Properties

Label 702.2.bb.a.89.2
Level $702$
Weight $2$
Character 702.89
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(71,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 89.2
Character \(\chi\) \(=\) 702.89
Dual form 702.2.bb.a.71.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-1.62665 - 0.435860i) q^{5} +(0.290365 + 0.0778030i) q^{7} +(0.707107 + 0.707107i) q^{8} +O(q^{10})\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-1.62665 - 0.435860i) q^{5} +(0.290365 + 0.0778030i) q^{7} +(0.707107 + 0.707107i) q^{8} +(1.45842 - 0.842018i) q^{10} +(1.12392 + 1.12392i) q^{11} +(-3.56563 + 0.535061i) q^{13} +(-0.260334 + 0.150304i) q^{14} -1.00000 q^{16} +(-1.26545 + 2.19182i) q^{17} +(4.16702 - 1.11655i) q^{19} +(-0.435860 + 1.62665i) q^{20} -1.58947 q^{22} +(-0.660949 + 1.14480i) q^{23} +(-1.87410 - 1.08201i) q^{25} +(2.14293 - 2.89963i) q^{26} +(0.0778030 - 0.290365i) q^{28} +7.48368i q^{29} +(-2.78151 + 10.3807i) q^{31} +(0.707107 - 0.707107i) q^{32} +(-0.655045 - 2.44466i) q^{34} +(-0.438411 - 0.253117i) q^{35} +(-2.37887 - 0.637416i) q^{37} +(-2.15701 + 3.73605i) q^{38} +(-0.842018 - 1.45842i) q^{40} +(0.974309 + 3.63617i) q^{41} +(-6.42917 + 3.71188i) q^{43} +(1.12392 - 1.12392i) q^{44} +(-0.342133 - 1.27686i) q^{46} +(-3.46610 + 0.928739i) q^{47} +(-5.98392 - 3.45482i) q^{49} +(2.09029 - 0.560091i) q^{50} +(0.535061 + 3.56563i) q^{52} +3.63112i q^{53} +(-1.33836 - 2.31811i) q^{55} +(0.150304 + 0.260334i) q^{56} +(-5.29176 - 5.29176i) q^{58} +(0.512425 + 0.512425i) q^{59} +(5.62852 + 9.74888i) q^{61} +(-5.37346 - 9.30710i) q^{62} +1.00000i q^{64} +(6.03325 + 0.683757i) q^{65} +(0.943886 - 0.252913i) q^{67} +(2.19182 + 1.26545i) q^{68} +(0.488984 - 0.131023i) q^{70} +(-1.84126 - 6.87167i) q^{71} +(3.38109 - 3.38109i) q^{73} +(2.13284 - 1.23139i) q^{74} +(-1.11655 - 4.16702i) q^{76} +(0.238903 + 0.413792i) q^{77} +(-3.69530 + 6.40045i) q^{79} +(1.62665 + 0.435860i) q^{80} +(-3.26010 - 1.88222i) q^{82} +(-3.18219 - 11.8761i) q^{83} +(3.01378 - 3.01378i) q^{85} +(1.92141 - 7.17081i) q^{86} +1.58947i q^{88} +(-0.512119 + 1.91125i) q^{89} +(-1.07696 - 0.122054i) q^{91} +(1.14480 + 0.660949i) q^{92} +(1.79419 - 3.10762i) q^{94} -7.26495 q^{95} +(1.61645 - 6.03268i) q^{97} +(6.67419 - 1.78835i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73} - 48 q^{74} + 4 q^{76} + 24 q^{77} - 24 q^{79} + 60 q^{83} - 48 q^{86} + 4 q^{91} + 24 q^{92} + 20 q^{97} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −1.62665 0.435860i −0.727461 0.194923i −0.123963 0.992287i \(-0.539560\pi\)
−0.603498 + 0.797364i \(0.706227\pi\)
\(6\) 0 0
\(7\) 0.290365 + 0.0778030i 0.109748 + 0.0294068i 0.313275 0.949663i \(-0.398574\pi\)
−0.203527 + 0.979069i \(0.565241\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 1.45842 0.842018i 0.461192 0.266269i
\(11\) 1.12392 + 1.12392i 0.338876 + 0.338876i 0.855944 0.517068i \(-0.172977\pi\)
−0.517068 + 0.855944i \(0.672977\pi\)
\(12\) 0 0
\(13\) −3.56563 + 0.535061i −0.988928 + 0.148399i
\(14\) −0.260334 + 0.150304i −0.0695771 + 0.0401704i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −1.26545 + 2.19182i −0.306917 + 0.531595i −0.977686 0.210071i \(-0.932631\pi\)
0.670770 + 0.741666i \(0.265964\pi\)
\(18\) 0 0
\(19\) 4.16702 1.11655i 0.955980 0.256154i 0.253082 0.967445i \(-0.418556\pi\)
0.702898 + 0.711291i \(0.251889\pi\)
\(20\) −0.435860 + 1.62665i −0.0974613 + 0.363731i
\(21\) 0 0
\(22\) −1.58947 −0.338876
\(23\) −0.660949 + 1.14480i −0.137817 + 0.238707i −0.926670 0.375875i \(-0.877342\pi\)
0.788853 + 0.614582i \(0.210675\pi\)
\(24\) 0 0
\(25\) −1.87410 1.08201i −0.374820 0.216403i
\(26\) 2.14293 2.89963i 0.420264 0.568663i
\(27\) 0 0
\(28\) 0.0778030 0.290365i 0.0147034 0.0548738i
\(29\) 7.48368i 1.38969i 0.719162 + 0.694843i \(0.244526\pi\)
−0.719162 + 0.694843i \(0.755474\pi\)
\(30\) 0 0
\(31\) −2.78151 + 10.3807i −0.499573 + 1.86443i 0.00316697 + 0.999995i \(0.498992\pi\)
−0.502740 + 0.864438i \(0.667675\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) −0.655045 2.44466i −0.112339 0.419256i
\(35\) −0.438411 0.253117i −0.0741050 0.0427846i
\(36\) 0 0
\(37\) −2.37887 0.637416i −0.391084 0.104791i 0.0579183 0.998321i \(-0.481554\pi\)
−0.449002 + 0.893531i \(0.648220\pi\)
\(38\) −2.15701 + 3.73605i −0.349913 + 0.606067i
\(39\) 0 0
\(40\) −0.842018 1.45842i −0.133135 0.230596i
\(41\) 0.974309 + 3.63617i 0.152161 + 0.567874i 0.999332 + 0.0365529i \(0.0116377\pi\)
−0.847170 + 0.531322i \(0.821696\pi\)
\(42\) 0 0
\(43\) −6.42917 + 3.71188i −0.980439 + 0.566057i −0.902403 0.430894i \(-0.858198\pi\)
−0.0780366 + 0.996950i \(0.524865\pi\)
\(44\) 1.12392 1.12392i 0.169438 0.169438i
\(45\) 0 0
\(46\) −0.342133 1.27686i −0.0504447 0.188262i
\(47\) −3.46610 + 0.928739i −0.505583 + 0.135470i −0.502590 0.864525i \(-0.667619\pi\)
−0.00299296 + 0.999996i \(0.500953\pi\)
\(48\) 0 0
\(49\) −5.98392 3.45482i −0.854846 0.493545i
\(50\) 2.09029 0.560091i 0.295611 0.0792088i
\(51\) 0 0
\(52\) 0.535061 + 3.56563i 0.0741997 + 0.494464i
\(53\) 3.63112i 0.498772i 0.968404 + 0.249386i \(0.0802288\pi\)
−0.968404 + 0.249386i \(0.919771\pi\)
\(54\) 0 0
\(55\) −1.33836 2.31811i −0.180464 0.312574i
\(56\) 0.150304 + 0.260334i 0.0200852 + 0.0347886i
\(57\) 0 0
\(58\) −5.29176 5.29176i −0.694843 0.694843i
\(59\) 0.512425 + 0.512425i 0.0667121 + 0.0667121i 0.739676 0.672964i \(-0.234979\pi\)
−0.672964 + 0.739676i \(0.734979\pi\)
\(60\) 0 0
\(61\) 5.62852 + 9.74888i 0.720658 + 1.24822i 0.960736 + 0.277463i \(0.0894935\pi\)
−0.240078 + 0.970754i \(0.577173\pi\)
\(62\) −5.37346 9.30710i −0.682430 1.18200i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 6.03325 + 0.683757i 0.748333 + 0.0848096i
\(66\) 0 0
\(67\) 0.943886 0.252913i 0.115314 0.0308983i −0.200701 0.979653i \(-0.564322\pi\)
0.316015 + 0.948754i \(0.397655\pi\)
\(68\) 2.19182 + 1.26545i 0.265798 + 0.153458i
\(69\) 0 0
\(70\) 0.488984 0.131023i 0.0584448 0.0156602i
\(71\) −1.84126 6.87167i −0.218517 0.815518i −0.984899 0.173132i \(-0.944611\pi\)
0.766381 0.642386i \(-0.222055\pi\)
\(72\) 0 0
\(73\) 3.38109 3.38109i 0.395727 0.395727i −0.480996 0.876723i \(-0.659725\pi\)
0.876723 + 0.480996i \(0.159725\pi\)
\(74\) 2.13284 1.23139i 0.247937 0.143147i
\(75\) 0 0
\(76\) −1.11655 4.16702i −0.128077 0.477990i
\(77\) 0.238903 + 0.413792i 0.0272255 + 0.0471560i
\(78\) 0 0
\(79\) −3.69530 + 6.40045i −0.415754 + 0.720107i −0.995507 0.0946854i \(-0.969815\pi\)
0.579754 + 0.814792i \(0.303149\pi\)
\(80\) 1.62665 + 0.435860i 0.181865 + 0.0487307i
\(81\) 0 0
\(82\) −3.26010 1.88222i −0.360018 0.207856i
\(83\) −3.18219 11.8761i −0.349291 1.30357i −0.887518 0.460773i \(-0.847572\pi\)
0.538227 0.842800i \(-0.319094\pi\)
\(84\) 0 0
\(85\) 3.01378 3.01378i 0.326890 0.326890i
\(86\) 1.92141 7.17081i 0.207191 0.773248i
\(87\) 0 0
\(88\) 1.58947i 0.169438i
\(89\) −0.512119 + 1.91125i −0.0542845 + 0.202592i −0.987742 0.156096i \(-0.950109\pi\)
0.933457 + 0.358688i \(0.116776\pi\)
\(90\) 0 0
\(91\) −1.07696 0.122054i −0.112896 0.0127947i
\(92\) 1.14480 + 0.660949i 0.119353 + 0.0689087i
\(93\) 0 0
\(94\) 1.79419 3.10762i 0.185056 0.320527i
\(95\) −7.26495 −0.745368
\(96\) 0 0
\(97\) 1.61645 6.03268i 0.164126 0.612526i −0.834024 0.551728i \(-0.813969\pi\)
0.998150 0.0607982i \(-0.0193646\pi\)
\(98\) 6.67419 1.78835i 0.674196 0.180650i
\(99\) 0 0
\(100\) −1.08201 + 1.87410i −0.108201 + 0.187410i
\(101\) −8.59259 −0.854995 −0.427498 0.904017i \(-0.640605\pi\)
−0.427498 + 0.904017i \(0.640605\pi\)
\(102\) 0 0
\(103\) 0.228107 0.131698i 0.0224761 0.0129766i −0.488720 0.872441i \(-0.662536\pi\)
0.511196 + 0.859464i \(0.329203\pi\)
\(104\) −2.89963 2.14293i −0.284332 0.210132i
\(105\) 0 0
\(106\) −2.56759 2.56759i −0.249386 0.249386i
\(107\) −11.4443 + 6.60737i −1.10636 + 0.638759i −0.937885 0.346947i \(-0.887218\pi\)
−0.168478 + 0.985705i \(0.553885\pi\)
\(108\) 0 0
\(109\) 11.1164 + 11.1164i 1.06475 + 1.06475i 0.997753 + 0.0670011i \(0.0213431\pi\)
0.0670011 + 0.997753i \(0.478657\pi\)
\(110\) 2.58551 + 0.692786i 0.246519 + 0.0660546i
\(111\) 0 0
\(112\) −0.290365 0.0778030i −0.0274369 0.00735169i
\(113\) 9.74067i 0.916325i 0.888868 + 0.458163i \(0.151492\pi\)
−0.888868 + 0.458163i \(0.848508\pi\)
\(114\) 0 0
\(115\) 1.57411 1.57411i 0.146786 0.146786i
\(116\) 7.48368 0.694843
\(117\) 0 0
\(118\) −0.724678 −0.0667121
\(119\) −0.537972 + 0.537972i −0.0493158 + 0.0493158i
\(120\) 0 0
\(121\) 8.47359i 0.770326i
\(122\) −10.8735 2.91354i −0.984437 0.263779i
\(123\) 0 0
\(124\) 10.3807 + 2.78151i 0.932216 + 0.249787i
\(125\) 8.53087 + 8.53087i 0.763024 + 0.763024i
\(126\) 0 0
\(127\) 15.1666 8.75644i 1.34582 0.777009i 0.358164 0.933659i \(-0.383403\pi\)
0.987654 + 0.156650i \(0.0500694\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) −4.74964 + 3.78266i −0.416571 + 0.331762i
\(131\) −13.4168 + 7.74619i −1.17223 + 0.676788i −0.954205 0.299155i \(-0.903295\pi\)
−0.218027 + 0.975943i \(0.569962\pi\)
\(132\) 0 0
\(133\) 1.29683 0.112449
\(134\) −0.488591 + 0.846265i −0.0422079 + 0.0731062i
\(135\) 0 0
\(136\) −2.44466 + 0.655045i −0.209628 + 0.0561697i
\(137\) 5.53629 20.6617i 0.472997 1.76525i −0.155913 0.987771i \(-0.549832\pi\)
0.628910 0.777478i \(-0.283501\pi\)
\(138\) 0 0
\(139\) 9.22919 0.782810 0.391405 0.920219i \(-0.371989\pi\)
0.391405 + 0.920219i \(0.371989\pi\)
\(140\) −0.253117 + 0.438411i −0.0213923 + 0.0370525i
\(141\) 0 0
\(142\) 6.16098 + 3.55704i 0.517018 + 0.298500i
\(143\) −4.60886 3.40613i −0.385413 0.284835i
\(144\) 0 0
\(145\) 3.26184 12.1734i 0.270881 1.01094i
\(146\) 4.78159i 0.395727i
\(147\) 0 0
\(148\) −0.637416 + 2.37887i −0.0523953 + 0.195542i
\(149\) 15.7059 15.7059i 1.28668 1.28668i 0.349891 0.936790i \(-0.386219\pi\)
0.936790 0.349891i \(-0.113781\pi\)
\(150\) 0 0
\(151\) 4.46564 + 16.6660i 0.363409 + 1.35626i 0.869565 + 0.493818i \(0.164399\pi\)
−0.506157 + 0.862441i \(0.668934\pi\)
\(152\) 3.73605 + 2.15701i 0.303033 + 0.174956i
\(153\) 0 0
\(154\) −0.461525 0.123665i −0.0371908 0.00996524i
\(155\) 9.04909 15.6735i 0.726840 1.25892i
\(156\) 0 0
\(157\) 0.300573 + 0.520608i 0.0239884 + 0.0415490i 0.877770 0.479082i \(-0.159030\pi\)
−0.853782 + 0.520631i \(0.825697\pi\)
\(158\) −1.91283 7.13877i −0.152176 0.567930i
\(159\) 0 0
\(160\) −1.45842 + 0.842018i −0.115298 + 0.0665673i
\(161\) −0.280985 + 0.280985i −0.0221447 + 0.0221447i
\(162\) 0 0
\(163\) 0.929908 + 3.47046i 0.0728360 + 0.271828i 0.992734 0.120330i \(-0.0383953\pi\)
−0.919898 + 0.392158i \(0.871729\pi\)
\(164\) 3.63617 0.974309i 0.283937 0.0760807i
\(165\) 0 0
\(166\) 10.6478 + 6.14753i 0.826432 + 0.477141i
\(167\) 8.72138 2.33689i 0.674881 0.180834i 0.0949283 0.995484i \(-0.469738\pi\)
0.579952 + 0.814650i \(0.303071\pi\)
\(168\) 0 0
\(169\) 12.4274 3.81566i 0.955955 0.293512i
\(170\) 4.26212i 0.326890i
\(171\) 0 0
\(172\) 3.71188 + 6.42917i 0.283028 + 0.490220i
\(173\) 7.86600 + 13.6243i 0.598041 + 1.03584i 0.993110 + 0.117186i \(0.0373873\pi\)
−0.395069 + 0.918651i \(0.629279\pi\)
\(174\) 0 0
\(175\) −0.459989 0.459989i −0.0347719 0.0347719i
\(176\) −1.12392 1.12392i −0.0847190 0.0847190i
\(177\) 0 0
\(178\) −0.989338 1.71358i −0.0741540 0.128438i
\(179\) −3.29562 5.70819i −0.246326 0.426650i 0.716177 0.697918i \(-0.245890\pi\)
−0.962504 + 0.271268i \(0.912557\pi\)
\(180\) 0 0
\(181\) 11.2750i 0.838063i 0.907972 + 0.419031i \(0.137630\pi\)
−0.907972 + 0.419031i \(0.862370\pi\)
\(182\) 0.847832 0.675222i 0.0628455 0.0500508i
\(183\) 0 0
\(184\) −1.27686 + 0.342133i −0.0941311 + 0.0252223i
\(185\) 3.59177 + 2.07371i 0.264072 + 0.152462i
\(186\) 0 0
\(187\) −3.88571 + 1.04117i −0.284151 + 0.0761382i
\(188\) 0.928739 + 3.46610i 0.0677352 + 0.252791i
\(189\) 0 0
\(190\) 5.13710 5.13710i 0.372684 0.372684i
\(191\) 9.49618 5.48262i 0.687120 0.396709i −0.115412 0.993318i \(-0.536819\pi\)
0.802532 + 0.596609i \(0.203486\pi\)
\(192\) 0 0
\(193\) −3.61591 13.4948i −0.260279 0.971374i −0.965077 0.261966i \(-0.915629\pi\)
0.704798 0.709408i \(-0.251038\pi\)
\(194\) 3.12275 + 5.40876i 0.224200 + 0.388326i
\(195\) 0 0
\(196\) −3.45482 + 5.98392i −0.246773 + 0.427423i
\(197\) −4.59113 1.23019i −0.327105 0.0876474i 0.0915295 0.995802i \(-0.470824\pi\)
−0.418634 + 0.908155i \(0.637491\pi\)
\(198\) 0 0
\(199\) −20.1187 11.6155i −1.42618 0.823403i −0.429359 0.903134i \(-0.641260\pi\)
−0.996816 + 0.0797315i \(0.974594\pi\)
\(200\) −0.560091 2.09029i −0.0396044 0.147806i
\(201\) 0 0
\(202\) 6.07588 6.07588i 0.427498 0.427498i
\(203\) −0.582253 + 2.17300i −0.0408661 + 0.152514i
\(204\) 0 0
\(205\) 6.33945i 0.442766i
\(206\) −0.0681718 + 0.254421i −0.00474975 + 0.0177263i
\(207\) 0 0
\(208\) 3.56563 0.535061i 0.247232 0.0370998i
\(209\) 5.93833 + 3.42850i 0.410763 + 0.237154i
\(210\) 0 0
\(211\) 1.02671 1.77832i 0.0706817 0.122424i −0.828519 0.559962i \(-0.810816\pi\)
0.899200 + 0.437537i \(0.144149\pi\)
\(212\) 3.63112 0.249386
\(213\) 0 0
\(214\) 3.42023 12.7645i 0.233802 0.872560i
\(215\) 12.0759 3.23573i 0.823569 0.220675i
\(216\) 0 0
\(217\) −1.61530 + 2.79778i −0.109654 + 0.189926i
\(218\) −15.7209 −1.06475
\(219\) 0 0
\(220\) −2.31811 + 1.33836i −0.156287 + 0.0902322i
\(221\) 3.33936 8.49232i 0.224630 0.571255i
\(222\) 0 0
\(223\) −0.420741 0.420741i −0.0281749 0.0281749i 0.692879 0.721054i \(-0.256342\pi\)
−0.721054 + 0.692879i \(0.756342\pi\)
\(224\) 0.260334 0.150304i 0.0173943 0.0100426i
\(225\) 0 0
\(226\) −6.88769 6.88769i −0.458163 0.458163i
\(227\) −17.6264 4.72299i −1.16991 0.313476i −0.378992 0.925400i \(-0.623729\pi\)
−0.790916 + 0.611924i \(0.790396\pi\)
\(228\) 0 0
\(229\) 9.93612 + 2.66237i 0.656597 + 0.175935i 0.571710 0.820456i \(-0.306280\pi\)
0.0848872 + 0.996391i \(0.472947\pi\)
\(230\) 2.22612i 0.146786i
\(231\) 0 0
\(232\) −5.29176 + 5.29176i −0.347421 + 0.347421i
\(233\) 21.7770 1.42666 0.713328 0.700830i \(-0.247187\pi\)
0.713328 + 0.700830i \(0.247187\pi\)
\(234\) 0 0
\(235\) 6.04294 0.394198
\(236\) 0.512425 0.512425i 0.0333560 0.0333560i
\(237\) 0 0
\(238\) 0.760808i 0.0493158i
\(239\) 18.0937 + 4.84819i 1.17038 + 0.313603i 0.791106 0.611679i \(-0.209506\pi\)
0.379278 + 0.925283i \(0.376172\pi\)
\(240\) 0 0
\(241\) 4.27560 + 1.14564i 0.275416 + 0.0737974i 0.393883 0.919160i \(-0.371131\pi\)
−0.118467 + 0.992958i \(0.537798\pi\)
\(242\) 5.99173 + 5.99173i 0.385163 + 0.385163i
\(243\) 0 0
\(244\) 9.74888 5.62852i 0.624108 0.360329i
\(245\) 8.22794 + 8.22794i 0.525664 + 0.525664i
\(246\) 0 0
\(247\) −14.2606 + 6.21081i −0.907381 + 0.395184i
\(248\) −9.30710 + 5.37346i −0.591001 + 0.341215i
\(249\) 0 0
\(250\) −12.0645 −0.763024
\(251\) −14.8094 + 25.6507i −0.934763 + 1.61906i −0.159706 + 0.987165i \(0.551055\pi\)
−0.775057 + 0.631892i \(0.782279\pi\)
\(252\) 0 0
\(253\) −2.02952 + 0.543809i −0.127595 + 0.0341890i
\(254\) −4.53267 + 16.9162i −0.284405 + 1.06141i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 8.32426 14.4180i 0.519253 0.899373i −0.480496 0.876997i \(-0.659543\pi\)
0.999750 0.0223764i \(-0.00712323\pi\)
\(258\) 0 0
\(259\) −0.641147 0.370166i −0.0398389 0.0230010i
\(260\) 0.683757 6.03325i 0.0424048 0.374166i
\(261\) 0 0
\(262\) 4.00972 14.9645i 0.247722 0.924510i
\(263\) 28.0711i 1.73094i −0.500963 0.865469i \(-0.667021\pi\)
0.500963 0.865469i \(-0.332979\pi\)
\(264\) 0 0
\(265\) 1.58266 5.90657i 0.0972220 0.362838i
\(266\) −0.916994 + 0.916994i −0.0562245 + 0.0562245i
\(267\) 0 0
\(268\) −0.252913 0.943886i −0.0154491 0.0576570i
\(269\) −16.1655 9.33318i −0.985631 0.569054i −0.0816654 0.996660i \(-0.526024\pi\)
−0.903965 + 0.427606i \(0.859357\pi\)
\(270\) 0 0
\(271\) −24.6548 6.60622i −1.49767 0.401299i −0.585351 0.810780i \(-0.699043\pi\)
−0.912319 + 0.409481i \(0.865710\pi\)
\(272\) 1.26545 2.19182i 0.0767292 0.132899i
\(273\) 0 0
\(274\) 10.6953 + 18.5248i 0.646126 + 1.11912i
\(275\) −0.890247 3.32245i −0.0536839 0.200351i
\(276\) 0 0
\(277\) −13.6852 + 7.90117i −0.822265 + 0.474735i −0.851197 0.524846i \(-0.824123\pi\)
0.0289317 + 0.999581i \(0.490789\pi\)
\(278\) −6.52602 + 6.52602i −0.391405 + 0.391405i
\(279\) 0 0
\(280\) −0.131023 0.488984i −0.00783012 0.0292224i
\(281\) −26.0117 + 6.96981i −1.55173 + 0.415784i −0.930033 0.367477i \(-0.880222\pi\)
−0.621694 + 0.783261i \(0.713555\pi\)
\(282\) 0 0
\(283\) −20.1578 11.6381i −1.19826 0.691813i −0.238089 0.971243i \(-0.576521\pi\)
−0.960166 + 0.279430i \(0.909854\pi\)
\(284\) −6.87167 + 1.84126i −0.407759 + 0.109259i
\(285\) 0 0
\(286\) 5.66746 0.850463i 0.335124 0.0502890i
\(287\) 1.13162i 0.0667974i
\(288\) 0 0
\(289\) 5.29727 + 9.17515i 0.311604 + 0.539714i
\(290\) 6.30139 + 10.9143i 0.370031 + 0.640912i
\(291\) 0 0
\(292\) −3.38109 3.38109i −0.197864 0.197864i
\(293\) 16.5979 + 16.5979i 0.969662 + 0.969662i 0.999553 0.0298907i \(-0.00951592\pi\)
−0.0298907 + 0.999553i \(0.509516\pi\)
\(294\) 0 0
\(295\) −0.610192 1.05688i −0.0355267 0.0615341i
\(296\) −1.23139 2.13284i −0.0715733 0.123969i
\(297\) 0 0
\(298\) 22.2116i 1.28668i
\(299\) 1.74416 4.43557i 0.100868 0.256516i
\(300\) 0 0
\(301\) −2.15560 + 0.577591i −0.124247 + 0.0332918i
\(302\) −14.9423 8.62695i −0.859834 0.496425i
\(303\) 0 0
\(304\) −4.16702 + 1.11655i −0.238995 + 0.0640385i
\(305\) −4.90650 18.3113i −0.280945 1.04850i
\(306\) 0 0
\(307\) −15.1916 + 15.1916i −0.867028 + 0.867028i −0.992142 0.125115i \(-0.960070\pi\)
0.125115 + 0.992142i \(0.460070\pi\)
\(308\) 0.413792 0.238903i 0.0235780 0.0136128i
\(309\) 0 0
\(310\) 4.68415 + 17.4815i 0.266042 + 0.992882i
\(311\) −5.02062 8.69597i −0.284693 0.493103i 0.687841 0.725861i \(-0.258558\pi\)
−0.972535 + 0.232758i \(0.925225\pi\)
\(312\) 0 0
\(313\) −3.93637 + 6.81799i −0.222497 + 0.385376i −0.955565 0.294779i \(-0.904754\pi\)
0.733069 + 0.680154i \(0.238087\pi\)
\(314\) −0.580663 0.155588i −0.0327687 0.00878035i
\(315\) 0 0
\(316\) 6.40045 + 3.69530i 0.360053 + 0.207877i
\(317\) 2.84693 + 10.6249i 0.159900 + 0.596753i 0.998636 + 0.0522155i \(0.0166283\pi\)
−0.838736 + 0.544538i \(0.816705\pi\)
\(318\) 0 0
\(319\) −8.41109 + 8.41109i −0.470931 + 0.470931i
\(320\) 0.435860 1.62665i 0.0243653 0.0909327i
\(321\) 0 0
\(322\) 0.397373i 0.0221447i
\(323\) −2.82587 + 10.5463i −0.157236 + 0.586812i
\(324\) 0 0
\(325\) 7.26129 + 2.85530i 0.402784 + 0.158383i
\(326\) −3.11153 1.79644i −0.172332 0.0994958i
\(327\) 0 0
\(328\) −1.88222 + 3.26010i −0.103928 + 0.180009i
\(329\) −1.07869 −0.0594702
\(330\) 0 0
\(331\) 5.82719 21.7474i 0.320292 1.19534i −0.598669 0.800996i \(-0.704304\pi\)
0.918961 0.394348i \(-0.129030\pi\)
\(332\) −11.8761 + 3.18219i −0.651786 + 0.174646i
\(333\) 0 0
\(334\) −4.51452 + 7.81938i −0.247023 + 0.427857i
\(335\) −1.64561 −0.0899093
\(336\) 0 0
\(337\) 12.2213 7.05595i 0.665734 0.384362i −0.128724 0.991680i \(-0.541088\pi\)
0.794458 + 0.607318i \(0.207755\pi\)
\(338\) −6.08943 + 11.4856i −0.331221 + 0.624734i
\(339\) 0 0
\(340\) −3.01378 3.01378i −0.163445 0.163445i
\(341\) −14.7933 + 8.54094i −0.801105 + 0.462518i
\(342\) 0 0
\(343\) −2.95666 2.95666i −0.159644 0.159644i
\(344\) −7.17081 1.92141i −0.386624 0.103596i
\(345\) 0 0
\(346\) −15.1959 4.07174i −0.816939 0.218898i
\(347\) 24.6130i 1.32130i 0.750696 + 0.660648i \(0.229718\pi\)
−0.750696 + 0.660648i \(0.770282\pi\)
\(348\) 0 0
\(349\) 15.8417 15.8417i 0.847984 0.847984i −0.141897 0.989881i \(-0.545320\pi\)
0.989881 + 0.141897i \(0.0453203\pi\)
\(350\) 0.650523 0.0347719
\(351\) 0 0
\(352\) 1.58947 0.0847190
\(353\) −12.5669 + 12.5669i −0.668870 + 0.668870i −0.957455 0.288584i \(-0.906816\pi\)
0.288584 + 0.957455i \(0.406816\pi\)
\(354\) 0 0
\(355\) 11.9804i 0.635852i
\(356\) 1.91125 + 0.512119i 0.101296 + 0.0271422i
\(357\) 0 0
\(358\) 6.36666 + 1.70594i 0.336488 + 0.0901618i
\(359\) −9.00574 9.00574i −0.475305 0.475305i 0.428322 0.903626i \(-0.359105\pi\)
−0.903626 + 0.428322i \(0.859105\pi\)
\(360\) 0 0
\(361\) −0.337122 + 0.194638i −0.0177433 + 0.0102441i
\(362\) −7.97262 7.97262i −0.419031 0.419031i
\(363\) 0 0
\(364\) −0.122054 + 1.07696i −0.00639735 + 0.0564481i
\(365\) −6.97355 + 4.02618i −0.365012 + 0.210740i
\(366\) 0 0
\(367\) −35.7209 −1.86462 −0.932308 0.361667i \(-0.882208\pi\)
−0.932308 + 0.361667i \(0.882208\pi\)
\(368\) 0.660949 1.14480i 0.0344544 0.0596767i
\(369\) 0 0
\(370\) −4.00610 + 1.07343i −0.208267 + 0.0558050i
\(371\) −0.282512 + 1.05435i −0.0146673 + 0.0547390i
\(372\) 0 0
\(373\) −10.8592 −0.562267 −0.281134 0.959669i \(-0.590710\pi\)
−0.281134 + 0.959669i \(0.590710\pi\)
\(374\) 2.01139 3.48384i 0.104007 0.180145i
\(375\) 0 0
\(376\) −3.10762 1.79419i −0.160263 0.0925281i
\(377\) −4.00423 26.6840i −0.206228 1.37430i
\(378\) 0 0
\(379\) 3.41411 12.7416i 0.175371 0.654494i −0.821117 0.570760i \(-0.806649\pi\)
0.996488 0.0837342i \(-0.0266847\pi\)
\(380\) 7.26495i 0.372684i
\(381\) 0 0
\(382\) −2.83802 + 10.5916i −0.145206 + 0.541914i
\(383\) −9.74254 + 9.74254i −0.497820 + 0.497820i −0.910759 0.412938i \(-0.864502\pi\)
0.412938 + 0.910759i \(0.364502\pi\)
\(384\) 0 0
\(385\) −0.208257 0.777225i −0.0106138 0.0396111i
\(386\) 12.0991 + 6.98540i 0.615826 + 0.355548i
\(387\) 0 0
\(388\) −6.03268 1.61645i −0.306263 0.0820629i
\(389\) −10.3218 + 17.8779i −0.523336 + 0.906445i 0.476295 + 0.879286i \(0.341980\pi\)
−0.999631 + 0.0271595i \(0.991354\pi\)
\(390\) 0 0
\(391\) −1.67280 2.89737i −0.0845970 0.146526i
\(392\) −1.78835 6.67419i −0.0903251 0.337098i
\(393\) 0 0
\(394\) 4.11630 2.37655i 0.207376 0.119729i
\(395\) 8.80067 8.80067i 0.442810 0.442810i
\(396\) 0 0
\(397\) 2.46047 + 9.18259i 0.123487 + 0.460861i 0.999781 0.0209159i \(-0.00665821\pi\)
−0.876294 + 0.481777i \(0.839992\pi\)
\(398\) 22.4395 6.01264i 1.12479 0.301386i
\(399\) 0 0
\(400\) 1.87410 + 1.08201i 0.0937051 + 0.0541006i
\(401\) 11.4410 3.06561i 0.571337 0.153089i 0.0384272 0.999261i \(-0.487765\pi\)
0.532910 + 0.846172i \(0.321099\pi\)
\(402\) 0 0
\(403\) 4.36349 38.5021i 0.217361 1.91792i
\(404\) 8.59259i 0.427498i
\(405\) 0 0
\(406\) −1.12483 1.94826i −0.0558242 0.0966903i
\(407\) −1.95726 3.39008i −0.0970178 0.168040i
\(408\) 0 0
\(409\) 27.1747 + 27.1747i 1.34370 + 1.34370i 0.892340 + 0.451364i \(0.149062\pi\)
0.451364 + 0.892340i \(0.350938\pi\)
\(410\) 4.48267 + 4.48267i 0.221383 + 0.221383i
\(411\) 0 0
\(412\) −0.131698 0.228107i −0.00648828 0.0112380i
\(413\) 0.108922 + 0.188658i 0.00535970 + 0.00928327i
\(414\) 0 0
\(415\) 20.7053i 1.01638i
\(416\) −2.14293 + 2.89963i −0.105066 + 0.142166i
\(417\) 0 0
\(418\) −6.62335 + 1.77472i −0.323958 + 0.0868044i
\(419\) 18.2166 + 10.5173i 0.889937 + 0.513805i 0.873922 0.486066i \(-0.161569\pi\)
0.0160151 + 0.999872i \(0.494902\pi\)
\(420\) 0 0
\(421\) 25.7609 6.90262i 1.25551 0.336413i 0.431048 0.902329i \(-0.358144\pi\)
0.824463 + 0.565916i \(0.191477\pi\)
\(422\) 0.531465 + 1.98345i 0.0258713 + 0.0965530i
\(423\) 0 0
\(424\) −2.56759 + 2.56759i −0.124693 + 0.124693i
\(425\) 4.74316 2.73847i 0.230077 0.132835i
\(426\) 0 0
\(427\) 0.875831 + 3.26865i 0.0423844 + 0.158181i
\(428\) 6.60737 + 11.4443i 0.319379 + 0.553181i
\(429\) 0 0
\(430\) −6.25094 + 10.8269i −0.301447 + 0.522122i
\(431\) −30.6200 8.20459i −1.47491 0.395201i −0.570299 0.821437i \(-0.693173\pi\)
−0.904612 + 0.426236i \(0.859839\pi\)
\(432\) 0 0
\(433\) −32.6337 18.8411i −1.56827 0.905444i −0.996370 0.0851235i \(-0.972872\pi\)
−0.571904 0.820320i \(-0.693795\pi\)
\(434\) −0.836142 3.12052i −0.0401361 0.149790i
\(435\) 0 0
\(436\) 11.1164 11.1164i 0.532377 0.532377i
\(437\) −1.47596 + 5.50838i −0.0706050 + 0.263501i
\(438\) 0 0
\(439\) 2.96173i 0.141356i 0.997499 + 0.0706779i \(0.0225162\pi\)
−0.997499 + 0.0706779i \(0.977484\pi\)
\(440\) 0.692786 2.58551i 0.0330273 0.123260i
\(441\) 0 0
\(442\) 3.64369 + 8.36627i 0.173313 + 0.397943i
\(443\) 23.4384 + 13.5322i 1.11359 + 0.642933i 0.939757 0.341842i \(-0.111051\pi\)
0.173835 + 0.984775i \(0.444384\pi\)
\(444\) 0 0
\(445\) 1.66608 2.88573i 0.0789797 0.136797i
\(446\) 0.595018 0.0281749
\(447\) 0 0
\(448\) −0.0778030 + 0.290365i −0.00367584 + 0.0137184i
\(449\) 38.6090 10.3453i 1.82207 0.488223i 0.825030 0.565088i \(-0.191158\pi\)
0.997041 + 0.0768655i \(0.0244912\pi\)
\(450\) 0 0
\(451\) −2.99173 + 5.18183i −0.140875 + 0.244003i
\(452\) 9.74067 0.458163
\(453\) 0 0
\(454\) 15.8034 9.12412i 0.741692 0.428216i
\(455\) 1.69864 + 0.667944i 0.0796337 + 0.0313137i
\(456\) 0 0
\(457\) −22.8591 22.8591i −1.06930 1.06930i −0.997413 0.0718891i \(-0.977097\pi\)
−0.0718891 0.997413i \(-0.522903\pi\)
\(458\) −8.90848 + 5.14331i −0.416266 + 0.240331i
\(459\) 0 0
\(460\) −1.57411 1.57411i −0.0733931 0.0733931i
\(461\) −10.0612 2.69590i −0.468598 0.125560i 0.0167904 0.999859i \(-0.494655\pi\)
−0.485389 + 0.874299i \(0.661322\pi\)
\(462\) 0 0
\(463\) 12.6632 + 3.39310i 0.588509 + 0.157691i 0.540772 0.841169i \(-0.318132\pi\)
0.0477376 + 0.998860i \(0.484799\pi\)
\(464\) 7.48368i 0.347421i
\(465\) 0 0
\(466\) −15.3986 + 15.3986i −0.713328 + 0.713328i
\(467\) −1.37176 −0.0634775 −0.0317388 0.999496i \(-0.510104\pi\)
−0.0317388 + 0.999496i \(0.510104\pi\)
\(468\) 0 0
\(469\) 0.293749 0.0135640
\(470\) −4.27301 + 4.27301i −0.197099 + 0.197099i
\(471\) 0 0
\(472\) 0.724678i 0.0333560i
\(473\) −11.3978 3.05402i −0.524070 0.140424i
\(474\) 0 0
\(475\) −9.01754 2.41624i −0.413753 0.110865i
\(476\) 0.537972 + 0.537972i 0.0246579 + 0.0246579i
\(477\) 0 0
\(478\) −16.2224 + 9.36599i −0.741994 + 0.428390i
\(479\) 6.56789 + 6.56789i 0.300094 + 0.300094i 0.841051 0.540956i \(-0.181938\pi\)
−0.540956 + 0.841051i \(0.681938\pi\)
\(480\) 0 0
\(481\) 8.82322 + 0.999948i 0.402304 + 0.0455937i
\(482\) −3.83340 + 2.21322i −0.174607 + 0.100809i
\(483\) 0 0
\(484\) −8.47359 −0.385163
\(485\) −5.25881 + 9.10853i −0.238790 + 0.413597i
\(486\) 0 0
\(487\) −11.7546 + 3.14965i −0.532654 + 0.142724i −0.515113 0.857122i \(-0.672250\pi\)
−0.0175402 + 0.999846i \(0.505584\pi\)
\(488\) −2.91354 + 10.8735i −0.131890 + 0.492219i
\(489\) 0 0
\(490\) −11.6361 −0.525664
\(491\) 3.72316 6.44870i 0.168024 0.291026i −0.769701 0.638404i \(-0.779595\pi\)
0.937725 + 0.347378i \(0.112928\pi\)
\(492\) 0 0
\(493\) −16.4029 9.47023i −0.738750 0.426518i
\(494\) 5.69207 14.4755i 0.256098 0.651283i
\(495\) 0 0
\(496\) 2.78151 10.3807i 0.124893 0.466108i
\(497\) 2.13855i 0.0959269i
\(498\) 0 0
\(499\) −1.27227 + 4.74819i −0.0569548 + 0.212558i −0.988539 0.150968i \(-0.951761\pi\)
0.931584 + 0.363527i \(0.118427\pi\)
\(500\) 8.53087 8.53087i 0.381512 0.381512i
\(501\) 0 0
\(502\) −7.66592 28.6096i −0.342147 1.27691i
\(503\) 24.0111 + 13.8628i 1.07060 + 0.618112i 0.928346 0.371718i \(-0.121231\pi\)
0.142255 + 0.989830i \(0.454565\pi\)
\(504\) 0 0
\(505\) 13.9772 + 3.74517i 0.621976 + 0.166658i
\(506\) 1.05056 1.81962i 0.0467030 0.0808920i
\(507\) 0 0
\(508\) −8.75644 15.1666i −0.388504 0.672909i
\(509\) 2.37610 + 8.86772i 0.105319 + 0.393055i 0.998381 0.0568780i \(-0.0181146\pi\)
−0.893062 + 0.449933i \(0.851448\pi\)
\(510\) 0 0
\(511\) 1.24481 0.718691i 0.0550671 0.0317930i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 4.30896 + 16.0812i 0.190060 + 0.709313i
\(515\) −0.428453 + 0.114804i −0.0188799 + 0.00505885i
\(516\) 0 0
\(517\) −4.93947 2.85180i −0.217237 0.125422i
\(518\) 0.715106 0.191612i 0.0314200 0.00841895i
\(519\) 0 0
\(520\) 3.78266 + 4.74964i 0.165881 + 0.208286i
\(521\) 29.1318i 1.27629i 0.769918 + 0.638143i \(0.220297\pi\)
−0.769918 + 0.638143i \(0.779703\pi\)
\(522\) 0 0
\(523\) 1.29854 + 2.24913i 0.0567811 + 0.0983478i 0.893019 0.450019i \(-0.148583\pi\)
−0.836238 + 0.548367i \(0.815250\pi\)
\(524\) 7.74619 + 13.4168i 0.338394 + 0.586116i
\(525\) 0 0
\(526\) 19.8493 + 19.8493i 0.865469 + 0.865469i
\(527\) −19.2329 19.2329i −0.837796 0.837796i
\(528\) 0 0
\(529\) 10.6263 + 18.4053i 0.462013 + 0.800229i
\(530\) 3.05746 + 5.29568i 0.132808 + 0.230030i
\(531\) 0 0
\(532\) 1.29683i 0.0562245i
\(533\) −5.41960 12.4439i −0.234749 0.539006i
\(534\) 0 0
\(535\) 21.4958 5.75978i 0.929344 0.249017i
\(536\) 0.846265 + 0.488591i 0.0365531 + 0.0211039i
\(537\) 0 0
\(538\) 18.0303 4.83121i 0.777343 0.208288i
\(539\) −2.84252 10.6084i −0.122436 0.456937i
\(540\) 0 0
\(541\) −4.52095 + 4.52095i −0.194371 + 0.194371i −0.797582 0.603211i \(-0.793888\pi\)
0.603211 + 0.797582i \(0.293888\pi\)
\(542\) 22.1049 12.7622i 0.949485 0.548185i
\(543\) 0 0
\(544\) 0.655045 + 2.44466i 0.0280848 + 0.104814i
\(545\) −13.2373 22.9276i −0.567023 0.982112i
\(546\) 0 0
\(547\) −7.08272 + 12.2676i −0.302835 + 0.524526i −0.976777 0.214259i \(-0.931267\pi\)
0.673942 + 0.738784i \(0.264600\pi\)
\(548\) −20.6617 5.53629i −0.882624 0.236498i
\(549\) 0 0
\(550\) 2.97883 + 1.71983i 0.127018 + 0.0733336i
\(551\) 8.35590 + 31.1846i 0.355973 + 1.32851i
\(552\) 0 0
\(553\) −1.57096 + 1.57096i −0.0668039 + 0.0668039i
\(554\) 4.08995 15.2639i 0.173765 0.648500i
\(555\) 0 0
\(556\) 9.22919i 0.391405i
\(557\) 2.54976 9.51584i 0.108037 0.403199i −0.890635 0.454719i \(-0.849740\pi\)
0.998672 + 0.0515195i \(0.0164064\pi\)
\(558\) 0 0
\(559\) 20.9380 16.6752i 0.885581 0.705286i
\(560\) 0.438411 + 0.253117i 0.0185263 + 0.0106961i
\(561\) 0 0
\(562\) 13.4646 23.3214i 0.567971 0.983755i
\(563\) −33.4682 −1.41051 −0.705257 0.708951i \(-0.749169\pi\)
−0.705257 + 0.708951i \(0.749169\pi\)
\(564\) 0 0
\(565\) 4.24557 15.8447i 0.178613 0.666591i
\(566\) 22.4831 6.02432i 0.945034 0.253221i
\(567\) 0 0
\(568\) 3.55704 6.16098i 0.149250 0.258509i
\(569\) 10.6707 0.447337 0.223669 0.974665i \(-0.428197\pi\)
0.223669 + 0.974665i \(0.428197\pi\)
\(570\) 0 0
\(571\) 31.5424 18.2110i 1.32001 0.762107i 0.336279 0.941763i \(-0.390832\pi\)
0.983730 + 0.179656i \(0.0574983\pi\)
\(572\) −3.40613 + 4.60886i −0.142417 + 0.192706i
\(573\) 0 0
\(574\) −0.800176 0.800176i −0.0333987 0.0333987i
\(575\) 2.47737 1.43031i 0.103314 0.0596481i
\(576\) 0 0
\(577\) −17.7894 17.7894i −0.740581 0.740581i 0.232109 0.972690i \(-0.425437\pi\)
−0.972690 + 0.232109i \(0.925437\pi\)
\(578\) −10.2335 2.74207i −0.425659 0.114055i
\(579\) 0 0
\(580\) −12.1734 3.26184i −0.505471 0.135441i
\(581\) 3.69599i 0.153335i
\(582\) 0 0
\(583\) −4.08110 + 4.08110i −0.169022 + 0.169022i
\(584\) 4.78159 0.197864
\(585\) 0 0
\(586\) −23.4730 −0.969662
\(587\) 14.6657 14.6657i 0.605317 0.605317i −0.336401 0.941719i \(-0.609210\pi\)
0.941719 + 0.336401i \(0.109210\pi\)
\(588\) 0 0
\(589\) 46.3623i 1.91033i
\(590\) 1.17880 + 0.315859i 0.0485304 + 0.0130037i
\(591\) 0 0
\(592\) 2.37887 + 0.637416i 0.0977709 + 0.0261976i
\(593\) 25.1984 + 25.1984i 1.03477 + 1.03477i 0.999373 + 0.0353990i \(0.0112702\pi\)
0.0353990 + 0.999373i \(0.488730\pi\)
\(594\) 0 0
\(595\) 1.10958 0.640613i 0.0454881 0.0262626i
\(596\) −15.7059 15.7059i −0.643341 0.643341i
\(597\) 0 0
\(598\) 1.90311 + 4.36973i 0.0778241 + 0.178692i
\(599\) 27.2170 15.7138i 1.11206 0.642047i 0.172697 0.984975i \(-0.444752\pi\)
0.939362 + 0.342928i \(0.111419\pi\)
\(600\) 0 0
\(601\) 25.4826 1.03946 0.519728 0.854332i \(-0.326033\pi\)
0.519728 + 0.854332i \(0.326033\pi\)
\(602\) 1.11582 1.93266i 0.0454774 0.0787692i
\(603\) 0 0
\(604\) 16.6660 4.46564i 0.678130 0.181704i
\(605\) −3.69330 + 13.7836i −0.150154 + 0.560383i
\(606\) 0 0
\(607\) 14.5125 0.589045 0.294522 0.955645i \(-0.404839\pi\)
0.294522 + 0.955645i \(0.404839\pi\)
\(608\) 2.15701 3.73605i 0.0874782 0.151517i
\(609\) 0 0
\(610\) 16.4175 + 9.47862i 0.664723 + 0.383778i
\(611\) 11.8619 5.16611i 0.479881 0.208999i
\(612\) 0 0
\(613\) 1.08903 4.06431i 0.0439855 0.164156i −0.940440 0.339961i \(-0.889586\pi\)
0.984425 + 0.175805i \(0.0562528\pi\)
\(614\) 21.4841i 0.867028i
\(615\) 0 0
\(616\) −0.123665 + 0.461525i −0.00498262 + 0.0185954i
\(617\) −1.56048 + 1.56048i −0.0628225 + 0.0628225i −0.737820 0.674997i \(-0.764145\pi\)
0.674997 + 0.737820i \(0.264145\pi\)
\(618\) 0 0
\(619\) 6.37151 + 23.7788i 0.256092 + 0.955750i 0.967479 + 0.252950i \(0.0814007\pi\)
−0.711387 + 0.702800i \(0.751933\pi\)
\(620\) −15.6735 9.04909i −0.629462 0.363420i
\(621\) 0 0
\(622\) 9.69909 + 2.59886i 0.388898 + 0.104205i
\(623\) −0.297402 + 0.515116i −0.0119152 + 0.0206377i
\(624\) 0 0
\(625\) −4.74843 8.22452i −0.189937 0.328981i
\(626\) −2.03761 7.60448i −0.0814394 0.303936i
\(627\) 0 0
\(628\) 0.520608 0.300573i 0.0207745 0.0119942i
\(629\) 4.40744 4.40744i 0.175736 0.175736i
\(630\) 0 0
\(631\) 9.44199 + 35.2380i 0.375880 + 1.40280i 0.852055 + 0.523452i \(0.175356\pi\)
−0.476176 + 0.879350i \(0.657977\pi\)
\(632\) −7.13877 + 1.91283i −0.283965 + 0.0760882i
\(633\) 0 0
\(634\) −9.52602 5.49985i −0.378326 0.218427i
\(635\) −28.4874 + 7.63317i −1.13049 + 0.302913i
\(636\) 0 0
\(637\) 23.1850 + 9.11683i 0.918622 + 0.361222i
\(638\) 11.8951i 0.470931i
\(639\) 0 0
\(640\) 0.842018 + 1.45842i 0.0332837 + 0.0576490i
\(641\) −10.4318 18.0685i −0.412033 0.713663i 0.583079 0.812416i \(-0.301848\pi\)
−0.995112 + 0.0987531i \(0.968515\pi\)
\(642\) 0 0
\(643\) 0.982746 + 0.982746i 0.0387557 + 0.0387557i 0.726219 0.687463i \(-0.241276\pi\)
−0.687463 + 0.726219i \(0.741276\pi\)
\(644\) 0.280985 + 0.280985i 0.0110724 + 0.0110724i
\(645\) 0 0
\(646\) −5.45917 9.45556i −0.214788 0.372024i
\(647\) 5.20265 + 9.01126i 0.204537 + 0.354269i 0.949985 0.312295i \(-0.101098\pi\)
−0.745448 + 0.666564i \(0.767764\pi\)
\(648\) 0 0
\(649\) 1.15185i 0.0452142i
\(650\) −7.15351 + 3.11551i −0.280584 + 0.122200i
\(651\) 0 0
\(652\) 3.47046 0.929908i 0.135914 0.0364180i
\(653\) −23.5364 13.5887i −0.921050 0.531769i −0.0370803 0.999312i \(-0.511806\pi\)
−0.883970 + 0.467544i \(0.845139\pi\)
\(654\) 0 0
\(655\) 25.2007 6.75252i 0.984674 0.263843i
\(656\) −0.974309 3.63617i −0.0380404 0.141969i
\(657\) 0 0
\(658\) 0.762750 0.762750i 0.0297351 0.0297351i
\(659\) 20.1845 11.6535i 0.786277 0.453957i −0.0523733 0.998628i \(-0.516679\pi\)
0.838650 + 0.544670i \(0.183345\pi\)
\(660\) 0 0
\(661\) 0.131680 + 0.491436i 0.00512175 + 0.0191146i 0.968439 0.249249i \(-0.0801838\pi\)
−0.963318 + 0.268364i \(0.913517\pi\)
\(662\) 11.2573 + 19.4982i 0.437526 + 0.757818i
\(663\) 0 0
\(664\) 6.14753 10.6478i 0.238570 0.413216i
\(665\) −2.10949 0.565235i −0.0818023 0.0219189i
\(666\) 0 0
\(667\) −8.56730 4.94634i −0.331727 0.191523i
\(668\) −2.33689 8.72138i −0.0904169 0.337440i
\(669\) 0 0
\(670\) 1.16362 1.16362i 0.0449546 0.0449546i
\(671\) −4.63097 + 17.2830i −0.178777 + 0.667204i
\(672\) 0 0
\(673\) 8.41494i 0.324372i 0.986760 + 0.162186i \(0.0518545\pi\)
−0.986760 + 0.162186i \(0.948146\pi\)
\(674\) −3.65243 + 13.6310i −0.140686 + 0.525048i
\(675\) 0 0
\(676\) −3.81566 12.4274i −0.146756 0.477978i
\(677\) 17.7008 + 10.2196i 0.680297 + 0.392770i 0.799967 0.600044i \(-0.204850\pi\)
−0.119670 + 0.992814i \(0.538184\pi\)
\(678\) 0 0
\(679\) 0.938721 1.62591i 0.0360248 0.0623968i
\(680\) 4.26212 0.163445
\(681\) 0 0
\(682\) 4.42112 16.4998i 0.169293 0.631811i
\(683\) −16.8568 + 4.51677i −0.645008 + 0.172829i −0.566471 0.824082i \(-0.691692\pi\)
−0.0785371 + 0.996911i \(0.525025\pi\)
\(684\) 0 0
\(685\) −18.0112 + 31.1964i −0.688174 + 1.19195i
\(686\) 4.18134 0.159644
\(687\) 0 0
\(688\) 6.42917 3.71188i 0.245110 0.141514i
\(689\) −1.94287 12.9472i −0.0740175 0.493250i
\(690\) 0 0
\(691\) 5.28654 + 5.28654i 0.201110 + 0.201110i 0.800475 0.599366i \(-0.204580\pi\)
−0.599366 + 0.800475i \(0.704580\pi\)
\(692\) 13.6243 7.86600i 0.517919 0.299020i
\(693\) 0 0
\(694\) −17.4040 17.4040i −0.660648 0.660648i
\(695\) −15.0127 4.02264i −0.569464 0.152587i
\(696\) 0 0
\(697\) −9.20278 2.46588i −0.348580 0.0934018i
\(698\) 22.4035i 0.847984i
\(699\) 0 0
\(700\) −0.459989 + 0.459989i −0.0173859 + 0.0173859i
\(701\) 31.1840 1.17780 0.588901 0.808205i \(-0.299561\pi\)
0.588901 + 0.808205i \(0.299561\pi\)
\(702\) 0 0
\(703\) −10.6245 −0.400711
\(704\) −1.12392 + 1.12392i −0.0423595 + 0.0423595i
\(705\) 0 0
\(706\) 17.7723i 0.668870i
\(707\) −2.49499 0.668529i −0.0938336 0.0251426i
\(708\) 0 0
\(709\) −8.04984 2.15695i −0.302318 0.0810059i 0.104471 0.994528i \(-0.466685\pi\)
−0.406789 + 0.913522i \(0.633352\pi\)
\(710\) −8.47140 8.47140i −0.317926 0.317926i
\(711\) 0 0
\(712\) −1.71358 + 0.989338i −0.0642192 + 0.0370770i
\(713\) −10.0454 10.0454i −0.376203 0.376203i
\(714\) 0 0
\(715\) 6.01243 + 7.54941i 0.224852 + 0.282332i
\(716\) −5.70819 + 3.29562i −0.213325 + 0.123163i
\(717\) 0 0
\(718\) 12.7360 0.475305
\(719\) 5.63051 9.75233i 0.209983 0.363701i −0.741726 0.670703i \(-0.765993\pi\)
0.951709 + 0.307002i \(0.0993259\pi\)
\(720\) 0 0
\(721\) 0.0764807 0.0204930i 0.00284829 0.000763197i
\(722\) 0.100752 0.376011i 0.00374959 0.0139937i
\(723\) 0 0
\(724\) 11.2750 0.419031
\(725\) 8.09744 14.0252i 0.300731 0.520882i
\(726\) 0 0
\(727\) 5.52426 + 3.18943i 0.204883 + 0.118290i 0.598931 0.800800i \(-0.295592\pi\)
−0.394048 + 0.919090i \(0.628926\pi\)
\(728\) −0.675222 0.847832i −0.0250254 0.0314227i
\(729\) 0 0
\(730\) 2.08410 7.77798i 0.0771362 0.287876i
\(731\) 18.7888i 0.694929i
\(732\) 0 0
\(733\) 6.48221 24.1919i 0.239426 0.893550i −0.736678 0.676244i \(-0.763606\pi\)
0.976104 0.217306i \(-0.0697268\pi\)
\(734\) 25.2585 25.2585i 0.932308 0.932308i
\(735\) 0 0
\(736\) 0.342133 + 1.27686i 0.0126112 + 0.0470655i
\(737\) 1.34511 + 0.776601i 0.0495478 + 0.0286065i
\(738\) 0 0
\(739\) 42.5336 + 11.3968i 1.56462 + 0.419240i 0.934124 0.356950i \(-0.116183\pi\)
0.630500 + 0.776189i \(0.282850\pi\)
\(740\) 2.07371 3.59177i 0.0762311 0.132036i
\(741\) 0 0
\(742\) −0.545771 0.945302i −0.0200359 0.0347031i
\(743\) 1.38387 + 5.16468i 0.0507693 + 0.189474i 0.986653 0.162834i \(-0.0520636\pi\)
−0.935884 + 0.352308i \(0.885397\pi\)
\(744\) 0 0
\(745\) −32.3937 + 18.7025i −1.18681 + 0.685208i
\(746\) 7.67860 7.67860i 0.281134 0.281134i
\(747\) 0 0
\(748\) 1.04117 + 3.88571i 0.0380691 + 0.142076i
\(749\) −3.83709 + 1.02815i −0.140204 + 0.0375676i
\(750\) 0 0
\(751\) −16.4494 9.49704i −0.600246 0.346552i 0.168892 0.985634i \(-0.445981\pi\)
−0.769138 + 0.639082i \(0.779314\pi\)
\(752\) 3.46610 0.928739i 0.126396 0.0338676i
\(753\) 0 0
\(754\) 21.6999 + 16.0370i 0.790263 + 0.584035i
\(755\) 29.0562i 1.05746i
\(756\) 0 0
\(757\) 16.5655 + 28.6922i 0.602082 + 1.04284i 0.992505 + 0.122202i \(0.0389954\pi\)
−0.390423 + 0.920636i \(0.627671\pi\)
\(758\) 6.59556 + 11.4238i 0.239562 + 0.414933i
\(759\) 0 0
\(760\) −5.13710 5.13710i −0.186342 0.186342i
\(761\) −31.7060 31.7060i −1.14934 1.14934i −0.986683 0.162658i \(-0.947993\pi\)
−0.162658 0.986683i \(-0.552007\pi\)
\(762\) 0 0
\(763\) 2.36291 + 4.09268i 0.0855431 + 0.148165i
\(764\) −5.48262 9.49618i −0.198354 0.343560i
\(765\) 0 0
\(766\) 13.7780i 0.497820i
\(767\) −2.10130 1.55294i −0.0758734 0.0560734i
\(768\) 0 0
\(769\) −7.46852 + 2.00118i −0.269322 + 0.0721645i −0.390952 0.920411i \(-0.627854\pi\)
0.121631 + 0.992575i \(0.461188\pi\)
\(770\) 0.696841 + 0.402321i 0.0251124 + 0.0144987i
\(771\) 0 0
\(772\) −13.4948 + 3.61591i −0.485687 + 0.130139i
\(773\) 8.41217 + 31.3946i 0.302565 + 1.12919i 0.935021 + 0.354591i \(0.115380\pi\)
−0.632457 + 0.774596i \(0.717953\pi\)
\(774\) 0 0
\(775\) 16.4449 16.4449i 0.590718 0.590718i
\(776\) 5.40876 3.12275i 0.194163 0.112100i
\(777\) 0 0
\(778\) −5.34296 19.9402i −0.191554 0.714891i
\(779\) 8.11993 + 14.0641i 0.290927 + 0.503900i
\(780\) 0 0
\(781\) 5.65380 9.79268i 0.202309 0.350410i
\(782\) 3.23159 + 0.865903i 0.115562 + 0.0309646i
\(783\) 0 0
\(784\) 5.98392 + 3.45482i