Properties

Label 702.2.bb.a.71.9
Level $702$
Weight $2$
Character 702.71
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(71,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 71.9
Character \(\chi\) \(=\) 702.71
Dual form 702.2.bb.a.89.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-1.51706 + 0.406496i) q^{5} +(4.52587 - 1.21270i) q^{7} +(-0.707107 + 0.707107i) q^{8} +O(q^{10})\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-1.51706 + 0.406496i) q^{5} +(4.52587 - 1.21270i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-1.36016 - 0.785290i) q^{10} +(1.08184 - 1.08184i) q^{11} +(-1.01269 - 3.46041i) q^{13} +(4.05778 + 2.34276i) q^{14} -1.00000 q^{16} +(2.99188 + 5.18209i) q^{17} +(5.70943 + 1.52984i) q^{19} +(-0.406496 - 1.51706i) q^{20} +1.52995 q^{22} +(2.48702 + 4.30764i) q^{23} +(-2.19388 + 1.26664i) q^{25} +(1.73080 - 3.16296i) q^{26} +(1.21270 + 4.52587i) q^{28} -6.86939i q^{29} +(-0.271305 - 1.01253i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(-1.54871 + 5.77988i) q^{34} +(-6.37308 + 3.67950i) q^{35} +(-6.94881 + 1.86193i) q^{37} +(2.95542 + 5.11893i) q^{38} +(0.785290 - 1.36016i) q^{40} +(-1.34176 + 5.00750i) q^{41} +(10.6164 + 6.12935i) q^{43} +(1.08184 + 1.08184i) q^{44} +(-1.28737 + 4.80455i) q^{46} +(-6.14146 - 1.64560i) q^{47} +(12.9507 - 7.47708i) q^{49} +(-2.44696 - 0.655661i) q^{50} +(3.46041 - 1.01269i) q^{52} -2.78130i q^{53} +(-1.20146 + 2.08099i) q^{55} +(-2.34276 + 4.05778i) q^{56} +(4.85740 - 4.85740i) q^{58} +(4.22367 - 4.22367i) q^{59} +(-2.18623 + 3.78666i) q^{61} +(0.524122 - 0.907805i) q^{62} -1.00000i q^{64} +(2.94296 + 4.83801i) q^{65} +(-5.41695 - 1.45147i) q^{67} +(-5.18209 + 2.99188i) q^{68} +(-7.10824 - 1.90465i) q^{70} +(-0.0745019 + 0.278045i) q^{71} +(0.964880 + 0.964880i) q^{73} +(-6.23013 - 3.59697i) q^{74} +(-1.52984 + 5.70943i) q^{76} +(3.58432 - 6.20823i) q^{77} +(-0.0673941 - 0.116730i) q^{79} +(1.51706 - 0.406496i) q^{80} +(-4.48960 + 2.59207i) q^{82} +(3.00217 - 11.2043i) q^{83} +(-6.64538 - 6.64538i) q^{85} +(3.17279 + 11.8410i) q^{86} +1.52995i q^{88} +(-1.46167 - 5.45501i) q^{89} +(-8.77976 - 14.4333i) q^{91} +(-4.30764 + 2.48702i) q^{92} +(-3.17905 - 5.50628i) q^{94} -9.28344 q^{95} +(-1.72699 - 6.44523i) q^{97} +(14.4446 + 3.87042i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73} - 48 q^{74} + 4 q^{76} + 24 q^{77} - 24 q^{79} + 60 q^{83} - 48 q^{86} + 4 q^{91} + 24 q^{92} + 20 q^{97} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −1.51706 + 0.406496i −0.678452 + 0.181791i −0.581559 0.813504i \(-0.697557\pi\)
−0.0968927 + 0.995295i \(0.530890\pi\)
\(6\) 0 0
\(7\) 4.52587 1.21270i 1.71062 0.458359i 0.735042 0.678021i \(-0.237162\pi\)
0.975576 + 0.219662i \(0.0704955\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) −1.36016 0.785290i −0.430121 0.248331i
\(11\) 1.08184 1.08184i 0.326187 0.326187i −0.524947 0.851135i \(-0.675915\pi\)
0.851135 + 0.524947i \(0.175915\pi\)
\(12\) 0 0
\(13\) −1.01269 3.46041i −0.280869 0.959746i
\(14\) 4.05778 + 2.34276i 1.08449 + 0.626130i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 2.99188 + 5.18209i 0.725638 + 1.25684i 0.958711 + 0.284383i \(0.0917888\pi\)
−0.233072 + 0.972459i \(0.574878\pi\)
\(18\) 0 0
\(19\) 5.70943 + 1.52984i 1.30983 + 0.350968i 0.845160 0.534514i \(-0.179505\pi\)
0.464673 + 0.885483i \(0.346172\pi\)
\(20\) −0.406496 1.51706i −0.0908953 0.339226i
\(21\) 0 0
\(22\) 1.52995 0.326187
\(23\) 2.48702 + 4.30764i 0.518579 + 0.898204i 0.999767 + 0.0215873i \(0.00687197\pi\)
−0.481188 + 0.876617i \(0.659795\pi\)
\(24\) 0 0
\(25\) −2.19388 + 1.26664i −0.438777 + 0.253328i
\(26\) 1.73080 3.16296i 0.339438 0.620308i
\(27\) 0 0
\(28\) 1.21270 + 4.52587i 0.229179 + 0.855309i
\(29\) 6.86939i 1.27561i −0.770196 0.637807i \(-0.779842\pi\)
0.770196 0.637807i \(-0.220158\pi\)
\(30\) 0 0
\(31\) −0.271305 1.01253i −0.0487279 0.181855i 0.937273 0.348597i \(-0.113342\pi\)
−0.986001 + 0.166742i \(0.946675\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) −1.54871 + 5.77988i −0.265602 + 0.991240i
\(35\) −6.37308 + 3.67950i −1.07725 + 0.621949i
\(36\) 0 0
\(37\) −6.94881 + 1.86193i −1.14238 + 0.306099i −0.779906 0.625896i \(-0.784733\pi\)
−0.362471 + 0.931995i \(0.618067\pi\)
\(38\) 2.95542 + 5.11893i 0.479432 + 0.830400i
\(39\) 0 0
\(40\) 0.785290 1.36016i 0.124165 0.215061i
\(41\) −1.34176 + 5.00750i −0.209547 + 0.782040i 0.778468 + 0.627684i \(0.215997\pi\)
−0.988015 + 0.154356i \(0.950670\pi\)
\(42\) 0 0
\(43\) 10.6164 + 6.12935i 1.61898 + 0.934718i 0.987185 + 0.159581i \(0.0510143\pi\)
0.631794 + 0.775137i \(0.282319\pi\)
\(44\) 1.08184 + 1.08184i 0.163094 + 0.163094i
\(45\) 0 0
\(46\) −1.28737 + 4.80455i −0.189813 + 0.708392i
\(47\) −6.14146 1.64560i −0.895823 0.240035i −0.218602 0.975814i \(-0.570150\pi\)
−0.677222 + 0.735779i \(0.736816\pi\)
\(48\) 0 0
\(49\) 12.9507 7.47708i 1.85010 1.06815i
\(50\) −2.44696 0.655661i −0.346052 0.0927244i
\(51\) 0 0
\(52\) 3.46041 1.01269i 0.479873 0.140435i
\(53\) 2.78130i 0.382041i −0.981586 0.191021i \(-0.938820\pi\)
0.981586 0.191021i \(-0.0611798\pi\)
\(54\) 0 0
\(55\) −1.20146 + 2.08099i −0.162005 + 0.280600i
\(56\) −2.34276 + 4.05778i −0.313065 + 0.542244i
\(57\) 0 0
\(58\) 4.85740 4.85740i 0.637807 0.637807i
\(59\) 4.22367 4.22367i 0.549875 0.549875i −0.376529 0.926405i \(-0.622883\pi\)
0.926405 + 0.376529i \(0.122883\pi\)
\(60\) 0 0
\(61\) −2.18623 + 3.78666i −0.279918 + 0.484833i −0.971364 0.237596i \(-0.923641\pi\)
0.691446 + 0.722428i \(0.256974\pi\)
\(62\) 0.524122 0.907805i 0.0665635 0.115291i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 2.94296 + 4.83801i 0.365029 + 0.600082i
\(66\) 0 0
\(67\) −5.41695 1.45147i −0.661785 0.177325i −0.0877337 0.996144i \(-0.527962\pi\)
−0.574052 + 0.818819i \(0.694629\pi\)
\(68\) −5.18209 + 2.99188i −0.628421 + 0.362819i
\(69\) 0 0
\(70\) −7.10824 1.90465i −0.849598 0.227649i
\(71\) −0.0745019 + 0.278045i −0.00884175 + 0.0329979i −0.970206 0.242282i \(-0.922104\pi\)
0.961364 + 0.275280i \(0.0887706\pi\)
\(72\) 0 0
\(73\) 0.964880 + 0.964880i 0.112931 + 0.112931i 0.761314 0.648383i \(-0.224555\pi\)
−0.648383 + 0.761314i \(0.724555\pi\)
\(74\) −6.23013 3.59697i −0.724238 0.418139i
\(75\) 0 0
\(76\) −1.52984 + 5.70943i −0.175484 + 0.654916i
\(77\) 3.58432 6.20823i 0.408471 0.707493i
\(78\) 0 0
\(79\) −0.0673941 0.116730i −0.00758243 0.0131331i 0.862209 0.506552i \(-0.169080\pi\)
−0.869792 + 0.493419i \(0.835747\pi\)
\(80\) 1.51706 0.406496i 0.169613 0.0454476i
\(81\) 0 0
\(82\) −4.48960 + 2.59207i −0.495794 + 0.286247i
\(83\) 3.00217 11.2043i 0.329531 1.22983i −0.580147 0.814512i \(-0.697005\pi\)
0.909678 0.415314i \(-0.136328\pi\)
\(84\) 0 0
\(85\) −6.64538 6.64538i −0.720793 0.720793i
\(86\) 3.17279 + 11.8410i 0.342130 + 1.27685i
\(87\) 0 0
\(88\) 1.52995i 0.163094i
\(89\) −1.46167 5.45501i −0.154936 0.578230i −0.999111 0.0421616i \(-0.986576\pi\)
0.844175 0.536068i \(-0.180091\pi\)
\(90\) 0 0
\(91\) −8.77976 14.4333i −0.920368 1.51302i
\(92\) −4.30764 + 2.48702i −0.449102 + 0.259289i
\(93\) 0 0
\(94\) −3.17905 5.50628i −0.327894 0.567929i
\(95\) −9.28344 −0.952461
\(96\) 0 0
\(97\) −1.72699 6.44523i −0.175350 0.654414i −0.996492 0.0836903i \(-0.973329\pi\)
0.821142 0.570724i \(-0.193337\pi\)
\(98\) 14.4446 + 3.87042i 1.45913 + 0.390972i
\(99\) 0 0
\(100\) −1.26664 2.19388i −0.126664 0.219388i
\(101\) −7.65990 −0.762188 −0.381094 0.924536i \(-0.624453\pi\)
−0.381094 + 0.924536i \(0.624453\pi\)
\(102\) 0 0
\(103\) −2.46359 1.42235i −0.242744 0.140149i 0.373693 0.927552i \(-0.378091\pi\)
−0.616437 + 0.787404i \(0.711425\pi\)
\(104\) 3.16296 + 1.73080i 0.310154 + 0.169719i
\(105\) 0 0
\(106\) 1.96668 1.96668i 0.191021 0.191021i
\(107\) −14.7551 8.51888i −1.42643 0.823551i −0.429595 0.903022i \(-0.641344\pi\)
−0.996837 + 0.0794704i \(0.974677\pi\)
\(108\) 0 0
\(109\) −1.44362 + 1.44362i −0.138274 + 0.138274i −0.772856 0.634582i \(-0.781172\pi\)
0.634582 + 0.772856i \(0.281172\pi\)
\(110\) −2.32104 + 0.621920i −0.221302 + 0.0592978i
\(111\) 0 0
\(112\) −4.52587 + 1.21270i −0.427655 + 0.114590i
\(113\) 8.31066i 0.781802i −0.920433 0.390901i \(-0.872164\pi\)
0.920433 0.390901i \(-0.127836\pi\)
\(114\) 0 0
\(115\) −5.52400 5.52400i −0.515116 0.515116i
\(116\) 6.86939 0.637807
\(117\) 0 0
\(118\) 5.97318 0.549875
\(119\) 19.8252 + 19.8252i 1.81738 + 1.81738i
\(120\) 0 0
\(121\) 8.65924i 0.787204i
\(122\) −4.22347 + 1.13168i −0.382375 + 0.102457i
\(123\) 0 0
\(124\) 1.01253 0.271305i 0.0909275 0.0243639i
\(125\) 8.36622 8.36622i 0.748297 0.748297i
\(126\) 0 0
\(127\) −10.0790 5.81914i −0.894371 0.516365i −0.0190013 0.999819i \(-0.506049\pi\)
−0.875370 + 0.483454i \(0.839382\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) −1.34001 + 5.50198i −0.117526 + 0.482555i
\(131\) −4.72499 2.72798i −0.412825 0.238344i 0.279178 0.960239i \(-0.409938\pi\)
−0.692003 + 0.721895i \(0.743271\pi\)
\(132\) 0 0
\(133\) 27.6954 2.40149
\(134\) −2.80402 4.85670i −0.242230 0.419555i
\(135\) 0 0
\(136\) −5.77988 1.54871i −0.495620 0.132801i
\(137\) −0.379002 1.41446i −0.0323803 0.120845i 0.947844 0.318735i \(-0.103258\pi\)
−0.980224 + 0.197890i \(0.936591\pi\)
\(138\) 0 0
\(139\) −7.49403 −0.635636 −0.317818 0.948152i \(-0.602950\pi\)
−0.317818 + 0.948152i \(0.602950\pi\)
\(140\) −3.67950 6.37308i −0.310974 0.538623i
\(141\) 0 0
\(142\) −0.249288 + 0.143927i −0.0209198 + 0.0120781i
\(143\) −4.83919 2.64805i −0.404673 0.221441i
\(144\) 0 0
\(145\) 2.79238 + 10.4213i 0.231895 + 0.865443i
\(146\) 1.36455i 0.112931i
\(147\) 0 0
\(148\) −1.86193 6.94881i −0.153049 0.571188i
\(149\) 0.424349 + 0.424349i 0.0347641 + 0.0347641i 0.724275 0.689511i \(-0.242175\pi\)
−0.689511 + 0.724275i \(0.742175\pi\)
\(150\) 0 0
\(151\) 0.470936 1.75756i 0.0383242 0.143028i −0.944113 0.329623i \(-0.893078\pi\)
0.982437 + 0.186595i \(0.0597451\pi\)
\(152\) −5.11893 + 2.95542i −0.415200 + 0.239716i
\(153\) 0 0
\(154\) 6.92438 1.85538i 0.557982 0.149511i
\(155\) 0.823175 + 1.42578i 0.0661190 + 0.114521i
\(156\) 0 0
\(157\) −1.01577 + 1.75937i −0.0810676 + 0.140413i −0.903709 0.428148i \(-0.859166\pi\)
0.822641 + 0.568561i \(0.192500\pi\)
\(158\) 0.0348857 0.130195i 0.00277536 0.0103578i
\(159\) 0 0
\(160\) 1.36016 + 0.785290i 0.107530 + 0.0620826i
\(161\) 16.4798 + 16.4798i 1.29879 + 1.29879i
\(162\) 0 0
\(163\) −2.35591 + 8.79238i −0.184529 + 0.688672i 0.810202 + 0.586151i \(0.199358\pi\)
−0.994731 + 0.102521i \(0.967309\pi\)
\(164\) −5.00750 1.34176i −0.391020 0.104774i
\(165\) 0 0
\(166\) 10.0455 5.79975i 0.779679 0.450148i
\(167\) −3.61344 0.968219i −0.279617 0.0749231i 0.116285 0.993216i \(-0.462901\pi\)
−0.395902 + 0.918293i \(0.629568\pi\)
\(168\) 0 0
\(169\) −10.9489 + 7.00865i −0.842225 + 0.539127i
\(170\) 9.39799i 0.720793i
\(171\) 0 0
\(172\) −6.12935 + 10.6164i −0.467359 + 0.809489i
\(173\) −0.507126 + 0.878368i −0.0385561 + 0.0667811i −0.884659 0.466238i \(-0.845609\pi\)
0.846103 + 0.533019i \(0.178942\pi\)
\(174\) 0 0
\(175\) −8.39317 + 8.39317i −0.634464 + 0.634464i
\(176\) −1.08184 + 1.08184i −0.0815468 + 0.0815468i
\(177\) 0 0
\(178\) 2.82372 4.89083i 0.211647 0.366583i
\(179\) −11.6793 + 20.2291i −0.872951 + 1.51200i −0.0140213 + 0.999902i \(0.504463\pi\)
−0.858930 + 0.512094i \(0.828870\pi\)
\(180\) 0 0
\(181\) 8.51778i 0.633122i −0.948572 0.316561i \(-0.897472\pi\)
0.948572 0.316561i \(-0.102528\pi\)
\(182\) 3.99765 16.4141i 0.296326 1.21669i
\(183\) 0 0
\(184\) −4.80455 1.28737i −0.354196 0.0949065i
\(185\) 9.78492 5.64933i 0.719401 0.415347i
\(186\) 0 0
\(187\) 8.84295 + 2.36946i 0.646660 + 0.173272i
\(188\) 1.64560 6.14146i 0.120018 0.447912i
\(189\) 0 0
\(190\) −6.56438 6.56438i −0.476230 0.476230i
\(191\) −13.5364 7.81525i −0.979461 0.565492i −0.0773534 0.997004i \(-0.524647\pi\)
−0.902107 + 0.431512i \(0.857980\pi\)
\(192\) 0 0
\(193\) −4.09187 + 15.2711i −0.294540 + 1.09924i 0.647043 + 0.762454i \(0.276005\pi\)
−0.941582 + 0.336783i \(0.890661\pi\)
\(194\) 3.33630 5.77864i 0.239532 0.414882i
\(195\) 0 0
\(196\) 7.47708 + 12.9507i 0.534077 + 0.925049i
\(197\) 13.3907 3.58802i 0.954045 0.255635i 0.251967 0.967736i \(-0.418923\pi\)
0.702078 + 0.712100i \(0.252256\pi\)
\(198\) 0 0
\(199\) −10.8199 + 6.24687i −0.767002 + 0.442829i −0.831804 0.555069i \(-0.812692\pi\)
0.0648021 + 0.997898i \(0.479358\pi\)
\(200\) 0.655661 2.44696i 0.0463622 0.173026i
\(201\) 0 0
\(202\) −5.41637 5.41637i −0.381094 0.381094i
\(203\) −8.33054 31.0900i −0.584689 2.18209i
\(204\) 0 0
\(205\) 8.14212i 0.568670i
\(206\) −0.736264 2.74777i −0.0512979 0.191446i
\(207\) 0 0
\(208\) 1.01269 + 3.46041i 0.0702174 + 0.239936i
\(209\) 7.83173 4.52165i 0.541732 0.312769i
\(210\) 0 0
\(211\) −3.90948 6.77143i −0.269140 0.466164i 0.699500 0.714633i \(-0.253406\pi\)
−0.968640 + 0.248468i \(0.920073\pi\)
\(212\) 2.78130 0.191021
\(213\) 0 0
\(214\) −4.40970 16.4572i −0.301441 1.12499i
\(215\) −18.5972 4.98312i −1.26832 0.339846i
\(216\) 0 0
\(217\) −2.45579 4.25355i −0.166710 0.288750i
\(218\) −2.04159 −0.138274
\(219\) 0 0
\(220\) −2.08099 1.20146i −0.140300 0.0810023i
\(221\) 14.9023 15.6010i 1.00244 1.04944i
\(222\) 0 0
\(223\) −1.50200 + 1.50200i −0.100581 + 0.100581i −0.755607 0.655026i \(-0.772658\pi\)
0.655026 + 0.755607i \(0.272658\pi\)
\(224\) −4.05778 2.34276i −0.271122 0.156532i
\(225\) 0 0
\(226\) 5.87653 5.87653i 0.390901 0.390901i
\(227\) 18.1107 4.85274i 1.20205 0.322088i 0.398411 0.917207i \(-0.369562\pi\)
0.803637 + 0.595119i \(0.202895\pi\)
\(228\) 0 0
\(229\) 21.4410 5.74509i 1.41686 0.379646i 0.532491 0.846436i \(-0.321256\pi\)
0.884369 + 0.466789i \(0.154589\pi\)
\(230\) 7.81211i 0.515116i
\(231\) 0 0
\(232\) 4.85740 + 4.85740i 0.318904 + 0.318904i
\(233\) −18.3697 −1.20344 −0.601721 0.798707i \(-0.705518\pi\)
−0.601721 + 0.798707i \(0.705518\pi\)
\(234\) 0 0
\(235\) 9.98591 0.651409
\(236\) 4.22367 + 4.22367i 0.274938 + 0.274938i
\(237\) 0 0
\(238\) 28.0371i 1.81738i
\(239\) −8.67535 + 2.32455i −0.561161 + 0.150363i −0.528240 0.849095i \(-0.677148\pi\)
−0.0329216 + 0.999458i \(0.510481\pi\)
\(240\) 0 0
\(241\) −4.08094 + 1.09348i −0.262876 + 0.0704375i −0.387850 0.921723i \(-0.626782\pi\)
0.124974 + 0.992160i \(0.460115\pi\)
\(242\) −6.12301 + 6.12301i −0.393602 + 0.393602i
\(243\) 0 0
\(244\) −3.78666 2.18623i −0.242416 0.139959i
\(245\) −16.6076 + 16.6076i −1.06102 + 1.06102i
\(246\) 0 0
\(247\) −0.488008 21.3062i −0.0310512 1.35568i
\(248\) 0.907805 + 0.524122i 0.0576457 + 0.0332818i
\(249\) 0 0
\(250\) 11.8316 0.748297
\(251\) −0.0344162 0.0596107i −0.00217233 0.00376259i 0.864937 0.501880i \(-0.167358\pi\)
−0.867110 + 0.498118i \(0.834025\pi\)
\(252\) 0 0
\(253\) 7.35074 + 1.96962i 0.462137 + 0.123829i
\(254\) −3.01221 11.2417i −0.189003 0.705368i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.98389 + 12.0965i 0.435643 + 0.754556i 0.997348 0.0727815i \(-0.0231876\pi\)
−0.561705 + 0.827338i \(0.689854\pi\)
\(258\) 0 0
\(259\) −29.1914 + 16.8537i −1.81387 + 1.04724i
\(260\) −4.83801 + 2.94296i −0.300041 + 0.182515i
\(261\) 0 0
\(262\) −1.41210 5.27005i −0.0872401 0.325584i
\(263\) 23.9692i 1.47800i 0.673705 + 0.739001i \(0.264702\pi\)
−0.673705 + 0.739001i \(0.735298\pi\)
\(264\) 0 0
\(265\) 1.13059 + 4.21942i 0.0694515 + 0.259197i
\(266\) 19.5836 + 19.5836i 1.20075 + 1.20075i
\(267\) 0 0
\(268\) 1.45147 5.41695i 0.0886624 0.330893i
\(269\) 22.7826 13.1536i 1.38908 0.801987i 0.395870 0.918307i \(-0.370443\pi\)
0.993212 + 0.116320i \(0.0371099\pi\)
\(270\) 0 0
\(271\) 4.66870 1.25097i 0.283603 0.0759913i −0.114213 0.993456i \(-0.536435\pi\)
0.397817 + 0.917465i \(0.369768\pi\)
\(272\) −2.99188 5.18209i −0.181410 0.314211i
\(273\) 0 0
\(274\) 0.732176 1.26817i 0.0442324 0.0766127i
\(275\) −1.00313 + 3.74374i −0.0604911 + 0.225756i
\(276\) 0 0
\(277\) −12.6229 7.28781i −0.758434 0.437882i 0.0702994 0.997526i \(-0.477605\pi\)
−0.828733 + 0.559644i \(0.810938\pi\)
\(278\) −5.29908 5.29908i −0.317818 0.317818i
\(279\) 0 0
\(280\) 1.90465 7.10824i 0.113824 0.424799i
\(281\) 22.2228 + 5.95459i 1.32570 + 0.355221i 0.851112 0.524985i \(-0.175929\pi\)
0.474592 + 0.880206i \(0.342596\pi\)
\(282\) 0 0
\(283\) 12.4400 7.18223i 0.739480 0.426939i −0.0824000 0.996599i \(-0.526258\pi\)
0.821880 + 0.569660i \(0.192925\pi\)
\(284\) −0.278045 0.0745019i −0.0164989 0.00442087i
\(285\) 0 0
\(286\) −1.54937 5.29427i −0.0916161 0.313057i
\(287\) 24.2905i 1.43382i
\(288\) 0 0
\(289\) −9.40274 + 16.2860i −0.553102 + 0.958001i
\(290\) −5.39447 + 9.34349i −0.316774 + 0.548669i
\(291\) 0 0
\(292\) −0.964880 + 0.964880i −0.0564653 + 0.0564653i
\(293\) −8.61260 + 8.61260i −0.503153 + 0.503153i −0.912416 0.409263i \(-0.865786\pi\)
0.409263 + 0.912416i \(0.365786\pi\)
\(294\) 0 0
\(295\) −4.69068 + 8.12449i −0.273102 + 0.473026i
\(296\) 3.59697 6.23013i 0.209069 0.362119i
\(297\) 0 0
\(298\) 0.600121i 0.0347641i
\(299\) 12.3876 12.9684i 0.716395 0.749982i
\(300\) 0 0
\(301\) 55.4813 + 14.8662i 3.19789 + 0.856872i
\(302\) 1.57578 0.909778i 0.0906761 0.0523519i
\(303\) 0 0
\(304\) −5.70943 1.52984i −0.327458 0.0877421i
\(305\) 1.77739 6.63330i 0.101773 0.379822i
\(306\) 0 0
\(307\) −6.82241 6.82241i −0.389375 0.389375i 0.485089 0.874465i \(-0.338787\pi\)
−0.874465 + 0.485089i \(0.838787\pi\)
\(308\) 6.20823 + 3.58432i 0.353747 + 0.204236i
\(309\) 0 0
\(310\) −0.426107 + 1.59025i −0.0242012 + 0.0903203i
\(311\) −7.73754 + 13.4018i −0.438756 + 0.759947i −0.997594 0.0693297i \(-0.977914\pi\)
0.558838 + 0.829277i \(0.311247\pi\)
\(312\) 0 0
\(313\) 13.3960 + 23.2026i 0.757189 + 1.31149i 0.944279 + 0.329146i \(0.106761\pi\)
−0.187090 + 0.982343i \(0.559906\pi\)
\(314\) −1.96232 + 0.525803i −0.110740 + 0.0296728i
\(315\) 0 0
\(316\) 0.116730 0.0673941i 0.00656657 0.00379121i
\(317\) −3.72829 + 13.9142i −0.209402 + 0.781498i 0.778661 + 0.627445i \(0.215899\pi\)
−0.988063 + 0.154053i \(0.950767\pi\)
\(318\) 0 0
\(319\) −7.43159 7.43159i −0.416089 0.416089i
\(320\) 0.406496 + 1.51706i 0.0227238 + 0.0848065i
\(321\) 0 0
\(322\) 23.3060i 1.29879i
\(323\) 9.15418 + 34.1639i 0.509352 + 1.90093i
\(324\) 0 0
\(325\) 6.60482 + 6.30903i 0.366369 + 0.349962i
\(326\) −7.88303 + 4.55127i −0.436601 + 0.252072i
\(327\) 0 0
\(328\) −2.59207 4.48960i −0.143123 0.247897i
\(329\) −29.7911 −1.64243
\(330\) 0 0
\(331\) −7.95647 29.6940i −0.437327 1.63213i −0.735435 0.677596i \(-0.763022\pi\)
0.298107 0.954532i \(-0.403645\pi\)
\(332\) 11.2043 + 3.00217i 0.614913 + 0.164765i
\(333\) 0 0
\(334\) −1.87046 3.23973i −0.102347 0.177270i
\(335\) 8.80787 0.481225
\(336\) 0 0
\(337\) −26.0523 15.0413i −1.41916 0.819353i −0.422936 0.906159i \(-0.639001\pi\)
−0.996225 + 0.0868060i \(0.972334\pi\)
\(338\) −12.6979 2.78620i −0.690676 0.151549i
\(339\) 0 0
\(340\) 6.64538 6.64538i 0.360396 0.360396i
\(341\) −1.38890 0.801882i −0.0752132 0.0434244i
\(342\) 0 0
\(343\) 26.3535 26.3535i 1.42295 1.42295i
\(344\) −11.8410 + 3.17279i −0.638424 + 0.171065i
\(345\) 0 0
\(346\) −0.979692 + 0.262508i −0.0526686 + 0.0141125i
\(347\) 17.1041i 0.918194i 0.888386 + 0.459097i \(0.151827\pi\)
−0.888386 + 0.459097i \(0.848173\pi\)
\(348\) 0 0
\(349\) −1.97713 1.97713i −0.105833 0.105833i 0.652207 0.758041i \(-0.273843\pi\)
−0.758041 + 0.652207i \(0.773843\pi\)
\(350\) −11.8697 −0.634464
\(351\) 0 0
\(352\) −1.52995 −0.0815468
\(353\) 23.6505 + 23.6505i 1.25879 + 1.25879i 0.951671 + 0.307119i \(0.0993650\pi\)
0.307119 + 0.951671i \(0.400635\pi\)
\(354\) 0 0
\(355\) 0.452097i 0.0239948i
\(356\) 5.45501 1.46167i 0.289115 0.0774681i
\(357\) 0 0
\(358\) −22.5626 + 6.04564i −1.19247 + 0.319522i
\(359\) −4.06738 + 4.06738i −0.214668 + 0.214668i −0.806247 0.591579i \(-0.798505\pi\)
0.591579 + 0.806247i \(0.298505\pi\)
\(360\) 0 0
\(361\) 13.8027 + 7.96897i 0.726456 + 0.419420i
\(362\) 6.02298 6.02298i 0.316561 0.316561i
\(363\) 0 0
\(364\) 14.4333 8.77976i 0.756510 0.460184i
\(365\) −1.85601 1.07157i −0.0971477 0.0560883i
\(366\) 0 0
\(367\) 2.87993 0.150331 0.0751656 0.997171i \(-0.476051\pi\)
0.0751656 + 0.997171i \(0.476051\pi\)
\(368\) −2.48702 4.30764i −0.129645 0.224551i
\(369\) 0 0
\(370\) 10.9137 + 2.92431i 0.567374 + 0.152027i
\(371\) −3.37290 12.5878i −0.175112 0.653527i
\(372\) 0 0
\(373\) −17.0979 −0.885297 −0.442648 0.896695i \(-0.645961\pi\)
−0.442648 + 0.896695i \(0.645961\pi\)
\(374\) 4.57745 + 7.92837i 0.236694 + 0.409966i
\(375\) 0 0
\(376\) 5.50628 3.17905i 0.283965 0.163947i
\(377\) −23.7709 + 6.95656i −1.22427 + 0.358281i
\(378\) 0 0
\(379\) 5.27326 + 19.6801i 0.270869 + 1.01090i 0.958559 + 0.284893i \(0.0919581\pi\)
−0.687690 + 0.726004i \(0.741375\pi\)
\(380\) 9.28344i 0.476230i
\(381\) 0 0
\(382\) −4.04547 15.0979i −0.206984 0.772476i
\(383\) 11.4042 + 11.4042i 0.582726 + 0.582726i 0.935651 0.352925i \(-0.114813\pi\)
−0.352925 + 0.935651i \(0.614813\pi\)
\(384\) 0 0
\(385\) −2.91402 + 10.8753i −0.148512 + 0.554256i
\(386\) −13.6917 + 7.90489i −0.696888 + 0.402348i
\(387\) 0 0
\(388\) 6.44523 1.72699i 0.327207 0.0876749i
\(389\) −18.1024 31.3543i −0.917828 1.58972i −0.802707 0.596373i \(-0.796608\pi\)
−0.115121 0.993351i \(-0.536726\pi\)
\(390\) 0 0
\(391\) −14.8817 + 25.7759i −0.752601 + 1.30354i
\(392\) −3.87042 + 14.4446i −0.195486 + 0.729563i
\(393\) 0 0
\(394\) 12.0057 + 6.93151i 0.604840 + 0.349205i
\(395\) 0.149691 + 0.149691i 0.00753179 + 0.00753179i
\(396\) 0 0
\(397\) −0.170003 + 0.634461i −0.00853223 + 0.0318427i −0.970061 0.242863i \(-0.921914\pi\)
0.961528 + 0.274705i \(0.0885803\pi\)
\(398\) −12.0680 3.23362i −0.604915 0.162087i
\(399\) 0 0
\(400\) 2.19388 1.26664i 0.109694 0.0633319i
\(401\) 2.91390 + 0.780777i 0.145513 + 0.0389902i 0.330840 0.943687i \(-0.392668\pi\)
−0.185327 + 0.982677i \(0.559334\pi\)
\(402\) 0 0
\(403\) −3.22901 + 1.96420i −0.160848 + 0.0978439i
\(404\) 7.65990i 0.381094i
\(405\) 0 0
\(406\) 16.0934 27.8745i 0.798700 1.38339i
\(407\) −5.50320 + 9.53181i −0.272783 + 0.472475i
\(408\) 0 0
\(409\) 1.66863 1.66863i 0.0825083 0.0825083i −0.664648 0.747156i \(-0.731419\pi\)
0.747156 + 0.664648i \(0.231419\pi\)
\(410\) 5.75735 5.75735i 0.284335 0.284335i
\(411\) 0 0
\(412\) 1.42235 2.46359i 0.0700743 0.121372i
\(413\) 13.9937 24.2379i 0.688587 1.19267i
\(414\) 0 0
\(415\) 18.2179i 0.894283i
\(416\) −1.73080 + 3.16296i −0.0848596 + 0.155077i
\(417\) 0 0
\(418\) 8.73516 + 2.34058i 0.427251 + 0.114481i
\(419\) 19.7189 11.3847i 0.963333 0.556181i 0.0661358 0.997811i \(-0.478933\pi\)
0.897197 + 0.441630i \(0.145600\pi\)
\(420\) 0 0
\(421\) −32.9974 8.84164i −1.60820 0.430915i −0.660692 0.750657i \(-0.729737\pi\)
−0.947505 + 0.319742i \(0.896404\pi\)
\(422\) 2.02370 7.55254i 0.0985121 0.367652i
\(423\) 0 0
\(424\) 1.96668 + 1.96668i 0.0955104 + 0.0955104i
\(425\) −13.1277 7.57927i −0.636786 0.367649i
\(426\) 0 0
\(427\) −5.30250 + 19.7892i −0.256606 + 0.957666i
\(428\) 8.51888 14.7551i 0.411776 0.713216i
\(429\) 0 0
\(430\) −9.62664 16.6738i −0.464238 0.804084i
\(431\) 6.97762 1.86965i 0.336100 0.0900578i −0.0868218 0.996224i \(-0.527671\pi\)
0.422922 + 0.906166i \(0.361004\pi\)
\(432\) 0 0
\(433\) 16.0208 9.24961i 0.769910 0.444508i −0.0629325 0.998018i \(-0.520045\pi\)
0.832842 + 0.553510i \(0.186712\pi\)
\(434\) 1.27121 4.74421i 0.0610200 0.227730i
\(435\) 0 0
\(436\) −1.44362 1.44362i −0.0691369 0.0691369i
\(437\) 7.60945 + 28.3989i 0.364010 + 1.35850i
\(438\) 0 0
\(439\) 20.3207i 0.969855i −0.874554 0.484927i \(-0.838846\pi\)
0.874554 0.484927i \(-0.161154\pi\)
\(440\) −0.621920 2.32104i −0.0296489 0.110651i
\(441\) 0 0
\(442\) 21.5691 0.494029i 1.02594 0.0234986i
\(443\) −8.71411 + 5.03109i −0.414020 + 0.239034i −0.692515 0.721403i \(-0.743498\pi\)
0.278496 + 0.960437i \(0.410164\pi\)
\(444\) 0 0
\(445\) 4.43488 + 7.68144i 0.210234 + 0.364135i
\(446\) −2.12414 −0.100581
\(447\) 0 0
\(448\) −1.21270 4.52587i −0.0572949 0.213827i
\(449\) −22.3408 5.98619i −1.05433 0.282506i −0.310288 0.950643i \(-0.600426\pi\)
−0.744039 + 0.668137i \(0.767092\pi\)
\(450\) 0 0
\(451\) 3.96575 + 6.86889i 0.186740 + 0.323443i
\(452\) 8.31066 0.390901
\(453\) 0 0
\(454\) 16.2376 + 9.37478i 0.762068 + 0.439980i
\(455\) 19.1865 + 18.3273i 0.899478 + 0.859197i
\(456\) 0 0
\(457\) 15.7054 15.7054i 0.734667 0.734667i −0.236874 0.971540i \(-0.576123\pi\)
0.971540 + 0.236874i \(0.0761228\pi\)
\(458\) 19.2235 + 11.0987i 0.898253 + 0.518607i
\(459\) 0 0
\(460\) 5.52400 5.52400i 0.257558 0.257558i
\(461\) −23.0977 + 6.18902i −1.07577 + 0.288251i −0.752861 0.658180i \(-0.771327\pi\)
−0.322907 + 0.946431i \(0.604660\pi\)
\(462\) 0 0
\(463\) −14.9267 + 3.99959i −0.693702 + 0.185877i −0.588408 0.808564i \(-0.700245\pi\)
−0.105294 + 0.994441i \(0.533578\pi\)
\(464\) 6.86939i 0.318904i
\(465\) 0 0
\(466\) −12.9894 12.9894i −0.601721 0.601721i
\(467\) 30.0205 1.38918 0.694591 0.719405i \(-0.255585\pi\)
0.694591 + 0.719405i \(0.255585\pi\)
\(468\) 0 0
\(469\) −26.2766 −1.21334
\(470\) 7.06111 + 7.06111i 0.325705 + 0.325705i
\(471\) 0 0
\(472\) 5.97318i 0.274938i
\(473\) 18.1162 4.85422i 0.832983 0.223197i
\(474\) 0 0
\(475\) −14.4636 + 3.87550i −0.663634 + 0.177820i
\(476\) −19.8252 + 19.8252i −0.908688 + 0.908688i
\(477\) 0 0
\(478\) −7.77810 4.49069i −0.355762 0.205399i
\(479\) 0.352246 0.352246i 0.0160945 0.0160945i −0.699014 0.715108i \(-0.746377\pi\)
0.715108 + 0.699014i \(0.246377\pi\)
\(480\) 0 0
\(481\) 13.4800 + 22.1602i 0.614636 + 1.01042i
\(482\) −3.65887 2.11245i −0.166657 0.0962194i
\(483\) 0 0
\(484\) −8.65924 −0.393602
\(485\) 5.23992 + 9.07581i 0.237933 + 0.412111i
\(486\) 0 0
\(487\) 22.2998 + 5.97522i 1.01050 + 0.270763i 0.725839 0.687865i \(-0.241452\pi\)
0.284663 + 0.958628i \(0.408118\pi\)
\(488\) −1.13168 4.22347i −0.0512286 0.191188i
\(489\) 0 0
\(490\) −23.4867 −1.06102
\(491\) −1.59861 2.76887i −0.0721442 0.124957i 0.827697 0.561176i \(-0.189651\pi\)
−0.899841 + 0.436218i \(0.856318\pi\)
\(492\) 0 0
\(493\) 35.5978 20.5524i 1.60325 0.925635i
\(494\) 14.7207 15.4108i 0.662316 0.693367i
\(495\) 0 0
\(496\) 0.271305 + 1.01253i 0.0121820 + 0.0454637i
\(497\) 1.34874i 0.0604994i
\(498\) 0 0
\(499\) 8.82459 + 32.9338i 0.395043 + 1.47432i 0.821707 + 0.569910i \(0.193022\pi\)
−0.426664 + 0.904410i \(0.640311\pi\)
\(500\) 8.36622 + 8.36622i 0.374149 + 0.374149i
\(501\) 0 0
\(502\) 0.0178152 0.0664871i 0.000795129 0.00296746i
\(503\) 0.778425 0.449424i 0.0347083 0.0200388i −0.482545 0.875871i \(-0.660288\pi\)
0.517254 + 0.855832i \(0.326954\pi\)
\(504\) 0 0
\(505\) 11.6206 3.11372i 0.517108 0.138559i
\(506\) 3.80502 + 6.59049i 0.169154 + 0.292983i
\(507\) 0 0
\(508\) 5.81914 10.0790i 0.258183 0.447185i
\(509\) 1.25690 4.69081i 0.0557111 0.207917i −0.932460 0.361274i \(-0.882342\pi\)
0.988171 + 0.153357i \(0.0490086\pi\)
\(510\) 0 0
\(511\) 5.53704 + 3.19681i 0.244944 + 0.141419i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −3.61513 + 13.4918i −0.159457 + 0.595100i
\(515\) 4.31560 + 1.15636i 0.190168 + 0.0509554i
\(516\) 0 0
\(517\) −8.42436 + 4.86380i −0.370503 + 0.213910i
\(518\) −32.5588 8.72411i −1.43055 0.383315i
\(519\) 0 0
\(520\) −5.50198 1.34001i −0.241278 0.0587632i
\(521\) 14.7602i 0.646655i −0.946287 0.323327i \(-0.895198\pi\)
0.946287 0.323327i \(-0.104802\pi\)
\(522\) 0 0
\(523\) −7.04052 + 12.1945i −0.307860 + 0.533230i −0.977894 0.209101i \(-0.932946\pi\)
0.670034 + 0.742331i \(0.266280\pi\)
\(524\) 2.72798 4.72499i 0.119172 0.206412i
\(525\) 0 0
\(526\) −16.9488 + 16.9488i −0.739001 + 0.739001i
\(527\) 4.43529 4.43529i 0.193204 0.193204i
\(528\) 0 0
\(529\) −0.870493 + 1.50774i −0.0378475 + 0.0655538i
\(530\) −2.18413 + 3.78302i −0.0948726 + 0.164324i
\(531\) 0 0
\(532\) 27.6954i 1.20075i
\(533\) 18.6868 0.428011i 0.809415 0.0185392i
\(534\) 0 0
\(535\) 25.8474 + 6.92578i 1.11748 + 0.299428i
\(536\) 4.85670 2.80402i 0.209778 0.121115i
\(537\) 0 0
\(538\) 25.4107 + 6.80878i 1.09553 + 0.293547i
\(539\) 5.92157 22.0996i 0.255060 0.951897i
\(540\) 0 0
\(541\) 22.4390 + 22.4390i 0.964730 + 0.964730i 0.999399 0.0346688i \(-0.0110376\pi\)
−0.0346688 + 0.999399i \(0.511038\pi\)
\(542\) 4.18584 + 2.41670i 0.179797 + 0.103806i
\(543\) 0 0
\(544\) 1.54871 5.77988i 0.0664005 0.247810i
\(545\) 1.60324 2.77689i 0.0686752 0.118949i
\(546\) 0 0
\(547\) 1.46832 + 2.54321i 0.0627810 + 0.108740i 0.895708 0.444644i \(-0.146670\pi\)
−0.832927 + 0.553384i \(0.813336\pi\)
\(548\) 1.41446 0.379002i 0.0604225 0.0161902i
\(549\) 0 0
\(550\) −3.35654 + 1.93790i −0.143123 + 0.0826323i
\(551\) 10.5090 39.2203i 0.447700 1.67084i
\(552\) 0 0
\(553\) −0.446576 0.446576i −0.0189903 0.0189903i
\(554\) −3.77245 14.0790i −0.160276 0.598158i
\(555\) 0 0
\(556\) 7.49403i 0.317818i
\(557\) 3.80383 + 14.1961i 0.161173 + 0.601507i 0.998497 + 0.0548002i \(0.0174522\pi\)
−0.837324 + 0.546707i \(0.815881\pi\)
\(558\) 0 0
\(559\) 10.4590 42.9441i 0.442370 1.81634i
\(560\) 6.37308 3.67950i 0.269312 0.155487i
\(561\) 0 0
\(562\) 11.5034 + 19.9245i 0.485241 + 0.840462i
\(563\) −28.7217 −1.21047 −0.605237 0.796045i \(-0.706922\pi\)
−0.605237 + 0.796045i \(0.706922\pi\)
\(564\) 0 0
\(565\) 3.37825 + 12.6078i 0.142124 + 0.530415i
\(566\) 13.8750 + 3.71780i 0.583210 + 0.156271i
\(567\) 0 0
\(568\) −0.143927 0.249288i −0.00603903 0.0104599i
\(569\) 11.2305 0.470807 0.235403 0.971898i \(-0.424359\pi\)
0.235403 + 0.971898i \(0.424359\pi\)
\(570\) 0 0
\(571\) −35.2056 20.3260i −1.47331 0.850615i −0.473760 0.880654i \(-0.657103\pi\)
−0.999549 + 0.0300392i \(0.990437\pi\)
\(572\) 2.64805 4.83919i 0.110720 0.202337i
\(573\) 0 0
\(574\) −17.1759 + 17.1759i −0.716910 + 0.716910i
\(575\) −10.9124 6.30030i −0.455080 0.262741i
\(576\) 0 0
\(577\) −9.12182 + 9.12182i −0.379746 + 0.379746i −0.871011 0.491264i \(-0.836535\pi\)
0.491264 + 0.871011i \(0.336535\pi\)
\(578\) −18.1647 + 4.86721i −0.755552 + 0.202449i
\(579\) 0 0
\(580\) −10.4213 + 2.79238i −0.432721 + 0.115947i
\(581\) 54.3497i 2.25481i
\(582\) 0 0
\(583\) −3.00893 3.00893i −0.124617 0.124617i
\(584\) −1.36455 −0.0564653
\(585\) 0 0
\(586\) −12.1801 −0.503153
\(587\) −25.9757 25.9757i −1.07213 1.07213i −0.997188 0.0749440i \(-0.976122\pi\)
−0.0749440 0.997188i \(-0.523878\pi\)
\(588\) 0 0
\(589\) 6.19599i 0.255301i
\(590\) −9.06169 + 2.42807i −0.373064 + 0.0999622i
\(591\) 0 0
\(592\) 6.94881 1.86193i 0.285594 0.0765247i
\(593\) 27.5996 27.5996i 1.13338 1.13338i 0.143768 0.989611i \(-0.454078\pi\)
0.989611 0.143768i \(-0.0459219\pi\)
\(594\) 0 0
\(595\) −38.1350 22.0173i −1.56338 0.902619i
\(596\) −0.424349 + 0.424349i −0.0173820 + 0.0173820i
\(597\) 0 0
\(598\) 17.9294 0.410664i 0.733189 0.0167933i
\(599\) −40.1298 23.1689i −1.63966 0.946657i −0.980950 0.194259i \(-0.937770\pi\)
−0.658708 0.752399i \(-0.728897\pi\)
\(600\) 0 0
\(601\) −21.0902 −0.860289 −0.430145 0.902760i \(-0.641537\pi\)
−0.430145 + 0.902760i \(0.641537\pi\)
\(602\) 28.7192 + 49.7432i 1.17051 + 2.02738i
\(603\) 0 0
\(604\) 1.75756 + 0.470936i 0.0715140 + 0.0191621i
\(605\) −3.51995 13.1366i −0.143106 0.534080i
\(606\) 0 0
\(607\) 10.2282 0.415151 0.207576 0.978219i \(-0.433443\pi\)
0.207576 + 0.978219i \(0.433443\pi\)
\(608\) −2.95542 5.11893i −0.119858 0.207600i
\(609\) 0 0
\(610\) 5.94726 3.43365i 0.240797 0.139024i
\(611\) 0.524935 + 22.9185i 0.0212366 + 0.927182i
\(612\) 0 0
\(613\) −12.0361 44.9194i −0.486134 1.81428i −0.574900 0.818224i \(-0.694959\pi\)
0.0887657 0.996053i \(-0.471708\pi\)
\(614\) 9.64834i 0.389375i
\(615\) 0 0
\(616\) 1.85538 + 6.92438i 0.0747554 + 0.278991i
\(617\) 16.1123 + 16.1123i 0.648657 + 0.648657i 0.952668 0.304012i \(-0.0983262\pi\)
−0.304012 + 0.952668i \(0.598326\pi\)
\(618\) 0 0
\(619\) −7.63393 + 28.4902i −0.306834 + 1.14512i 0.624522 + 0.781007i \(0.285294\pi\)
−0.931355 + 0.364111i \(0.881373\pi\)
\(620\) −1.42578 + 0.823175i −0.0572607 + 0.0330595i
\(621\) 0 0
\(622\) −14.9478 + 4.00525i −0.599351 + 0.160596i
\(623\) −13.2306 22.9161i −0.530074 0.918115i
\(624\) 0 0
\(625\) −2.95806 + 5.12350i −0.118322 + 0.204940i
\(626\) −6.93430 + 25.8792i −0.277150 + 1.03434i
\(627\) 0 0
\(628\) −1.75937 1.01577i −0.0702066 0.0405338i
\(629\) −30.4387 30.4387i −1.21367 1.21367i
\(630\) 0 0
\(631\) 11.3620 42.4037i 0.452315 1.68806i −0.243548 0.969889i \(-0.578311\pi\)
0.695863 0.718174i \(-0.255022\pi\)
\(632\) 0.130195 + 0.0348857i 0.00517889 + 0.00138768i
\(633\) 0 0
\(634\) −12.4751 + 7.20250i −0.495450 + 0.286048i
\(635\) 17.6560 + 4.73092i 0.700658 + 0.187741i
\(636\) 0 0
\(637\) −38.9888 37.2428i −1.54479 1.47561i
\(638\) 10.5099i 0.416089i
\(639\) 0 0
\(640\) −0.785290 + 1.36016i −0.0310413 + 0.0537651i
\(641\) −22.6855 + 39.2924i −0.896022 + 1.55196i −0.0634878 + 0.997983i \(0.520222\pi\)
−0.832534 + 0.553973i \(0.813111\pi\)
\(642\) 0 0
\(643\) 19.4333 19.4333i 0.766375 0.766375i −0.211091 0.977466i \(-0.567702\pi\)
0.977466 + 0.211091i \(0.0677017\pi\)
\(644\) −16.4798 + 16.4798i −0.649395 + 0.649395i
\(645\) 0 0
\(646\) −17.6845 + 30.6305i −0.695788 + 1.20514i
\(647\) 1.29346 2.24034i 0.0508513 0.0880770i −0.839479 0.543392i \(-0.817140\pi\)
0.890331 + 0.455315i \(0.150473\pi\)
\(648\) 0 0
\(649\) 9.13869i 0.358725i
\(650\) 0.209151 + 9.13147i 0.00820360 + 0.358166i
\(651\) 0 0
\(652\) −8.79238 2.35591i −0.344336 0.0922646i
\(653\) −1.89876 + 1.09625i −0.0743042 + 0.0428995i −0.536692 0.843778i \(-0.680326\pi\)
0.462388 + 0.886678i \(0.346993\pi\)
\(654\) 0 0
\(655\) 8.27703 + 2.21782i 0.323410 + 0.0866575i
\(656\) 1.34176 5.00750i 0.0523868 0.195510i
\(657\) 0 0
\(658\) −21.0655 21.0655i −0.821217 0.821217i
\(659\) 19.3027 + 11.1444i 0.751925 + 0.434124i 0.826389 0.563099i \(-0.190391\pi\)
−0.0744639 + 0.997224i \(0.523725\pi\)
\(660\) 0 0
\(661\) 6.60372 24.6454i 0.256855 0.958596i −0.710194 0.704006i \(-0.751393\pi\)
0.967049 0.254590i \(-0.0819406\pi\)
\(662\) 15.3707 26.6229i 0.597400 1.03473i
\(663\) 0 0
\(664\) 5.79975 + 10.0455i 0.225074 + 0.389839i
\(665\) −42.0156 + 11.2581i −1.62930 + 0.436569i
\(666\) 0 0
\(667\) 29.5909 17.0843i 1.14576 0.661506i
\(668\) 0.968219 3.61344i 0.0374615 0.139808i
\(669\) 0 0
\(670\) 6.22810 + 6.22810i 0.240613 + 0.240613i
\(671\) 1.73141 + 6.46172i 0.0668405 + 0.249452i
\(672\) 0 0
\(673\) 17.3697i 0.669552i 0.942298 + 0.334776i \(0.108661\pi\)
−0.942298 + 0.334776i \(0.891339\pi\)
\(674\) −7.78596 29.0576i −0.299904 1.11926i
\(675\) 0 0
\(676\) −7.00865 10.9489i −0.269563 0.421112i
\(677\) 1.50598 0.869476i 0.0578794 0.0334167i −0.470781 0.882250i \(-0.656028\pi\)
0.528660 + 0.848833i \(0.322694\pi\)
\(678\) 0 0
\(679\) −15.6323 27.0760i −0.599913 1.03908i
\(680\) 9.39799 0.360396
\(681\) 0 0
\(682\) −0.415085 1.54912i −0.0158944 0.0593188i
\(683\) 40.4081 + 10.8273i 1.54617 + 0.414296i 0.928254 0.371947i \(-0.121310\pi\)
0.617918 + 0.786243i \(0.287976\pi\)
\(684\) 0 0
\(685\) 1.14994 + 1.99176i 0.0439370 + 0.0761011i
\(686\) 37.2694 1.42295
\(687\) 0 0
\(688\) −10.6164 6.12935i −0.404745 0.233679i
\(689\) −9.62446 + 2.81660i −0.366663 + 0.107304i
\(690\) 0 0
\(691\) 6.97222 6.97222i 0.265236 0.265236i −0.561941 0.827177i \(-0.689945\pi\)
0.827177 + 0.561941i \(0.189945\pi\)
\(692\) −0.878368 0.507126i −0.0333905 0.0192780i
\(693\) 0 0
\(694\) −12.0944 + 12.0944i −0.459097 + 0.459097i
\(695\) 11.3689 3.04629i 0.431248 0.115553i
\(696\) 0 0
\(697\) −29.9637 + 8.02875i −1.13496 + 0.304111i
\(698\) 2.79608i 0.105833i
\(699\) 0 0
\(700\) −8.39317 8.39317i −0.317232 0.317232i
\(701\) 9.99927 0.377667 0.188834 0.982009i \(-0.439529\pi\)
0.188834 + 0.982009i \(0.439529\pi\)
\(702\) 0 0
\(703\) −42.5221 −1.60375
\(704\) −1.08184 1.08184i −0.0407734 0.0407734i
\(705\) 0 0
\(706\) 33.4469i 1.25879i
\(707\) −34.6677 + 9.28919i −1.30381 + 0.349356i
\(708\) 0 0
\(709\) 19.6851 5.27462i 0.739291 0.198092i 0.130528 0.991445i \(-0.458333\pi\)
0.608763 + 0.793352i \(0.291666\pi\)
\(710\) 0.319681 0.319681i 0.0119974 0.0119974i
\(711\) 0 0
\(712\) 4.89083 + 2.82372i 0.183292 + 0.105823i
\(713\) 3.68685 3.68685i 0.138074 0.138074i
\(714\) 0 0
\(715\) 8.41778 + 2.05015i 0.314807 + 0.0766712i
\(716\) −20.2291 11.6793i −0.755998 0.436475i
\(717\) 0 0
\(718\) −5.75214 −0.214668
\(719\) −9.70859 16.8158i −0.362069 0.627123i 0.626232 0.779637i \(-0.284596\pi\)
−0.988301 + 0.152514i \(0.951263\pi\)
\(720\) 0 0
\(721\) −12.8748 3.44978i −0.479481 0.128477i
\(722\) 4.12504 + 15.3949i 0.153518 + 0.572938i
\(723\) 0 0
\(724\) 8.51778 0.316561
\(725\) 8.70104 + 15.0706i 0.323149 + 0.559710i
\(726\) 0 0
\(727\) 38.1818 22.0442i 1.41608 0.817576i 0.420131 0.907464i \(-0.361984\pi\)
0.995952 + 0.0898878i \(0.0286508\pi\)
\(728\) 16.4141 + 3.99765i 0.608347 + 0.148163i
\(729\) 0 0
\(730\) −0.554683 2.07010i −0.0205297 0.0766180i
\(731\) 73.3533i 2.71307i
\(732\) 0 0
\(733\) 9.30736 + 34.7355i 0.343775 + 1.28299i 0.894037 + 0.447994i \(0.147861\pi\)
−0.550261 + 0.834992i \(0.685472\pi\)
\(734\) 2.03642 + 2.03642i 0.0751656 + 0.0751656i
\(735\) 0 0
\(736\) 1.28737 4.80455i 0.0474532 0.177098i
\(737\) −7.43053 + 4.29002i −0.273707 + 0.158025i
\(738\) 0 0
\(739\) −40.1431 + 10.7563i −1.47669 + 0.395677i −0.905219 0.424946i \(-0.860293\pi\)
−0.571470 + 0.820623i \(0.693627\pi\)
\(740\) 5.64933 + 9.78492i 0.207673 + 0.359701i
\(741\) 0 0
\(742\) 6.51594 11.2859i 0.239208 0.414320i
\(743\) 6.90641 25.7751i 0.253372 0.945596i −0.715617 0.698492i \(-0.753855\pi\)
0.968989 0.247103i \(-0.0794787\pi\)
\(744\) 0 0
\(745\) −0.816261 0.471269i −0.0299055 0.0172660i
\(746\) −12.0901 12.0901i −0.442648 0.442648i
\(747\) 0 0
\(748\) −2.36946 + 8.84295i −0.0866360 + 0.323330i
\(749\) −77.1107 20.6617i −2.81756 0.754964i
\(750\) 0 0
\(751\) 3.69581 2.13378i 0.134862 0.0778626i −0.431051 0.902328i \(-0.641857\pi\)
0.565913 + 0.824465i \(0.308524\pi\)
\(752\) 6.14146 + 1.64560i 0.223956 + 0.0600088i
\(753\) 0 0
\(754\) −21.7276 11.8896i −0.791273 0.432992i
\(755\) 2.85776i 0.104005i
\(756\) 0 0
\(757\) 8.81337 15.2652i 0.320327 0.554823i −0.660228 0.751065i \(-0.729540\pi\)
0.980556 + 0.196242i \(0.0628738\pi\)
\(758\) −10.1872 + 17.6447i −0.370014 + 0.640883i
\(759\) 0 0
\(760\) 6.56438 6.56438i 0.238115 0.238115i
\(761\) 5.20787 5.20787i 0.188785 0.188785i −0.606386 0.795171i \(-0.707381\pi\)
0.795171 + 0.606386i \(0.207381\pi\)
\(762\) 0 0
\(763\) −4.78296 + 8.28433i −0.173155 + 0.299913i
\(764\) 7.81525 13.5364i 0.282746 0.489730i
\(765\) 0 0
\(766\) 16.1279i 0.582726i
\(767\) −18.8929 10.3384i −0.682184 0.373298i
\(768\) 0 0
\(769\) −11.3565 3.04296i −0.409525 0.109732i 0.0481743 0.998839i \(-0.484660\pi\)
−0.457699 + 0.889107i \(0.651326\pi\)
\(770\) −9.75052 + 5.62946i −0.351384 + 0.202872i
\(771\) 0 0
\(772\) −15.2711 4.09187i −0.549618 0.147270i
\(773\) −1.81323 + 6.76707i −0.0652173 + 0.243394i −0.990838 0.135059i \(-0.956877\pi\)
0.925620 + 0.378454i \(0.123544\pi\)
\(774\) 0 0
\(775\) 1.87772 + 1.87772i 0.0674496 + 0.0674496i
\(776\) 5.77864 + 3.33630i 0.207441 + 0.119766i
\(777\) 0 0
\(778\) 9.37049 34.9712i 0.335948 1.25378i
\(779\) −15.3213 + 26.5373i −0.548943 + 0.950797i
\(780\) 0 0
\(781\) 0.220201 + 0.381400i 0.00787942 + 0.0136476i
\(782\) −28.7493 + 7.70335i −1.02807 + 0.275471i
\(783\) 0 0
\(784\) −12.9507 +