0930723 + 0.161206i −0.908802 0.417227i \(-0.863002\pi\)
0.815730 + 0.578433i \(0.196335\pi\)
\(80\) 1.35053 + 0.361873i 0.150994 + 0.0404587i
\(81\) 0 0
\(82\) −1.41741 0.818343i −0.156527 0.0903709i
\(83\) 4.21280 + 15.7224i 0.462415 + 1.72576i 0.665321 + 0.746557i \(0.268295\pi\)
−0.202906 + 0.979198i \(0.565039\pi\)
\(84\) 0 0
\(85\) 3.30815 3.30815i 0.358819 0.358819i
\(86\) 2.16904 8.09498i 0.233894 0.872904i
\(87\) 0 0
\(88\) 5.81533i 0.619916i
\(89\) 0.783797 2.92517i 0.0830824 0.310068i −0.911862 0.410497i \(-0.865355\pi\)
0.994944 + 0.100430i \(0.0320218\pi\)
\(90\) 0 0
\(91\) 2.73056 + 2.41795i 0.286240 + 0.253470i
\(92\) 0.502672 + 0.290218i 0.0524072 + 0.0302573i
\(93\) 0 0
\(94\) −0.750990 + 1.30075i −0.0774587 + 0.134162i
\(95\) 10.2425 1.05086
\(96\) 0 0
\(97\) 3.18620 11.8911i 0.323510 1.20736i −0.592291 0.805724i \(-0.701777\pi\)
0.915801 0.401632i \(-0.131557\pi\)
\(98\) 5.77308 1.54689i 0.583170 0.156260i
\(99\) 0 0
\(100\) −1.52256 + 2.63715i −0.152256 + 0.263715i
\(101\) −10.1915 −1.01409 −0.507044 0.861920i \(-0.669262\pi\)
−0.507044 + 0.861920i \(0.669262\pi\)
\(102\) 0 0
\(103\) 8.54265 4.93210i 0.841732 0.485974i −0.0161205 0.999870i \(-0.505132\pi\)
0.857853 + 0.513896i \(0.171798\pi\)
\(104\) 1.14254 + 3.41974i 0.112035 + 0.335333i
\(105\) 0 0
\(106\) −1.95926 1.95926i −0.190300 0.190300i
\(107\) 8.58323 4.95553i 0.829773 0.479069i −0.0240022 0.999712i \(-0.507641\pi\)
0.853775 + 0.520642i \(0.174308\pi\)
\(108\) 0 0
\(109\) 6.99609 + 6.99609i 0.670103 + 0.670103i 0.957740 0.287636i \(-0.0928694\pi\)
−0.287636 + 0.957740i \(0.592869\pi\)
\(110\) −7.85378 2.10441i −0.748828 0.200648i
\(111\) 0 0
\(112\) −0.977097 0.261812i −0.0923269 0.0247389i
\(113\) 10.1473i 0.954580i 0.878746 + 0.477290i \(0.158381\pi\)
−0.878746 + 0.477290i \(0.841619\pi\)
\(114\) 0 0
\(115\) 0.573852 0.573852i 0.0535120 0.0535120i
\(116\) 1.03028 0.0956592
\(117\) 0 0
\(118\) 11.9845 1.10326
\(119\) −2.39342 + 2.39342i −0.219404 + 0.219404i
\(120\) 0 0
\(121\) 22.8181i 2.07437i
\(122\) 2.73179 + 0.731981i 0.247325 + 0.0662704i
\(123\) 0 0
\(124\) −8.52714 2.28484i −0.765760 0.205185i
\(125\) 7.95386 + 7.95386i 0.711415 + 0.711415i
\(126\) 0 0
\(127\) −13.1106 + 7.56941i −1.16338 + 0.671677i −0.952111 0.305752i \(-0.901092\pi\)
−0.211267 + 0.977428i \(0.567759\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) 5.03191 0.305525i 0.441328 0.0267963i
\(131\) −3.29059 + 1.89982i −0.287500 + 0.165988i −0.636814 0.771018i \(-0.719748\pi\)
0.349314 + 0.937006i \(0.386415\pi\)
\(132\) 0 0
\(133\) −7.41039 −0.642562
\(134\) −0.567130 + 0.982297i −0.0489925 + 0.0848576i
\(135\) 0 0
\(136\) −3.23209 + 0.866036i −0.277149 + 0.0742620i
\(137\) 1.50633 5.62169i 0.128694 0.480293i −0.871250 0.490839i \(-0.836690\pi\)
0.999944 + 0.0105460i \(0.00335697\pi\)
\(138\) 0 0
\(139\) 2.27675 0.193112 0.0965559 0.995328i \(-0.469217\pi\)
0.0965559 + 0.995328i \(0.469217\pi\)
\(140\) −0.707171 + 1.22486i −0.0597668 + 0.103519i
\(141\) 0 0
\(142\) 9.08440 + 5.24488i 0.762346 + 0.440141i
\(143\) −6.64426 19.8869i −0.555621 1.66303i
\(144\) 0 0
\(145\) 0.372831 1.39143i 0.0309620 0.115552i
\(146\) 1.11466i 0.0922496i
\(147\) 0 0
\(148\) −2.09655 + 7.82443i −0.172335 + 0.643164i
\(149\) −10.1646 + 10.1646i −0.832715 + 0.832715i −0.987887 0.155172i \(-0.950407\pi\)
0.155172 + 0.987887i \(0.450407\pi\)
\(150\) 0 0
\(151\) 0.728858 + 2.72013i 0.0593136 + 0.221361i 0.989220 0.146434i \(-0.0467795\pi\)
−0.929907 + 0.367795i \(0.880113\pi\)
\(152\) −6.34422 3.66283i −0.514584 0.297095i
\(153\) 0 0
\(154\) 5.68214 + 1.52252i 0.457880 + 0.122689i
\(155\) −6.17149 + 10.6893i −0.495706 + 0.858588i
\(156\) 0 0
\(157\) 3.93908 + 6.82268i 0.314372 + 0.544509i 0.979304 0.202395i \(-0.0648726\pi\)
−0.664931 + 0.746904i \(0.731539\pi\)
\(158\) −0.428214 1.59811i −0.0340668 0.127139i
\(159\) 0 0
\(160\) −1.21085 + 0.699086i −0.0957263 + 0.0552676i
\(161\) −0.415177 + 0.415177i −0.0327205 + 0.0327205i
\(162\) 0 0
\(163\) −1.79021 6.68116i −0.140220 0.523309i −0.999922 0.0125123i \(-0.996017\pi\)
0.859701 0.510797i \(-0.170650\pi\)
\(164\) 1.58092 0.423606i 0.123449 0.0330780i
\(165\) 0 0
\(166\) −14.0963 8.13850i −1.09409 0.631670i
\(167\) 15.3104 4.10240i 1.18475 0.317453i 0.387942 0.921684i \(-0.373186\pi\)
0.796809 + 0.604231i \(0.206519\pi\)
\(168\) 0 0
\(169\) 7.81438 + 10.3892i 0.601106 + 0.799169i
\(170\) 4.67843i 0.358819i
\(171\) 0 0
\(172\) 4.19027 + 7.25776i 0.319505 + 0.553399i
\(173\) 1.30226 + 2.25559i 0.0990092 + 0.171489i 0.911275 0.411799i \(-0.135099\pi\)
−0.812266 + 0.583288i \(0.801766\pi\)
\(174\) 0 0
\(175\) −2.17812 2.17812i −0.164651 0.164651i
\(176\) 4.11206 + 4.11206i 0.309958 + 0.309958i
\(177\) 0 0
\(178\) 1.51418 + 2.62264i 0.113493 + 0.196575i
\(179\) 1.79612 + 3.11097i 0.134248 + 0.232525i 0.925310 0.379211i \(-0.123805\pi\)
−0.791062 + 0.611736i \(0.790471\pi\)
\(180\) 0 0
\(181\) 16.3443i 1.21486i 0.794373 + 0.607430i \(0.207799\pi\)
−0.794373 + 0.607430i \(0.792201\pi\)
\(182\) −3.64054 + 0.221045i −0.269855 + 0.0163849i
\(183\) 0 0
\(184\) −0.560658 + 0.150228i −0.0413322 + 0.0110749i
\(185\) 9.80845 + 5.66291i 0.721131 + 0.416345i
\(186\) 0 0
\(187\) 18.7957 5.03629i 1.37448 0.368290i
\(188\) −0.388741 1.45080i −0.0283519 0.105811i
\(189\) 0 0
\(190\) −7.24257 + 7.24257i −0.525431 + 0.525431i
\(191\) 22.0297 12.7189i 1.59401 0.920305i 0.601406 0.798944i \(-0.294607\pi\)
0.992608 0.121361i \(-0.0387259\pi\)
\(192\) 0 0
\(193\) 3.26525 + 12.1861i 0.235038 + 0.877172i 0.978132 + 0.207985i \(0.0666906\pi\)
−0.743094 + 0.669187i \(0.766643\pi\)
\(194\) 6.15527 + 10.6612i 0.441923 + 0.765433i
\(195\) 0 0
\(196\) −2.98837 + 5.17601i −0.213455 + 0.369715i
\(197\) 0.680083 + 0.182228i 0.0484539 + 0.0129832i 0.282965 0.959130i \(-0.408682\pi\)
−0.234511 + 0.972114i \(0.575349\pi\)
\(198\) 0 0
\(199\) 8.58639 + 4.95735i 0.608673 + 0.351418i 0.772446 0.635081i \(-0.219033\pi\)
−0.163773 + 0.986498i \(0.552366\pi\)
\(200\) −0.788134 2.94136i −0.0557295 0.207985i
\(201\) 0 0
\(202\) 7.20645 7.20645i 0.507044 0.507044i
\(203\) −0.269740 + 1.00668i −0.0189320 + 0.0706553i
\(204\) 0 0
\(205\) 2.28837i 0.159827i
\(206\) −2.55304 + 9.52809i −0.177879 + 0.663853i
\(207\) 0 0
\(208\) −3.22602 1.61022i −0.223684 0.111649i
\(209\) 36.8937 + 21.3006i 2.55199 + 1.47339i
\(210\) 0 0
\(211\) 3.01444 5.22116i 0.207522 0.359439i −0.743411 0.668835i \(-0.766793\pi\)
0.950933 + 0.309396i \(0.100127\pi\)
\(212\) 2.77082 0.190300
\(213\) 0 0
\(214\) −2.56517 + 9.57335i −0.175352 + 0.654421i
\(215\) 11.3182 3.03269i 0.771893 0.206828i
\(216\) 0 0
\(217\) 4.46502 7.73364i 0.303105 0.524994i
\(218\) −9.89396 −0.670103
\(219\) 0 0
\(220\) 7.04151 4.06542i 0.474738 0.274090i
\(221\) −10.0634 + 6.65441i −0.676939 + 0.447624i
\(222\) 0 0
\(223\) −20.6159 20.6159i −1.38054 1.38054i −0.843653 0.536889i \(-0.819599\pi\)
−0.536889 0.843653i \(-0.680401\pi\)
\(224\) 0.876041 0.505782i 0.0585329 0.0337940i
\(225\) 0 0
\(226\) −7.17524 7.17524i −0.477290 0.477290i
\(227\) −14.0103 3.75404i −0.929894 0.249164i −0.238084 0.971244i \(-0.576519\pi\)
−0.691809 + 0.722080i \(0.743186\pi\)
\(228\) 0 0
\(229\) 9.53135 + 2.55392i 0.629849 + 0.168768i 0.559601 0.828762i \(-0.310954\pi\)
0.0702479 + 0.997530i \(0.477621\pi\)
\(230\) 0.811549i 0.0535120i
\(231\) 0 0
\(232\) −0.728518 + 0.728518i −0.0478296 + 0.0478296i
\(233\) −2.06808 −0.135484 −0.0677421 0.997703i \(-0.521580\pi\)
−0.0677421 + 0.997703i \(0.521580\pi\)
\(234\) 0 0
\(235\) −2.10003 −0.136991
\(236\) −8.47432 + 8.47432i −0.551631 + 0.551631i
\(237\) 0 0
\(238\) 3.38480i 0.219404i
\(239\) −19.0682 5.10931i −1.23342 0.330494i −0.417510 0.908672i \(-0.637097\pi\)
−0.815910 + 0.578179i \(0.803764\pi\)
\(240\) 0 0
\(241\) 9.79587 + 2.62479i 0.631007 + 0.169078i 0.560127 0.828407i \(-0.310752\pi\)
0.0708805 + 0.997485i \(0.477419\pi\)
\(242\) −16.1348 16.1348i −1.03718 1.03718i
\(243\) 0 0
\(244\) −2.44926 + 1.41408i −0.156797 + 0.0905271i
\(245\) 5.90894 + 5.90894i 0.377508 + 0.377508i
\(246\) 0 0
\(247\) −25.8805 5.27740i −1.64674 0.335793i
\(248\) 7.64523 4.41397i 0.485472 0.280288i
\(249\) 0 0
\(250\) −11.2485 −0.711415
\(251\) 4.78920 8.29514i 0.302292 0.523585i −0.674363 0.738400i \(-0.735582\pi\)
0.976655 + 0.214815i \(0.0689150\pi\)
\(252\) 0 0
\(253\) 3.26041 0.873624i 0.204980 0.0549243i
\(254\) 3.91822 14.6230i 0.245851 0.917527i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 2.88755 5.00138i 0.180120 0.311977i −0.761801 0.647811i \(-0.775685\pi\)
0.941921 + 0.335834i \(0.109018\pi\)
\(258\) 0 0
\(259\) −7.09632 4.09706i −0.440944 0.254579i
\(260\) −3.34206 + 3.77414i −0.207266 + 0.234062i
\(261\) 0 0
\(262\) 0.983420 3.67017i 0.0607559 0.226744i
\(263\) 4.45725i 0.274846i 0.990512 + 0.137423i \(0.0438819\pi\)
−0.990512 + 0.137423i \(0.956118\pi\)
\(264\) 0 0
\(265\) 1.00269 3.74207i 0.0615945 0.229874i
\(266\) 5.23994 5.23994i 0.321281 0.321281i
\(267\) 0 0
\(268\) −0.293568 1.09561i −0.0179325 0.0669250i
\(269\) 11.4786 + 6.62715i 0.699860 + 0.404064i 0.807295 0.590148i \(-0.200931\pi\)
−0.107435 + 0.994212i \(0.534264\pi\)
\(270\) 0 0
\(271\) −5.62562 1.50738i −0.341732 0.0915668i 0.0838714 0.996477i \(-0.473272\pi\)
−0.425604 + 0.904910i \(0.639938\pi\)
\(272\) 1.67305 2.89781i 0.101444 0.175706i
\(273\) 0 0
\(274\) 2.91000 + 5.04027i 0.175799 + 0.304494i
\(275\) 4.58326 + 17.1050i 0.276381 + 1.03147i
\(276\) 0 0
\(277\) −16.8351 + 9.71973i −1.01152 + 0.584002i −0.911637 0.410997i \(-0.865181\pi\)
−0.0998845 + 0.994999i \(0.531847\pi\)
\(278\) −1.60991 + 1.60991i −0.0965559 + 0.0965559i
\(279\) 0 0
\(280\) −0.366058 1.36615i −0.0218762 0.0816430i
\(281\) 1.40349 0.376063i 0.0837250 0.0224340i −0.216713 0.976235i \(-0.569534\pi\)
0.300438 + 0.953801i \(0.402867\pi\)
\(282\) 0 0
\(283\) −17.9556 10.3666i −1.06735 0.616233i −0.139892 0.990167i \(-0.544675\pi\)
−0.927455 + 0.373934i \(0.878009\pi\)
\(284\) −10.1323 + 2.71495i −0.601243 + 0.161103i
\(285\) 0 0
\(286\) 18.7604 + 9.36396i 1.10932 + 0.553703i
\(287\) 1.65561i 0.0977278i
\(288\) 0 0
\(289\) 2.90179 + 5.02604i 0.170693 + 0.295649i
\(290\) 0.720255 + 1.24752i 0.0422948 + 0.0732568i
\(291\) 0 0
\(292\) −0.788181 0.788181i −0.0461248 0.0461248i
\(293\) −16.7878 16.7878i −0.980753 0.980753i 0.0190656 0.999818i \(-0.493931\pi\)
−0.999818 + 0.0190656i \(0.993931\pi\)
\(294\) 0 0
\(295\) 8.37820 + 14.5115i 0.487797 + 0.844890i
\(296\) −4.05022 7.01519i −0.235414 0.407750i
\(297\) 0 0
\(298\) 14.3749i 0.832715i
\(299\) −1.74566 + 1.15431i −0.100954 + 0.0667557i
\(300\) 0 0
\(301\) −8.18860 + 2.19413i −0.471983 + 0.126467i
\(302\) −2.43881 1.40805i −0.140337 0.0810239i
\(303\) 0 0
\(304\) 7.07605 1.89602i 0.405839 0.108744i
\(305\) 1.02343 + 3.81951i 0.0586017 + 0.218705i
\(306\) 0 0
\(307\) 14.7696 14.7696i 0.842947 0.842947i −0.146294 0.989241i \(-0.546735\pi\)
0.989241 + 0.146294i \(0.0467346\pi\)
\(308\) −5.09447 + 2.94129i −0.290284 + 0.167596i
\(309\) 0 0
\(310\) −3.19460 11.9224i −0.181441 0.677147i
\(311\) −14.0548 24.3437i −0.796976 1.38040i −0.921577 0.388195i \(-0.873099\pi\)
0.124602 0.992207i \(-0.460235\pi\)
\(312\) 0 0
\(313\) 8.76521 15.1818i 0.495439 0.858125i −0.504547 0.863384i \(-0.668341\pi\)
0.999986 + 0.00525876i \(0.00167392\pi\)
\(314\) −7.60971 2.03902i −0.429441 0.115068i
\(315\) 0 0
\(316\) 1.43283 + 0.827245i 0.0806030 + 0.0465362i
\(317\) −5.72585 21.3692i −0.321596 1.20021i −0.917690 0.397298i \(-0.869948\pi\)
0.596094 0.802915i \(-0.296719\pi\)
\(318\) 0 0
\(319\) 4.23658 4.23658i 0.237203 0.237203i
\(320\) 0.361873 1.35053i 0.0202293 0.0754969i
\(321\) 0 0
\(322\) 0.587148i 0.0327205i
\(323\) 6.34429 23.6772i 0.353006 1.31744i
\(324\) 0 0
\(325\) −6.05583 9.15819i −0.335917 0.508005i
\(326\) 5.99017 + 3.45843i 0.331765 + 0.191544i
\(327\) 0 0
\(328\) −0.818343 + 1.41741i −0.0451854 + 0.0782635i
\(329\) 1.51935 0.0837645
\(330\) 0 0
\(331\) 5.85855 21.8644i 0.322015 1.20178i −0.595263 0.803531i \(-0.702952\pi\)
0.917279 0.398246i \(-0.130381\pi\)
\(332\) 15.7224 4.21280i 0.862878 0.231207i
\(333\) 0 0
\(334\) −7.92523 + 13.7269i −0.433649 + 0.751102i
\(335\) −1.58589 −0.0866464
\(336\) 0 0
\(337\) 26.9968 15.5866i 1.47061 0.849058i 0.471156 0.882050i \(-0.343837\pi\)
0.999456 + 0.0329922i \(0.0105036\pi\)
\(338\) −12.8719 1.82067i −0.700138 0.0990314i
\(339\) 0 0
\(340\) −3.30815 3.30815i −0.179410 0.179410i
\(341\) −44.4595 + 25.6687i −2.40762 + 1.39004i
\(342\) 0 0
\(343\) −9.28206 9.28206i −0.501184 0.501184i
\(344\) −8.09498 2.16904i −0.436452 0.116947i
\(345\) 0 0
\(346\) −2.51578 0.674101i −0.135249 0.0362399i
\(347\) 20.3582i 1.09289i −0.837496 0.546444i \(-0.815981\pi\)
0.837496 0.546444i \(-0.184019\pi\)
\(348\) 0 0
\(349\) −20.7926 + 20.7926i −1.11300 + 1.11300i −0.120259 + 0.992743i \(0.538373\pi\)
−0.992743 + 0.120259i \(0.961627\pi\)
\(350\) 3.08033 0.164651
\(351\) 0 0
\(352\) −5.81533 −0.309958
\(353\) −8.11406 + 8.11406i −0.431868 + 0.431868i −0.889263 0.457395i \(-0.848782\pi\)
0.457395 + 0.889263i \(0.348782\pi\)
\(354\) 0 0
\(355\) 14.6665i 0.778417i
\(356\) −2.92517 0.783797i −0.155034 0.0415412i
\(357\) 0 0
\(358\) −3.46984 0.929741i −0.183387 0.0491383i
\(359\) 25.9734 + 25.9734i 1.37083 + 1.37083i 0.859221 + 0.511605i \(0.170949\pi\)
0.511605 + 0.859221i \(0.329051\pi\)
\(360\) 0 0
\(361\) 30.0211 17.3327i 1.58006 0.912248i
\(362\) −11.5571 11.5571i −0.607430 0.607430i
\(363\) 0 0
\(364\) 2.41795 2.73056i 0.126735 0.143120i
\(365\) −1.34968 + 0.779240i −0.0706457 + 0.0407873i
\(366\) 0 0
\(367\) −5.57250 −0.290882 −0.145441 0.989367i \(-0.546460\pi\)
−0.145441 + 0.989367i \(0.546460\pi\)
\(368\) 0.290218 0.502672i 0.0151287 0.0262036i
\(369\) 0 0
\(370\) −10.9399 + 2.93134i −0.568738 + 0.152393i
\(371\) −0.725434 + 2.70736i −0.0376626 + 0.140559i
\(372\) 0 0
\(373\) 2.87844 0.149040 0.0745200 0.997220i \(-0.476258\pi\)
0.0745200 + 0.997220i \(0.476258\pi\)
\(374\) −9.72936 + 16.8517i −0.503093 + 0.871383i
\(375\) 0 0
\(376\) 1.30075 + 0.750990i 0.0670812 + 0.0387294i
\(377\) −1.65898 + 3.32370i −0.0854418 + 0.171179i
\(378\) 0 0
\(379\) 5.51954 20.5992i 0.283520 1.05811i −0.666394 0.745600i \(-0.732163\pi\)
0.949914 0.312511i \(-0.101170\pi\)
\(380\) 10.2425i 0.525431i
\(381\) 0 0
\(382\) −6.58377 + 24.5710i −0.336855 + 1.25716i
\(383\) −9.17790 + 9.17790i −0.468969 + 0.468969i −0.901580 0.432612i \(-0.857592\pi\)
0.432612 + 0.901580i \(0.357592\pi\)
\(384\) 0 0
\(385\) 2.12875 + 7.94461i 0.108491 + 0.404895i
\(386\) −10.9257 6.30797i −0.556105 0.321067i
\(387\) 0 0
\(388\) −11.8911 3.18620i −0.603678 0.161755i
\(389\) 15.6511 27.1085i 0.793543 1.37446i −0.130216 0.991486i \(-0.541567\pi\)
0.923760 0.382972i \(-0.125099\pi\)
\(390\) 0 0
\(391\) −0.971100 1.68199i −0.0491106 0.0850621i
\(392\) −1.54689 5.77308i −0.0781299 0.291585i
\(393\) 0 0
\(394\) −0.609746 + 0.352037i −0.0307186 + 0.0177354i
\(395\) 1.63572 1.63572i 0.0823021 0.0823021i
\(396\) 0 0
\(397\) 0.644906 + 2.40682i 0.0323669 + 0.120795i 0.980219 0.197915i \(-0.0634170\pi\)
−0.947852 + 0.318710i \(0.896750\pi\)
\(398\) −9.57687 + 2.56612i −0.480045 + 0.128628i
\(399\) 0 0
\(400\) 2.63715 + 1.52256i 0.131857 + 0.0761279i
\(401\) −19.8142 + 5.30920i −0.989473 + 0.265129i −0.717029 0.697043i \(-0.754499\pi\)
−0.272444 + 0.962172i \(0.587832\pi\)
\(402\) 0 0
\(403\) 21.1015 23.8296i 1.05114 1.18704i
\(404\) 10.1915i 0.507044i
\(405\) 0 0
\(406\) −0.521098 0.902568i −0.0258617 0.0447937i
\(407\) 23.5534 + 40.7957i 1.16750 + 2.02217i
\(408\) 0 0
\(409\) −6.92695 6.92695i −0.342516 0.342516i 0.514797 0.857312i \(-0.327867\pi\)
−0.857312 + 0.514797i \(0.827867\pi\)
\(410\) 1.61812 + 1.61812i 0.0799133 + 0.0799133i
\(411\) 0 0
\(412\) −4.93210 8.54265i −0.242987 0.420866i
\(413\) −6.06155 10.4989i −0.298269 0.516618i
\(414\) 0 0
\(415\) 22.7581i 1.11715i
\(416\) 3.41974 1.14254i 0.167666 0.0560177i
\(417\) 0 0
\(418\) −41.1496 + 11.0260i −2.01269 + 0.539299i
\(419\) −1.49988 0.865956i −0.0732739 0.0423047i 0.462915 0.886402i \(-0.346803\pi\)
−0.536189 + 0.844098i \(0.680137\pi\)
\(420\) 0 0
\(421\) −3.43418 + 0.920185i −0.167372 + 0.0448471i −0.341532 0.939870i \(-0.610946\pi\)
0.174160 + 0.984717i \(0.444279\pi\)
\(422\) 1.56039 + 5.82344i 0.0759584 + 0.283481i
\(423\) 0 0
\(424\) −1.95926 + 1.95926i −0.0951502 + 0.0951502i
\(425\) 8.82418 5.09464i 0.428035 0.247126i
\(426\) 0 0
\(427\) −0.740446 2.76338i −0.0358327 0.133729i
\(428\) −4.95553 8.58323i −0.239535 0.414886i
\(429\) 0 0
\(430\) −5.85872 + 10.1476i −0.282532 + 0.489360i
\(431\) −14.3219 3.83753i −0.689860 0.184847i −0.103176 0.994663i \(-0.532900\pi\)
−0.586684 + 0.809816i \(0.699567\pi\)
\(432\) 0 0
\(433\) −9.94854 5.74379i −0.478096 0.276029i 0.241527 0.970394i \(-0.422352\pi\)
−0.719623 + 0.694365i \(0.755685\pi\)
\(434\) 2.31126 + 8.62576i 0.110944 + 0.414050i
\(435\) 0 0
\(436\) 6.99609 6.99609i 0.335052 0.335052i
\(437\) 1.10052 4.10719i 0.0526450 0.196474i
\(438\) 0 0
\(439\) 40.7022i 1.94261i 0.237834 + 0.971306i \(0.423563\pi\)
−0.237834 + 0.971306i \(0.576437\pi\)
\(440\) −2.10441 + 7.85378i −0.100324 + 0.374414i
\(441\) 0 0
\(442\) 2.41053 11.8213i 0.114657 0.562281i
\(443\) −10.6734 6.16232i −0.507111 0.292780i 0.224535 0.974466i \(-0.427914\pi\)
−0.731645 + 0.681686i \(0.761247\pi\)
\(444\) 0 0
\(445\) −2.11708 + 3.66690i −0.100359 + 0.173828i
\(446\) 29.1553 1.38054
\(447\) 0 0
\(448\) −0.261812 + 0.977097i −0.0123695 + 0.0461635i
\(449\) −27.3580 + 7.33055i −1.29110 + 0.345950i −0.838080 0.545548i \(-0.816322\pi\)
−0.453024 + 0.891498i \(0.649655\pi\)
\(450\) 0 0
\(451\) 4.75894 8.24272i 0.224090 0.388134i
\(452\) 10.1473 0.477290
\(453\) 0 0
\(454\) 12.5613 7.25224i 0.589529 0.340365i
\(455\) −2.81271 4.25363i −0.131862 0.199413i
\(456\) 0 0
\(457\) 21.3025 + 21.3025i 0.996490 + 0.996490i 0.999994 0.00350346i \(-0.00111519\pi\)
−0.00350346 + 0.999994i \(0.501115\pi\)
\(458\) −8.54557 + 4.93379i −0.399308 + 0.230541i
\(459\) 0 0
\(460\) −0.573852 0.573852i −0.0267560 0.0267560i
\(461\) −27.5031 7.36943i −1.28095 0.343228i −0.446731 0.894668i \(-0.647412\pi\)
−0.834215 + 0.551440i \(0.814079\pi\)
\(462\) 0 0
\(463\) −3.49672 0.936943i −0.162506 0.0435434i 0.176649 0.984274i \(-0.443474\pi\)
−0.339155 + 0.940731i \(0.610141\pi\)
\(464\) 1.03028i 0.0478296i
\(465\) 0 0
\(466\) 1.46235 1.46235i 0.0677421 0.0677421i
\(467\) 36.6235 1.69473 0.847366 0.531010i \(-0.178187\pi\)
0.847366 + 0.531010i \(0.178187\pi\)
\(468\) 0 0
\(469\) 1.14738 0.0529809
\(470\) 1.48494 1.48494i 0.0684953 0.0684953i
\(471\) 0 0
\(472\) 11.9845i 0.551631i
\(473\) 47.0750 + 12.6137i 2.16451 + 0.579979i
\(474\) 0 0
\(475\) 21.5474 + 5.77361i 0.988662 + 0.264911i
\(476\) 2.39342 + 2.39342i 0.109702 + 0.109702i
\(477\) 0 0
\(478\) 17.0961 9.87043i 0.781957 0.451463i
\(479\) 3.57024 + 3.57024i 0.163128 + 0.163128i 0.783951 0.620823i \(-0.213201\pi\)
−0.620823 + 0.783951i \(0.713201\pi\)
\(480\) 0 0
\(481\) −21.8658 19.3626i −0.996997 0.882857i
\(482\) −8.78273 + 5.07071i −0.400043 + 0.230965i
\(483\) 0 0
\(484\) 22.8181 1.03718
\(485\) −8.60613 + 14.9063i −0.390784 + 0.676858i
\(486\) 0 0
\(487\) −28.6137 + 7.66702i −1.29661 + 0.347426i −0.840167 0.542327i \(-0.817543\pi\)
−0.456443 + 0.889753i \(0.650877\pi\)
\(488\) 0.731981 2.73179i 0.0331352 0.123662i
\(489\) 0 0
\(490\) −8.35650 −0.377508
\(491\) 0.987608 1.71059i 0.0445701 0.0771978i −0.842880 0.538102i \(-0.819142\pi\)
0.887450 + 0.460904i \(0.152475\pi\)
\(492\) 0 0
\(493\) −2.98556 1.72371i −0.134463 0.0776322i
\(494\) 22.0320 14.5686i 0.991264 0.655471i
\(495\) 0 0
\(496\) −2.28484 + 8.52714i −0.102592 + 0.382880i
\(497\) 10.6111i 0.475972i
\(498\) 0 0
\(499\) 1.03754 3.87214i 0.0464465 0.173341i −0.938806 0.344445i \(-0.888067\pi\)
0.985253 + 0.171105i \(0.0547336\pi\)
\(500\) 7.95386 7.95386i 0.355707 0.355707i
\(501\) 0 0
\(502\) 2.47907 + 9.25203i 0.110646 + 0.412938i
\(503\) −6.37037 3.67794i −0.284041 0.163991i 0.351211 0.936297i \(-0.385770\pi\)
−0.635251 + 0.772305i \(0.719103\pi\)
\(504\) 0 0
\(505\) 13.7639 + 3.68802i 0.612485 + 0.164115i
\(506\) −1.68771 + 2.92320i −0.0750280 + 0.129952i
\(507\) 0 0
\(508\) 7.56941 + 13.1106i 0.335838 + 0.581689i
\(509\) 3.68759 + 13.7623i 0.163449 + 0.610002i 0.998233 + 0.0594233i \(0.0189262\pi\)
−0.834783 + 0.550579i \(0.814407\pi\)
\(510\) 0 0
\(511\) 0.976484 0.563773i 0.0431971 0.0249399i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 1.49470 + 5.57831i 0.0659286 + 0.246049i
\(515\) −13.3219 + 3.56959i −0.587033 + 0.157295i
\(516\) 0 0
\(517\) −7.56431 4.36726i −0.332678 0.192072i
\(518\) 7.91492 2.12080i 0.347762 0.0931824i
\(519\) 0 0
\(520\) −0.305525 5.03191i −0.0133982 0.220664i
\(521\) 28.5428i 1.25048i −0.780431 0.625242i \(-0.785000\pi\)
0.780431 0.625242i \(-0.215000\pi\)
\(522\) 0 0
\(523\) 7.95336 + 13.7756i 0.347776 + 0.602366i 0.985854 0.167606i \(-0.0536037\pi\)
−0.638078 + 0.769972i \(0.720270\pi\)
\(524\) 1.89982 + 3.29059i 0.0829941 + 0.143750i
\(525\) 0 0
\(526\) −3.15175 3.15175i −0.137423 0.137423i
\(527\) 20.8874 + 20.8874i 0.909869 + 0.909869i
\(528\) 0 0
\(529\) 11.3315 + 19.6268i 0.492676 + 0.853340i
\(530\) 1.93704 + 3.35505i 0.0841396 + 0.145734i
\(531\) 0 0
\(532\) 7.41039i 0.321281i
\(533\) −1.17907 + 5.78217i −0.0510710 + 0.250453i
\(534\) 0 0
\(535\) −13.3852 + 3.58655i −0.578692 + 0.155060i
\(536\) 0.982297 + 0.567130i 0.0424288 + 0.0244963i
\(537\) 0 0
\(538\) −12.8027 + 3.43046i −0.551962 + 0.147898i
\(539\) 8.99570 + 33.5724i 0.387472 + 1.44607i
\(540\) 0 0
\(541\) 20.5826 20.5826i 0.884913 0.884913i −0.109116 0.994029i \(-0.534802\pi\)
0.994029 + 0.109116i \(0.0348019\pi\)
\(542\) 5.04379 2.91204i 0.216649 0.125083i
\(543\) 0 0
\(544\) 0.866036 + 3.23209i 0.0371310 + 0.138575i
\(545\) −6.91673 11.9801i −0.296280 0.513172i
\(546\) 0 0
\(547\) −11.8581 + 20.5389i −0.507017 + 0.878180i 0.492950 + 0.870058i \(0.335919\pi\)
−0.999967 + 0.00812189i \(0.997415\pi\)
\(548\) −5.62169 1.50633i −0.240147 0.0643471i
\(549\) 0 0
\(550\) −15.3359 8.85418i −0.653924 0.377543i
\(551\) −1.95344 7.29032i −0.0832191 0.310578i
\(552\) 0 0
\(553\) −1.18343 + 1.18343i −0.0503246 + 0.0503246i
\(554\) 5.03130 18.7771i 0.213760 0.797762i
\(555\) 0 0
\(556\) 2.27675i 0.0965559i
\(557\) −1.55296 + 5.79572i −0.0658010 + 0.245573i −0.990990 0.133933i \(-0.957239\pi\)
0.925189 + 0.379506i \(0.123906\pi\)
\(558\) 0 0
\(559\) −30.1609 + 1.83129i −1.27567 + 0.0774555i
\(560\) 1.22486 + 0.707171i 0.0517596 + 0.0298834i
\(561\) 0 0
\(562\) −0.726498 + 1.25833i −0.0306455 + 0.0530795i
\(563\) −34.2938 −1.44531 −0.722656 0.691208i \(-0.757079\pi\)
−0.722656 + 0.691208i \(0.757079\pi\)
\(564\) 0 0
\(565\) 3.67205 13.7043i 0.154484 0.576543i
\(566\) 20.0268 5.36617i 0.841790 0.225557i
\(567\) 0 0
\(568\) 5.24488 9.08440i 0.220070 0.381173i
\(569\) −35.6813 −1.49584 −0.747919 0.663790i \(-0.768947\pi\)
−0.747919 + 0.663790i \(0.768947\pi\)
\(570\) 0 0
\(571\) −25.3581 + 14.6405i −1.06121 + 0.612687i −0.925765 0.378099i \(-0.876578\pi\)
−0.135440 + 0.990786i \(0.543245\pi\)
\(572\) −19.8869 + 6.64426i −0.831513 + 0.277810i
\(573\) 0 0
\(574\) −1.17070 1.17070i −0.0488639 0.0488639i
\(575\) 1.53069 0.883747i 0.0638344 0.0368548i
\(576\) 0 0
\(577\) −19.2968 19.2968i −0.803337 0.803337i 0.180278 0.983616i \(-0.442300\pi\)
−0.983616 + 0.180278i \(0.942300\pi\)
\(578\) −5.60582 1.50208i −0.233171 0.0624781i
\(579\) 0 0
\(580\) −1.39143 0.372831i −0.0577758 0.0154810i
\(581\) 16.4652i 0.683094i
\(582\) 0 0
\(583\) 11.3938 11.3938i 0.471881 0.471881i
\(584\) 1.11466 0.0461248
\(585\) 0 0
\(586\) 23.7415 0.980753
\(587\) −14.0938 + 14.0938i −0.581712 + 0.581712i −0.935373 0.353662i \(-0.884936\pi\)
0.353662 + 0.935373i \(0.384936\pi\)
\(588\) 0 0
\(589\) 64.6706i 2.66471i
\(590\) −16.1854 4.33687i −0.666344 0.178546i
\(591\) 0 0
\(592\) 7.82443 + 2.09655i 0.321582 + 0.0861677i
\(593\) 3.24522 + 3.24522i 0.133265 + 0.133265i 0.770593 0.637328i \(-0.219960\pi\)
−0.637328 + 0.770593i \(0.719960\pi\)
\(594\) 0 0
\(595\) 4.09850 2.36627i 0.168022 0.0970075i
\(596\) 10.1646 + 10.1646i 0.416358 + 0.416358i
\(597\) 0 0
\(598\) 0.418145 2.05059i 0.0170992 0.0838550i
\(599\) 36.4947 21.0702i 1.49113 0.860906i 0.491185 0.871055i \(-0.336564\pi\)
0.999949 + 0.0101486i \(0.00323046\pi\)
\(600\) 0 0
\(601\) 4.63910 0.189233 0.0946164 0.995514i \(-0.469838\pi\)
0.0946164 + 0.995514i \(0.469838\pi\)
\(602\) 4.23873 7.34169i 0.172758 0.299225i
\(603\) 0 0
\(604\) 2.72013 0.728858i 0.110681 0.0296568i
\(605\) 8.25725 30.8165i 0.335705 1.25287i
\(606\) 0 0
\(607\) 11.5014 0.466829 0.233414 0.972377i \(-0.425010\pi\)
0.233414 + 0.972377i \(0.425010\pi\)
\(608\) −3.66283 + 6.34422i −0.148548 + 0.257292i
\(609\) 0 0
\(610\) −3.42448 1.97712i −0.138653 0.0800514i
\(611\) 5.30627 + 1.08202i 0.214669 + 0.0437740i
\(612\) 0 0
\(613\) −3.05394 + 11.3975i −0.123347 + 0.460339i −0.999775 0.0211942i \(-0.993253\pi\)
0.876428 + 0.481533i \(0.159920\pi\)
\(614\) 20.8874i 0.842947i
\(615\) 0 0
\(616\) 1.52252 5.68214i 0.0613443 0.228940i
\(617\) 22.5562 22.5562i 0.908079 0.908079i −0.0880383 0.996117i \(-0.528060\pi\)
0.996117 + 0.0880383i \(0.0280598\pi\)
\(618\) 0 0
\(619\) 5.99924 + 22.3895i 0.241130 + 0.899909i 0.975289 + 0.220932i \(0.0709097\pi\)
−0.734160 + 0.678977i \(0.762424\pi\)
\(620\) 10.6893 + 6.17149i 0.429294 + 0.247853i
\(621\) 0 0
\(622\) 27.1518 + 7.27531i 1.08869 + 0.291713i
\(623\) 1.53169 2.65297i 0.0613659 0.106289i
\(624\) 0 0
\(625\) −0.250846 0.434477i −0.0100338 0.0173791i
\(626\) 4.53721 + 16.9331i 0.181343 + 0.676782i
\(627\) 0 0
\(628\) 6.82268 3.93908i 0.272255 0.157186i
\(629\) 19.1661 19.1661i 0.764202 0.764202i
\(630\) 0 0
\(631\) 6.12810 + 22.8704i 0.243956 + 0.910456i 0.973905 + 0.226955i \(0.0728770\pi\)
−0.729949 + 0.683501i \(0.760456\pi\)
\(632\) −1.59811 + 0.428214i −0.0635696 + 0.0170334i
\(633\) 0 0
\(634\) 19.1591 + 11.0615i 0.760904 + 0.439308i
\(635\) 20.4454 5.47834i 0.811353 0.217401i
\(636\) 0 0
\(637\) −11.8860 17.9750i −0.470939 0.712197i
\(638\) 5.99142i 0.237203i
\(639\) 0 0
\(640\) 0.699086 + 1.21085i 0.0276338 + 0.0478631i
\(641\) 14.3524 + 24.8590i 0.566884 + 0.981872i 0.996872 + 0.0790369i \(0.0251845\pi\)
−0.429988 + 0.902835i \(0.641482\pi\)
\(642\) 0 0
\(643\) 16.1427 + 16.1427i 0.636607 + 0.636607i 0.949717 0.313110i \(-0.101371\pi\)
−0.313110 + 0.949717i \(0.601371\pi\)
\(644\) 0.415177 + 0.415177i 0.0163603 + 0.0163603i
\(645\) 0 0
\(646\) 12.2562 + 21.2284i 0.482215 + 0.835221i
\(647\) −18.5692 32.1627i −0.730029 1.26445i −0.956870 0.290516i \(-0.906173\pi\)
0.226841 0.973932i \(-0.427160\pi\)
\(648\) 0 0
\(649\) 69.6938i 2.73572i
\(650\) 10.7579 + 2.19370i 0.421961 + 0.0860439i
\(651\) 0 0
\(652\) −6.68116 + 1.79021i −0.261655 + 0.0701101i
\(653\) 38.5101 + 22.2338i 1.50702 + 0.870076i 0.999967 + 0.00815952i \(0.00259728\pi\)
0.507050 + 0.861917i \(0.330736\pi\)
\(654\) 0 0
\(655\) 5.13153 1.37499i 0.200506 0.0537253i
\(656\) −0.423606 1.58092i −0.0165390 0.0617245i
\(657\) 0 0
\(658\) −1.07434 + 1.07434i −0.0418822 + 0.0418822i
\(659\) −0.358832 + 0.207172i −0.0139781 + 0.00807026i −0.506973 0.861962i \(-0.669236\pi\)
0.492995 + 0.870032i \(0.335902\pi\)
\(660\) 0 0
\(661\) −7.37782 27.5344i −0.286964 1.07096i −0.947392 0.320075i \(-0.896292\pi\)
0.660428 0.750889i \(-0.270375\pi\)
\(662\) 11.3179 + 19.6031i 0.439881 + 0.761896i
\(663\) 0 0
\(664\) −8.13850 + 14.0963i −0.315835 + 0.547043i
\(665\) 10.0080 + 2.68162i 0.388092 + 0.103989i
\(666\) 0 0
\(667\) −0.517893 0.299006i −0.0200529 0.0115776i
\(668\) −4.10240 15.3104i −0.158727 0.592376i
\(669\) 0 0
\(670\) 1.12139 1.12139i 0.0433232 0.0433232i
\(671\) −4.25671 + 15.8863i −0.164328 + 0.613282i
\(672\) 0 0
\(673\) 4.15724i 0.160250i −0.996785 0.0801248i \(-0.974468\pi\)
0.996785 0.0801248i \(-0.0255319\pi\)
\(674\) −8.06823 + 30.1111i −0.310777 + 1.15983i
\(675\) 0 0
\(676\) 10.3892 7.81438i 0.399585 0.300553i
\(677\) −17.6062 10.1649i −0.676659 0.390669i 0.121936 0.992538i \(-0.461090\pi\)
−0.798595 + 0.601869i \(0.794423\pi\)
\(678\) 0 0
\(679\) 6.22646 10.7845i 0.238949 0.413873i
\(680\) 4.67843 0.179410
\(681\) 0 0
\(682\) 13.2871 49.5881i 0.508789 1.89883i
\(683\) −9.85750 + 2.64131i −0.377187 + 0.101067i −0.442431 0.896802i \(-0.645884\pi\)
0.0652445 + 0.997869i \(0.479217\pi\)
\(684\) 0 0
\(685\) −4.06868 + 7.04716i −0.155456 + 0.269258i
\(686\) 13.1268 0.501184
\(687\) 0 0
\(688\) 7.25776 4.19027i 0.276699 0.159753i
\(689\) −4.46162 + 8.93870i −0.169974 + 0.340537i
\(690\) 0 0
\(691\) −29.9191 29.9191i −1.13818 1.13818i −0.988777 0.149400i \(-0.952266\pi\)
−0.149400 0.988777i \(-0.547734\pi\)
\(692\) 2.25559 1.30226i 0.0857445 0.0495046i
\(693\) 0 0
\(694\) 14.3954 + 14.3954i 0.546444 + 0.546444i
\(695\) −3.07483 0.823897i −0.116635 0.0312522i
\(696\) 0 0
\(697\) −5.28992 1.41743i −0.200370 0.0536890i
\(698\) 29.4052i 1.11300i
\(699\) 0 0
\(700\) −2.17812 + 2.17812i −0.0823253 + 0.0823253i
\(701\) −16.7670 −0.633280 −0.316640 0.948546i \(-0.602555\pi\)
−0.316640 + 0.948546i \(0.602555\pi\)
\(702\) 0 0
\(703\) 59.3412 2.23810
\(704\) 4.11206 4.11206i 0.154979 0.154979i
\(705\) 0 0
\(706\) 11.4750i 0.431868i
\(707\) −9.95805 2.66825i −0.374511 0.100350i
\(708\) 0 0
\(709\) −12.3741 3.31563i −0.464719 0.124521i 0.0188591 0.999822i \(-0.493997\pi\)
−0.483579 + 0.875301i \(0.660663\pi\)
\(710\) −10.3708 10.3708i −0.389208 0.389208i
\(711\) 0 0
\(712\) 2.62264 1.51418i 0.0982875 0.0567463i
\(713\) 3.62325 + 3.62325i 0.135692 + 0.135692i
\(714\) 0 0
\(715\) 1.77673 + 29.2622i 0.0664459 + 1.09435i
\(716\) 3.11097 1.79612i 0.116262 0.0671242i
\(717\) 0 0
\(718\) −36.7320 −1.37083
\(719\) −8.63433 + 14.9551i −0.322006 + 0.557731i −0.980902 0.194503i \(-0.937690\pi\)
0.658896 + 0.752234i \(0.271024\pi\)
\(720\) 0 0
\(721\) 9.63828 2.58257i 0.358948 0.0961799i
\(722\) −8.97207 + 33.4842i −0.333906 + 1.24615i
\(723\) 0 0
\(724\) 16.3443 0.607430
\(725\) 1.56866 2.71700i 0.0582586 0.100907i
\(726\) 0 0
\(727\) −12.1283 7.00226i −0.449813 0.259700i 0.257938 0.966161i \(-0.416957\pi\)
−0.707751 + 0.706462i \(0.750290\pi\)
\(728\) 0.221045 + 3.64054i 0.00819245 + 0.134928i
\(729\) 0 0
\(730\) 0.403364 1.50538i 0.0149292 0.0557165i
\(731\) 28.0422i 1.03718i
\(732\) 0 0
\(733\) −1.76174 + 6.57489i −0.0650712 + 0.242849i −0.990799 0.135341i \(-0.956787\pi\)
0.925728 + 0.378190i \(0.123454\pi\)
\(734\) 3.94035 3.94035i 0.145441 0.145441i
\(735\) 0 0
\(736\) 0.150228 + 0.560658i 0.00553747 + 0.0206661i
\(737\) −5.71238 3.29805i −0.210418 0.121485i
\(738\) 0 0
\(739\) −17.1161 4.58625i −0.629626 0.168708i −0.0701262 0.997538i \(-0.522340\pi\)
−0.559500 + 0.828830i \(0.689007\pi\)
\(740\) 5.66291 9.80845i 0.208173 0.360566i
\(741\) 0 0
\(742\) −1.40143 2.42735i −0.0514481 0.0891108i
\(743\) 8.04786 + 30.0350i 0.295247 + 1.10188i 0.941021 + 0.338349i \(0.109868\pi\)
−0.645773 + 0.763529i \(0.723465\pi\)
\(744\) 0 0
\(745\) 17.4059 10.0493i 0.637702 0.368177i
\(746\) −2.03537 + 2.03537i −0.0745200 + 0.0745200i
\(747\) 0 0
\(748\) −5.03629 18.7957i −0.184145 0.687238i
\(749\) 9.68407 2.59484i 0.353848 0.0948133i
\(750\) 0 0
\(751\) −4.97436 2.87195i −0.181517 0.104799i 0.406488 0.913656i \(-0.366753\pi\)
−0.588005 + 0.808857i \(0.700087\pi\)
\(752\) −1.45080 + 0.388741i −0.0529053 + 0.0141759i
\(753\) 0 0
\(754\) −1.17714 3.52329i −0.0428689 0.128311i
\(755\) 3.93738i 0.143296i
\(756\) 0 0
\(757\) −13.1210 22.7262i −0.476891 0.825999i 0.522759 0.852481i \(-0.324903\pi\)
−0.999649 + 0.0264817i \(0.991570\pi\)
\(758\) 10.6629 + 18.4687i 0.387295 + 0.670815i
\(759\) 0 0
\(760\) 7.24257 + 7.24257i 0.262716 + 0.262716i
\(761\) −2.64360 2.64360i −0.0958306 0.0958306i 0.657566 0.753397i \(-0.271586\pi\)
−0.753397 + 0.657566i \(0.771586\pi\)
\(762\) 0 0
\(763\) 5.00419 + 8.66751i 0.181164 + 0.313785i
\(764\) −12.7189 22.0297i −0.460152 0.797007i
\(765\) 0 0
\(766\) 12.9795i 0.468969i
\(767\) −13.6928 40.9838i −0.494418 1.47984i
\(768\) 0 0
\(769\) −47.3247 + 12.6806i −1.70657 + 0.457274i −0.974580 0.224040i \(-0.928075\pi\)
−0.731991 + 0.681314i \(0.761409\pi\)
\(770\) −7.12294 4.11243i −0.256693 0.148202i
\(771\) 0 0
\(772\) 12.1861 3.26525i 0.438586 0.117519i
\(773\) 1.60335 + 5.98377i 0.0576683 + 0.215221i 0.988747 0.149597i \(-0.0477977\pi\)
−0.931079 + 0.364818i \(0.881131\pi\)
\(774\) 0 0
\(775\) −19.0085 + 19.0085i −0.682806 + 0.682806i
\(776\) 10.6612 6.15527i 0.382716 0.220961i
\(777\) 0 0
\(778\) 8.10162 + 30.2356i 0.290457 + 1.08400i
\(779\) −5.99491 10.3835i −0.214790 0.372027i
\(780\) 0 0
\(781\) −30.5007 + 52.8288i −1.09140 + 1.89036i
\(782\) 1.87602 + 0.502678i 0.0670864 + 0.0179757i
\(783\) 0 0
\(784\) 5.17601