Properties

Label 702.2.bb.a.71.8
Level $702$
Weight $2$
Character 702.71
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(71,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 71.8
Character \(\chi\) \(=\) 702.71
Dual form 702.2.bb.a.89.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-3.83221 + 1.02684i) q^{5} +(-1.55176 + 0.415793i) q^{7} +(-0.707107 + 0.707107i) q^{8} +O(q^{10})\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-3.83221 + 1.02684i) q^{5} +(-1.55176 + 0.415793i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-3.43586 - 1.98370i) q^{10} +(3.50976 - 3.50976i) q^{11} +(-1.03908 - 3.45258i) q^{13} +(-1.39127 - 0.803251i) q^{14} -1.00000 q^{16} +(-0.584080 - 1.01166i) q^{17} +(-4.16646 - 1.11640i) q^{19} +(-1.02684 - 3.83221i) q^{20} +4.96355 q^{22} +(-1.63500 - 2.83190i) q^{23} +(9.30128 - 5.37010i) q^{25} +(1.70661 - 3.17608i) q^{26} +(-0.415793 - 1.55176i) q^{28} +7.50570i q^{29} +(-1.94388 - 7.25468i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(0.302342 - 1.12836i) q^{34} +(5.51972 - 3.18681i) q^{35} +(-4.28775 + 1.14890i) q^{37} +(-2.15672 - 3.73555i) q^{38} +(1.98370 - 3.43586i) q^{40} +(1.44991 - 5.41115i) q^{41} +(-0.770434 - 0.444811i) q^{43} +(3.50976 + 3.50976i) q^{44} +(0.846338 - 3.15858i) q^{46} +(-2.43773 - 0.653187i) q^{47} +(-3.82710 + 2.20958i) q^{49} +(10.3742 + 2.77977i) q^{50} +(3.45258 - 1.03908i) q^{52} -6.60181i q^{53} +(-9.84618 + 17.0541i) q^{55} +(0.803251 - 1.39127i) q^{56} +(-5.30733 + 5.30733i) q^{58} +(-5.81273 + 5.81273i) q^{59} +(-7.05927 + 12.2270i) q^{61} +(3.75530 - 6.50436i) q^{62} -1.00000i q^{64} +(7.52719 + 12.1640i) q^{65} +(-3.19229 - 0.855370i) q^{67} +(1.01166 - 0.584080i) q^{68} +(6.15644 + 1.64961i) q^{70} +(-0.942701 + 3.51821i) q^{71} +(-3.33343 - 3.33343i) q^{73} +(-3.84429 - 2.21950i) q^{74} +(1.11640 - 4.16646i) q^{76} +(-3.98698 + 6.90565i) q^{77} +(-1.16902 - 2.02480i) q^{79} +(3.83221 - 1.02684i) q^{80} +(4.85151 - 2.80102i) q^{82} +(2.82772 - 10.5532i) q^{83} +(3.27712 + 3.27712i) q^{85} +(-0.230251 - 0.859308i) q^{86} +4.96355i q^{88} +(1.78297 + 6.65415i) q^{89} +(3.04796 + 4.92554i) q^{91} +(2.83190 - 1.63500i) q^{92} +(-1.26186 - 2.18561i) q^{94} +17.1131 q^{95} +(-1.65585 - 6.17970i) q^{97} +(-4.26857 - 1.14376i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73} - 48 q^{74} + 4 q^{76} + 24 q^{77} - 24 q^{79} + 60 q^{83} - 48 q^{86} + 4 q^{91} + 24 q^{92} + 20 q^{97} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −3.83221 + 1.02684i −1.71381 + 0.459215i −0.976354 0.216176i \(-0.930642\pi\)
−0.737460 + 0.675391i \(0.763975\pi\)
\(6\) 0 0
\(7\) −1.55176 + 0.415793i −0.586511 + 0.157155i −0.539858 0.841756i \(-0.681522\pi\)
−0.0466526 + 0.998911i \(0.514855\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) −3.43586 1.98370i −1.08651 0.627300i
\(11\) 3.50976 3.50976i 1.05823 1.05823i 0.0600368 0.998196i \(-0.480878\pi\)
0.998196 0.0600368i \(-0.0191218\pi\)
\(12\) 0 0
\(13\) −1.03908 3.45258i −0.288188 0.957574i
\(14\) −1.39127 0.803251i −0.371833 0.214678i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −0.584080 1.01166i −0.141660 0.245363i 0.786462 0.617639i \(-0.211911\pi\)
−0.928122 + 0.372276i \(0.878577\pi\)
\(18\) 0 0
\(19\) −4.16646 1.11640i −0.955853 0.256120i −0.253009 0.967464i \(-0.581420\pi\)
−0.702844 + 0.711344i \(0.748087\pi\)
\(20\) −1.02684 3.83221i −0.229608 0.856907i
\(21\) 0 0
\(22\) 4.96355 1.05823
\(23\) −1.63500 2.83190i −0.340921 0.590492i 0.643683 0.765292i \(-0.277406\pi\)
−0.984604 + 0.174800i \(0.944072\pi\)
\(24\) 0 0
\(25\) 9.30128 5.37010i 1.86026 1.07402i
\(26\) 1.70661 3.17608i 0.334693 0.622881i
\(27\) 0 0
\(28\) −0.415793 1.55176i −0.0785775 0.293255i
\(29\) 7.50570i 1.39377i 0.717182 + 0.696886i \(0.245432\pi\)
−0.717182 + 0.696886i \(0.754568\pi\)
\(30\) 0 0
\(31\) −1.94388 7.25468i −0.349132 1.30298i −0.887710 0.460403i \(-0.847705\pi\)
0.538578 0.842576i \(-0.318962\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) 0.302342 1.12836i 0.0518513 0.193512i
\(35\) 5.51972 3.18681i 0.933002 0.538669i
\(36\) 0 0
\(37\) −4.28775 + 1.14890i −0.704902 + 0.188878i −0.593425 0.804889i \(-0.702225\pi\)
−0.111477 + 0.993767i \(0.535558\pi\)
\(38\) −2.15672 3.73555i −0.349866 0.605986i
\(39\) 0 0
\(40\) 1.98370 3.43586i 0.313650 0.543257i
\(41\) 1.44991 5.41115i 0.226439 0.845080i −0.755384 0.655282i \(-0.772550\pi\)
0.981823 0.189799i \(-0.0607835\pi\)
\(42\) 0 0
\(43\) −0.770434 0.444811i −0.117490 0.0678330i 0.440103 0.897947i \(-0.354942\pi\)
−0.557593 + 0.830114i \(0.688275\pi\)
\(44\) 3.50976 + 3.50976i 0.529116 + 0.529116i
\(45\) 0 0
\(46\) 0.846338 3.15858i 0.124786 0.465707i
\(47\) −2.43773 0.653187i −0.355579 0.0952772i 0.0766074 0.997061i \(-0.475591\pi\)
−0.432187 + 0.901784i \(0.642258\pi\)
\(48\) 0 0
\(49\) −3.82710 + 2.20958i −0.546728 + 0.315654i
\(50\) 10.3742 + 2.77977i 1.46714 + 0.393118i
\(51\) 0 0
\(52\) 3.45258 1.03908i 0.478787 0.144094i
\(53\) 6.60181i 0.906828i −0.891300 0.453414i \(-0.850206\pi\)
0.891300 0.453414i \(-0.149794\pi\)
\(54\) 0 0
\(55\) −9.84618 + 17.0541i −1.32766 + 2.29957i
\(56\) 0.803251 1.39127i 0.107339 0.185916i
\(57\) 0 0
\(58\) −5.30733 + 5.30733i −0.696886 + 0.696886i
\(59\) −5.81273 + 5.81273i −0.756753 + 0.756753i −0.975730 0.218977i \(-0.929728\pi\)
0.218977 + 0.975730i \(0.429728\pi\)
\(60\) 0 0
\(61\) −7.05927 + 12.2270i −0.903847 + 1.56551i −0.0813898 + 0.996682i \(0.525936\pi\)
−0.822457 + 0.568827i \(0.807397\pi\)
\(62\) 3.75530 6.50436i 0.476923 0.826055i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 7.52719 + 12.1640i 0.933633 + 1.50876i
\(66\) 0 0
\(67\) −3.19229 0.855370i −0.390000 0.104500i 0.0584902 0.998288i \(-0.481371\pi\)
−0.448490 + 0.893788i \(0.648038\pi\)
\(68\) 1.01166 0.584080i 0.122681 0.0708301i
\(69\) 0 0
\(70\) 6.15644 + 1.64961i 0.735836 + 0.197167i
\(71\) −0.942701 + 3.51821i −0.111878 + 0.417534i −0.999034 0.0439344i \(-0.986011\pi\)
0.887156 + 0.461469i \(0.152677\pi\)
\(72\) 0 0
\(73\) −3.33343 3.33343i −0.390149 0.390149i 0.484592 0.874741i \(-0.338968\pi\)
−0.874741 + 0.484592i \(0.838968\pi\)
\(74\) −3.84429 2.21950i −0.446890 0.258012i
\(75\) 0 0
\(76\) 1.11640 4.16646i 0.128060 0.477926i
\(77\) −3.98698 + 6.90565i −0.454358 + 0.786971i
\(78\) 0 0
\(79\) −1.16902 2.02480i −0.131525 0.227808i 0.792740 0.609560i \(-0.208654\pi\)
−0.924265 + 0.381753i \(0.875321\pi\)
\(80\) 3.83221 1.02684i 0.428454 0.114804i
\(81\) 0 0
\(82\) 4.85151 2.80102i 0.535760 0.309321i
\(83\) 2.82772 10.5532i 0.310383 1.15837i −0.617829 0.786313i \(-0.711988\pi\)
0.928212 0.372052i \(-0.121346\pi\)
\(84\) 0 0
\(85\) 3.27712 + 3.27712i 0.355454 + 0.355454i
\(86\) −0.230251 0.859308i −0.0248286 0.0926616i
\(87\) 0 0
\(88\) 4.96355i 0.529116i
\(89\) 1.78297 + 6.65415i 0.188995 + 0.705338i 0.993740 + 0.111718i \(0.0356352\pi\)
−0.804745 + 0.593620i \(0.797698\pi\)
\(90\) 0 0
\(91\) 3.04796 + 4.92554i 0.319513 + 0.516337i
\(92\) 2.83190 1.63500i 0.295246 0.170460i
\(93\) 0 0
\(94\) −1.26186 2.18561i −0.130151 0.225428i
\(95\) 17.1131 1.75577
\(96\) 0 0
\(97\) −1.65585 6.17970i −0.168126 0.627453i −0.997621 0.0689395i \(-0.978038\pi\)
0.829495 0.558514i \(-0.188628\pi\)
\(98\) −4.26857 1.14376i −0.431191 0.115537i
\(99\) 0 0
\(100\) 5.37010 + 9.30128i 0.537010 + 0.930128i
\(101\) −16.2961 −1.62152 −0.810762 0.585375i \(-0.800947\pi\)
−0.810762 + 0.585375i \(0.800947\pi\)
\(102\) 0 0
\(103\) 2.00231 + 1.15604i 0.197294 + 0.113908i 0.595393 0.803435i \(-0.296997\pi\)
−0.398099 + 0.917343i \(0.630330\pi\)
\(104\) 3.17608 + 1.70661i 0.311440 + 0.167346i
\(105\) 0 0
\(106\) 4.66818 4.66818i 0.453414 0.453414i
\(107\) 8.90852 + 5.14333i 0.861219 + 0.497225i 0.864420 0.502770i \(-0.167686\pi\)
−0.00320143 + 0.999995i \(0.501019\pi\)
\(108\) 0 0
\(109\) 5.93227 5.93227i 0.568208 0.568208i −0.363418 0.931626i \(-0.618390\pi\)
0.931626 + 0.363418i \(0.118390\pi\)
\(110\) −19.0214 + 5.09676i −1.81361 + 0.485957i
\(111\) 0 0
\(112\) 1.55176 0.415793i 0.146628 0.0392888i
\(113\) 3.52980i 0.332055i 0.986121 + 0.166028i \(0.0530941\pi\)
−0.986121 + 0.166028i \(0.946906\pi\)
\(114\) 0 0
\(115\) 9.17355 + 9.17355i 0.855438 + 0.855438i
\(116\) −7.50570 −0.696886
\(117\) 0 0
\(118\) −8.22044 −0.756753
\(119\) 1.32699 + 1.32699i 0.121645 + 0.121645i
\(120\) 0 0
\(121\) 13.6369i 1.23971i
\(122\) −13.6375 + 3.65415i −1.23468 + 0.330831i
\(123\) 0 0
\(124\) 7.25468 1.94388i 0.651489 0.174566i
\(125\) −16.1034 + 16.1034i −1.44033 + 1.44033i
\(126\) 0 0
\(127\) 11.2191 + 6.47732i 0.995530 + 0.574769i 0.906923 0.421297i \(-0.138425\pi\)
0.0886073 + 0.996067i \(0.471758\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) −3.27875 + 13.9238i −0.287565 + 1.22120i
\(131\) −1.69814 0.980422i −0.148367 0.0856599i 0.423979 0.905672i \(-0.360633\pi\)
−0.572346 + 0.820012i \(0.693967\pi\)
\(132\) 0 0
\(133\) 6.92955 0.600868
\(134\) −1.65245 2.86212i −0.142750 0.247250i
\(135\) 0 0
\(136\) 1.12836 + 0.302342i 0.0967558 + 0.0259256i
\(137\) −4.35359 16.2478i −0.371953 1.38815i −0.857747 0.514073i \(-0.828136\pi\)
0.485794 0.874073i \(-0.338530\pi\)
\(138\) 0 0
\(139\) 16.0718 1.36319 0.681597 0.731728i \(-0.261286\pi\)
0.681597 + 0.731728i \(0.261286\pi\)
\(140\) 3.18681 + 5.51972i 0.269335 + 0.466501i
\(141\) 0 0
\(142\) −3.15434 + 1.82116i −0.264706 + 0.152828i
\(143\) −15.7647 8.47083i −1.31831 0.708366i
\(144\) 0 0
\(145\) −7.70712 28.7634i −0.640042 2.38867i
\(146\) 4.71419i 0.390149i
\(147\) 0 0
\(148\) −1.14890 4.28775i −0.0944390 0.352451i
\(149\) 2.01440 + 2.01440i 0.165026 + 0.165026i 0.784789 0.619763i \(-0.212771\pi\)
−0.619763 + 0.784789i \(0.712771\pi\)
\(150\) 0 0
\(151\) −1.23214 + 4.59840i −0.100270 + 0.374213i −0.997766 0.0668104i \(-0.978718\pi\)
0.897496 + 0.441023i \(0.145384\pi\)
\(152\) 3.73555 2.15672i 0.302993 0.174933i
\(153\) 0 0
\(154\) −7.70225 + 2.06381i −0.620665 + 0.166307i
\(155\) 14.8987 + 25.8054i 1.19669 + 2.07274i
\(156\) 0 0
\(157\) 3.96212 6.86259i 0.316211 0.547694i −0.663483 0.748192i \(-0.730922\pi\)
0.979694 + 0.200497i \(0.0642558\pi\)
\(158\) 0.605128 2.25837i 0.0481414 0.179666i
\(159\) 0 0
\(160\) 3.43586 + 1.98370i 0.271629 + 0.156825i
\(161\) 3.71461 + 3.71461i 0.292753 + 0.292753i
\(162\) 0 0
\(163\) −4.59427 + 17.1461i −0.359851 + 1.34298i 0.514417 + 0.857540i \(0.328008\pi\)
−0.874268 + 0.485443i \(0.838658\pi\)
\(164\) 5.41115 + 1.44991i 0.422540 + 0.113219i
\(165\) 0 0
\(166\) 9.46175 5.46274i 0.734374 0.423991i
\(167\) −10.9578 2.93613i −0.847938 0.227204i −0.191414 0.981509i \(-0.561307\pi\)
−0.656524 + 0.754305i \(0.727974\pi\)
\(168\) 0 0
\(169\) −10.8406 + 7.17499i −0.833895 + 0.551923i
\(170\) 4.63455i 0.355454i
\(171\) 0 0
\(172\) 0.444811 0.770434i 0.0339165 0.0587451i
\(173\) 8.37298 14.5024i 0.636586 1.10260i −0.349591 0.936903i \(-0.613679\pi\)
0.986177 0.165697i \(-0.0529874\pi\)
\(174\) 0 0
\(175\) −12.2005 + 12.2005i −0.922272 + 0.922272i
\(176\) −3.50976 + 3.50976i −0.264558 + 0.264558i
\(177\) 0 0
\(178\) −3.44444 + 5.96594i −0.258172 + 0.447166i
\(179\) −2.08607 + 3.61317i −0.155920 + 0.270061i −0.933394 0.358854i \(-0.883168\pi\)
0.777474 + 0.628916i \(0.216501\pi\)
\(180\) 0 0
\(181\) 7.52589i 0.559395i 0.960088 + 0.279698i \(0.0902342\pi\)
−0.960088 + 0.279698i \(0.909766\pi\)
\(182\) −1.32765 + 5.63812i −0.0984120 + 0.417925i
\(183\) 0 0
\(184\) 3.15858 + 0.846338i 0.232853 + 0.0623929i
\(185\) 15.2518 8.80564i 1.12134 0.647404i
\(186\) 0 0
\(187\) −5.60066 1.50069i −0.409561 0.109741i
\(188\) 0.653187 2.43773i 0.0476386 0.177790i
\(189\) 0 0
\(190\) 12.1008 + 12.1008i 0.877884 + 0.877884i
\(191\) 10.4815 + 6.05149i 0.758414 + 0.437871i 0.828726 0.559655i \(-0.189066\pi\)
−0.0703120 + 0.997525i \(0.522399\pi\)
\(192\) 0 0
\(193\) 4.12614 15.3990i 0.297006 1.10844i −0.642605 0.766197i \(-0.722146\pi\)
0.939611 0.342244i \(-0.111187\pi\)
\(194\) 3.19885 5.54057i 0.229664 0.397789i
\(195\) 0 0
\(196\) −2.20958 3.82710i −0.157827 0.273364i
\(197\) −12.3667 + 3.31364i −0.881090 + 0.236087i −0.670877 0.741568i \(-0.734082\pi\)
−0.210212 + 0.977656i \(0.567416\pi\)
\(198\) 0 0
\(199\) 11.0194 6.36204i 0.781143 0.450993i −0.0556924 0.998448i \(-0.517737\pi\)
0.836835 + 0.547455i \(0.184403\pi\)
\(200\) −2.77977 + 10.3742i −0.196559 + 0.733569i
\(201\) 0 0
\(202\) −11.5231 11.5231i −0.810762 0.810762i
\(203\) −3.12082 11.6470i −0.219038 0.817462i
\(204\) 0 0
\(205\) 22.2255i 1.55230i
\(206\) 0.598408 + 2.23329i 0.0416931 + 0.155601i
\(207\) 0 0
\(208\) 1.03908 + 3.45258i 0.0720470 + 0.239393i
\(209\) −18.5416 + 10.7050i −1.28255 + 0.740480i
\(210\) 0 0
\(211\) −7.86486 13.6223i −0.541439 0.937800i −0.998822 0.0485301i \(-0.984546\pi\)
0.457383 0.889270i \(-0.348787\pi\)
\(212\) 6.60181 0.453414
\(213\) 0 0
\(214\) 2.66239 + 9.93616i 0.181997 + 0.679222i
\(215\) 3.40921 + 0.913495i 0.232506 + 0.0622999i
\(216\) 0 0
\(217\) 6.03289 + 10.4493i 0.409539 + 0.709343i
\(218\) 8.38949 0.568208
\(219\) 0 0
\(220\) −17.0541 9.84618i −1.14979 0.663829i
\(221\) −2.88592 + 3.06777i −0.194128 + 0.206361i
\(222\) 0 0
\(223\) 0.129240 0.129240i 0.00865452 0.00865452i −0.702766 0.711421i \(-0.748052\pi\)
0.711421 + 0.702766i \(0.248052\pi\)
\(224\) 1.39127 + 0.803251i 0.0929582 + 0.0536694i
\(225\) 0 0
\(226\) −2.49594 + 2.49594i −0.166028 + 0.166028i
\(227\) 12.8172 3.43437i 0.850710 0.227947i 0.192982 0.981202i \(-0.438184\pi\)
0.657728 + 0.753255i \(0.271517\pi\)
\(228\) 0 0
\(229\) −8.72905 + 2.33894i −0.576832 + 0.154562i −0.535428 0.844581i \(-0.679850\pi\)
−0.0414037 + 0.999142i \(0.513183\pi\)
\(230\) 12.9734i 0.855438i
\(231\) 0 0
\(232\) −5.30733 5.30733i −0.348443 0.348443i
\(233\) −5.07704 −0.332608 −0.166304 0.986075i \(-0.553183\pi\)
−0.166304 + 0.986075i \(0.553183\pi\)
\(234\) 0 0
\(235\) 10.0126 0.653150
\(236\) −5.81273 5.81273i −0.378377 0.378377i
\(237\) 0 0
\(238\) 1.87665i 0.121645i
\(239\) −29.0366 + 7.78032i −1.87822 + 0.503267i −0.878547 + 0.477657i \(0.841486\pi\)
−0.999672 + 0.0256107i \(0.991847\pi\)
\(240\) 0 0
\(241\) 16.9189 4.53340i 1.08984 0.292022i 0.331219 0.943554i \(-0.392540\pi\)
0.758621 + 0.651532i \(0.225874\pi\)
\(242\) 9.64271 9.64271i 0.619857 0.619857i
\(243\) 0 0
\(244\) −12.2270 7.05927i −0.782755 0.451924i
\(245\) 12.3974 12.3974i 0.792038 0.792038i
\(246\) 0 0
\(247\) 0.474812 + 15.5451i 0.0302116 + 0.989110i
\(248\) 6.50436 + 3.75530i 0.413028 + 0.238462i
\(249\) 0 0
\(250\) −22.7736 −1.44033
\(251\) 12.2713 + 21.2544i 0.774555 + 1.34157i 0.935044 + 0.354531i \(0.115360\pi\)
−0.160489 + 0.987038i \(0.551307\pi\)
\(252\) 0 0
\(253\) −15.6778 4.20084i −0.985652 0.264105i
\(254\) 3.35291 + 12.5132i 0.210380 + 0.785150i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −10.5671 18.3027i −0.659156 1.14169i −0.980834 0.194843i \(-0.937580\pi\)
0.321678 0.946849i \(-0.395753\pi\)
\(258\) 0 0
\(259\) 6.17586 3.56564i 0.383750 0.221558i
\(260\) −12.1640 + 7.52719i −0.754382 + 0.466817i
\(261\) 0 0
\(262\) −0.507504 1.89403i −0.0313537 0.117014i
\(263\) 1.30808i 0.0806599i 0.999186 + 0.0403299i \(0.0128409\pi\)
−0.999186 + 0.0403299i \(0.987159\pi\)
\(264\) 0 0
\(265\) 6.77898 + 25.2995i 0.416429 + 1.55413i
\(266\) 4.89993 + 4.89993i 0.300434 + 0.300434i
\(267\) 0 0
\(268\) 0.855370 3.19229i 0.0522501 0.195000i
\(269\) −24.6923 + 14.2561i −1.50552 + 0.869210i −0.505536 + 0.862805i \(0.668705\pi\)
−0.999979 + 0.00640436i \(0.997961\pi\)
\(270\) 0 0
\(271\) 1.05690 0.283196i 0.0642021 0.0172029i −0.226575 0.973994i \(-0.572753\pi\)
0.290777 + 0.956791i \(0.406086\pi\)
\(272\) 0.584080 + 1.01166i 0.0354151 + 0.0613407i
\(273\) 0 0
\(274\) 8.41050 14.5674i 0.508097 0.880049i
\(275\) 13.7975 51.4930i 0.832021 3.10515i
\(276\) 0 0
\(277\) −11.9296 6.88754i −0.716779 0.413832i 0.0967872 0.995305i \(-0.469143\pi\)
−0.813566 + 0.581473i \(0.802477\pi\)
\(278\) 11.3645 + 11.3645i 0.681597 + 0.681597i
\(279\) 0 0
\(280\) −1.64961 + 6.15644i −0.0985833 + 0.367918i
\(281\) 4.37098 + 1.17120i 0.260751 + 0.0698680i 0.386826 0.922153i \(-0.373571\pi\)
−0.126075 + 0.992021i \(0.540238\pi\)
\(282\) 0 0
\(283\) −3.36340 + 1.94186i −0.199933 + 0.115432i −0.596624 0.802521i \(-0.703492\pi\)
0.396691 + 0.917952i \(0.370158\pi\)
\(284\) −3.51821 0.942701i −0.208767 0.0559390i
\(285\) 0 0
\(286\) −5.15751 17.1371i −0.304970 1.01334i
\(287\) 8.99968i 0.531235i
\(288\) 0 0
\(289\) 7.81770 13.5407i 0.459865 0.796509i
\(290\) 14.8890 25.7885i 0.874313 1.51435i
\(291\) 0 0
\(292\) 3.33343 3.33343i 0.195074 0.195074i
\(293\) 3.87378 3.87378i 0.226309 0.226309i −0.584840 0.811149i \(-0.698843\pi\)
0.811149 + 0.584840i \(0.198843\pi\)
\(294\) 0 0
\(295\) 16.3069 28.2443i 0.949422 1.64445i
\(296\) 2.21950 3.84429i 0.129006 0.223445i
\(297\) 0 0
\(298\) 2.84880i 0.165026i
\(299\) −8.07848 + 8.58753i −0.467191 + 0.496630i
\(300\) 0 0
\(301\) 1.38048 + 0.369898i 0.0795695 + 0.0213206i
\(302\) −4.12282 + 2.38031i −0.237241 + 0.136971i
\(303\) 0 0
\(304\) 4.16646 + 1.11640i 0.238963 + 0.0640300i
\(305\) 14.4974 54.1052i 0.830121 3.09805i
\(306\) 0 0
\(307\) 0.236798 + 0.236798i 0.0135148 + 0.0135148i 0.713832 0.700317i \(-0.246958\pi\)
−0.700317 + 0.713832i \(0.746958\pi\)
\(308\) −6.90565 3.98698i −0.393486 0.227179i
\(309\) 0 0
\(310\) −7.71215 + 28.7821i −0.438021 + 1.63472i
\(311\) 7.57359 13.1178i 0.429459 0.743844i −0.567366 0.823465i \(-0.692038\pi\)
0.996825 + 0.0796211i \(0.0253710\pi\)
\(312\) 0 0
\(313\) −6.19713 10.7337i −0.350282 0.606707i 0.636016 0.771675i \(-0.280581\pi\)
−0.986299 + 0.164969i \(0.947248\pi\)
\(314\) 7.65422 2.05094i 0.431953 0.115741i
\(315\) 0 0
\(316\) 2.02480 1.16902i 0.113904 0.0657624i
\(317\) 3.26964 12.2024i 0.183641 0.685358i −0.811276 0.584663i \(-0.801227\pi\)
0.994917 0.100695i \(-0.0321066\pi\)
\(318\) 0 0
\(319\) 26.3432 + 26.3432i 1.47494 + 1.47494i
\(320\) 1.02684 + 3.83221i 0.0574019 + 0.214227i
\(321\) 0 0
\(322\) 5.25326i 0.292753i
\(323\) 1.30414 + 4.86710i 0.0725640 + 0.270813i
\(324\) 0 0
\(325\) −28.2054 26.5335i −1.56456 1.47181i
\(326\) −15.3727 + 8.87545i −0.851417 + 0.491566i
\(327\) 0 0
\(328\) 2.80102 + 4.85151i 0.154660 + 0.267880i
\(329\) 4.05436 0.223524
\(330\) 0 0
\(331\) −0.372128 1.38880i −0.0204540 0.0763353i 0.954944 0.296785i \(-0.0959143\pi\)
−0.975398 + 0.220449i \(0.929248\pi\)
\(332\) 10.5532 + 2.82772i 0.579183 + 0.155191i
\(333\) 0 0
\(334\) −5.67216 9.82447i −0.310367 0.537571i
\(335\) 13.1118 0.716375
\(336\) 0 0
\(337\) 16.5630 + 9.56266i 0.902245 + 0.520911i 0.877928 0.478793i \(-0.158926\pi\)
0.0243169 + 0.999704i \(0.492259\pi\)
\(338\) −12.7390 2.59200i −0.692909 0.140986i
\(339\) 0 0
\(340\) −3.27712 + 3.27712i −0.177727 + 0.177727i
\(341\) −32.2848 18.6396i −1.74832 1.00939i
\(342\) 0 0
\(343\) 12.9718 12.9718i 0.700411 0.700411i
\(344\) 0.859308 0.230251i 0.0463308 0.0124143i
\(345\) 0 0
\(346\) 16.1754 4.33418i 0.869593 0.233007i
\(347\) 30.2389i 1.62331i 0.584137 + 0.811655i \(0.301433\pi\)
−0.584137 + 0.811655i \(0.698567\pi\)
\(348\) 0 0
\(349\) 13.0186 + 13.0186i 0.696868 + 0.696868i 0.963734 0.266865i \(-0.0859879\pi\)
−0.266865 + 0.963734i \(0.585988\pi\)
\(350\) −17.2541 −0.922272
\(351\) 0 0
\(352\) −4.96355 −0.264558
\(353\) −13.6207 13.6207i −0.724955 0.724955i 0.244655 0.969610i \(-0.421325\pi\)
−0.969610 + 0.244655i \(0.921325\pi\)
\(354\) 0 0
\(355\) 14.4505i 0.766953i
\(356\) −6.65415 + 1.78297i −0.352669 + 0.0944974i
\(357\) 0 0
\(358\) −4.02997 + 1.07983i −0.212991 + 0.0570707i
\(359\) 14.9056 14.9056i 0.786685 0.786685i −0.194264 0.980949i \(-0.562232\pi\)
0.980949 + 0.194264i \(0.0622319\pi\)
\(360\) 0 0
\(361\) −0.341404 0.197110i −0.0179686 0.0103742i
\(362\) −5.32161 + 5.32161i −0.279698 + 0.279698i
\(363\) 0 0
\(364\) −4.92554 + 3.04796i −0.258168 + 0.159756i
\(365\) 16.1973 + 9.35151i 0.847805 + 0.489480i
\(366\) 0 0
\(367\) 21.2676 1.11016 0.555079 0.831798i \(-0.312688\pi\)
0.555079 + 0.831798i \(0.312688\pi\)
\(368\) 1.63500 + 2.83190i 0.0852302 + 0.147623i
\(369\) 0 0
\(370\) 17.0112 + 4.55814i 0.884370 + 0.236966i
\(371\) 2.74499 + 10.2444i 0.142513 + 0.531864i
\(372\) 0 0
\(373\) −19.9407 −1.03249 −0.516246 0.856440i \(-0.672671\pi\)
−0.516246 + 0.856440i \(0.672671\pi\)
\(374\) −2.89911 5.02141i −0.149910 0.259651i
\(375\) 0 0
\(376\) 2.18561 1.26186i 0.112714 0.0650755i
\(377\) 25.9140 7.79899i 1.33464 0.401669i
\(378\) 0 0
\(379\) −7.46317 27.8529i −0.383357 1.43071i −0.840740 0.541439i \(-0.817880\pi\)
0.457383 0.889270i \(-0.348787\pi\)
\(380\) 17.1131i 0.877884i
\(381\) 0 0
\(382\) 3.13248 + 11.6906i 0.160272 + 0.598142i
\(383\) 13.9292 + 13.9292i 0.711750 + 0.711750i 0.966901 0.255151i \(-0.0821253\pi\)
−0.255151 + 0.966901i \(0.582125\pi\)
\(384\) 0 0
\(385\) 8.18795 30.5578i 0.417296 1.55737i
\(386\) 13.8063 7.97109i 0.702724 0.405718i
\(387\) 0 0
\(388\) 6.17970 1.65585i 0.313727 0.0840628i
\(389\) −1.75344 3.03705i −0.0889030 0.153984i 0.818145 0.575012i \(-0.195003\pi\)
−0.907048 + 0.421028i \(0.861669\pi\)
\(390\) 0 0
\(391\) −1.90994 + 3.30812i −0.0965899 + 0.167299i
\(392\) 1.14376 4.26857i 0.0577687 0.215596i
\(393\) 0 0
\(394\) −11.0877 6.40147i −0.558588 0.322501i
\(395\) 6.55906 + 6.55906i 0.330022 + 0.330022i
\(396\) 0 0
\(397\) −3.67258 + 13.7062i −0.184321 + 0.687896i 0.810454 + 0.585803i \(0.199221\pi\)
−0.994775 + 0.102093i \(0.967446\pi\)
\(398\) 12.2905 + 3.29323i 0.616068 + 0.165075i
\(399\) 0 0
\(400\) −9.30128 + 5.37010i −0.465064 + 0.268505i
\(401\) 29.5314 + 7.91291i 1.47473 + 0.395152i 0.904549 0.426370i \(-0.140208\pi\)
0.570177 + 0.821522i \(0.306875\pi\)
\(402\) 0 0
\(403\) −23.0275 + 14.2496i −1.14708 + 0.709822i
\(404\) 16.2961i 0.810762i
\(405\) 0 0
\(406\) 6.02895 10.4425i 0.299212 0.518250i
\(407\) −11.0166 + 19.0814i −0.546074 + 0.945828i
\(408\) 0 0
\(409\) −13.2956 + 13.2956i −0.657426 + 0.657426i −0.954770 0.297344i \(-0.903899\pi\)
0.297344 + 0.954770i \(0.403899\pi\)
\(410\) −15.7158 + 15.7158i −0.776148 + 0.776148i
\(411\) 0 0
\(412\) −1.15604 + 2.00231i −0.0569538 + 0.0986469i
\(413\) 6.60308 11.4369i 0.324916 0.562771i
\(414\) 0 0
\(415\) 43.3457i 2.12776i
\(416\) −1.70661 + 3.17608i −0.0836732 + 0.155720i
\(417\) 0 0
\(418\) −20.6805 5.54131i −1.01151 0.271035i
\(419\) −3.91273 + 2.25902i −0.191149 + 0.110360i −0.592520 0.805555i \(-0.701867\pi\)
0.401371 + 0.915915i \(0.368534\pi\)
\(420\) 0 0
\(421\) −31.8142 8.52459i −1.55053 0.415463i −0.620879 0.783907i \(-0.713224\pi\)
−0.929650 + 0.368444i \(0.879891\pi\)
\(422\) 4.07115 15.1937i 0.198180 0.739620i
\(423\) 0 0
\(424\) 4.66818 + 4.66818i 0.226707 + 0.226707i
\(425\) −10.8654 6.27313i −0.527049 0.304292i
\(426\) 0 0
\(427\) 5.87039 21.9086i 0.284088 1.06023i
\(428\) −5.14333 + 8.90852i −0.248612 + 0.430609i
\(429\) 0 0
\(430\) 1.76474 + 3.05661i 0.0851032 + 0.147403i
\(431\) −10.5837 + 2.83588i −0.509797 + 0.136600i −0.504543 0.863386i \(-0.668339\pi\)
−0.00525390 + 0.999986i \(0.501672\pi\)
\(432\) 0 0
\(433\) −7.59434 + 4.38459i −0.364960 + 0.210710i −0.671255 0.741227i \(-0.734244\pi\)
0.306294 + 0.951937i \(0.400911\pi\)
\(434\) −3.12285 + 11.6546i −0.149902 + 0.559441i
\(435\) 0 0
\(436\) 5.93227 + 5.93227i 0.284104 + 0.284104i
\(437\) 3.65063 + 13.6243i 0.174633 + 0.651740i
\(438\) 0 0
\(439\) 32.7658i 1.56383i −0.623387 0.781913i \(-0.714244\pi\)
0.623387 0.781913i \(-0.285756\pi\)
\(440\) −5.09676 19.0214i −0.242978 0.906807i
\(441\) 0 0
\(442\) −4.20990 + 0.128588i −0.200245 + 0.00611630i
\(443\) 25.8748 14.9388i 1.22935 0.709766i 0.262457 0.964944i \(-0.415467\pi\)
0.966894 + 0.255178i \(0.0821340\pi\)
\(444\) 0 0
\(445\) −13.6654 23.6692i −0.647804 1.12203i
\(446\) 0.182772 0.00865452
\(447\) 0 0
\(448\) 0.415793 + 1.55176i 0.0196444 + 0.0733138i
\(449\) 14.4946 + 3.88382i 0.684043 + 0.183289i 0.584072 0.811702i \(-0.301458\pi\)
0.0999708 + 0.994990i \(0.468125\pi\)
\(450\) 0 0
\(451\) −13.9030 24.0807i −0.654667 1.13392i
\(452\) −3.52980 −0.166028
\(453\) 0 0
\(454\) 11.4916 + 6.63469i 0.539329 + 0.311382i
\(455\) −16.7381 15.7459i −0.784696 0.738181i
\(456\) 0 0
\(457\) 2.55074 2.55074i 0.119318 0.119318i −0.644926 0.764245i \(-0.723112\pi\)
0.764245 + 0.644926i \(0.223112\pi\)
\(458\) −7.82625 4.51849i −0.365697 0.211135i
\(459\) 0 0
\(460\) −9.17355 + 9.17355i −0.427719 + 0.427719i
\(461\) −32.0555 + 8.58926i −1.49298 + 0.400042i −0.910741 0.412979i \(-0.864488\pi\)
−0.582235 + 0.813021i \(0.697822\pi\)
\(462\) 0 0
\(463\) 3.54265 0.949249i 0.164641 0.0441154i −0.175557 0.984469i \(-0.556173\pi\)
0.340198 + 0.940354i \(0.389506\pi\)
\(464\) 7.50570i 0.348443i
\(465\) 0 0
\(466\) −3.59001 3.59001i −0.166304 0.166304i
\(467\) 5.90589 0.273292 0.136646 0.990620i \(-0.456368\pi\)
0.136646 + 0.990620i \(0.456368\pi\)
\(468\) 0 0
\(469\) 5.30932 0.245162
\(470\) 7.07997 + 7.07997i 0.326575 + 0.326575i
\(471\) 0 0
\(472\) 8.22044i 0.378377i
\(473\) −4.26522 + 1.14286i −0.196115 + 0.0525489i
\(474\) 0 0
\(475\) −44.7486 + 11.9904i −2.05321 + 0.550155i
\(476\) −1.32699 + 1.32699i −0.0608226 + 0.0608226i
\(477\) 0 0
\(478\) −26.0335 15.0304i −1.19074 0.687476i
\(479\) 15.1937 15.1937i 0.694217 0.694217i −0.268940 0.963157i \(-0.586673\pi\)
0.963157 + 0.268940i \(0.0866734\pi\)
\(480\) 0 0
\(481\) 8.42198 + 13.6100i 0.384009 + 0.620564i
\(482\) 15.1690 + 8.75785i 0.690931 + 0.398909i
\(483\) 0 0
\(484\) 13.6369 0.619857
\(485\) 12.6911 + 21.9816i 0.576272 + 0.998133i
\(486\) 0 0
\(487\) 41.0392 + 10.9964i 1.85966 + 0.498295i 0.999923 0.0124347i \(-0.00395819\pi\)
0.859741 + 0.510730i \(0.170625\pi\)
\(488\) −3.65415 13.6375i −0.165416 0.617339i
\(489\) 0 0
\(490\) 17.5325 0.792038
\(491\) −10.2924 17.8270i −0.464490 0.804521i 0.534688 0.845050i \(-0.320429\pi\)
−0.999178 + 0.0405286i \(0.987096\pi\)
\(492\) 0 0
\(493\) 7.59319 4.38393i 0.341980 0.197442i
\(494\) −10.6563 + 11.3278i −0.479449 + 0.509661i
\(495\) 0 0
\(496\) 1.94388 + 7.25468i 0.0872830 + 0.325745i
\(497\) 5.85139i 0.262471i
\(498\) 0 0
\(499\) 5.19060 + 19.3716i 0.232363 + 0.867190i 0.979320 + 0.202318i \(0.0648474\pi\)
−0.746957 + 0.664872i \(0.768486\pi\)
\(500\) −16.1034 16.1034i −0.720164 0.720164i
\(501\) 0 0
\(502\) −6.35207 + 23.7063i −0.283507 + 1.05806i
\(503\) 12.7223 7.34523i 0.567260 0.327508i −0.188794 0.982017i \(-0.560458\pi\)
0.756054 + 0.654509i \(0.227125\pi\)
\(504\) 0 0
\(505\) 62.4501 16.7335i 2.77899 0.744629i
\(506\) −8.11541 14.0563i −0.360774 0.624879i
\(507\) 0 0
\(508\) −6.47732 + 11.2191i −0.287385 + 0.497765i
\(509\) 2.01708 7.52784i 0.0894055 0.333666i −0.906706 0.421762i \(-0.861412\pi\)
0.996112 + 0.0880964i \(0.0280784\pi\)
\(510\) 0 0
\(511\) 6.55871 + 3.78667i 0.290140 + 0.167513i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 5.46992 20.4140i 0.241268 0.900424i
\(515\) −8.86034 2.37412i −0.390433 0.104616i
\(516\) 0 0
\(517\) −10.8484 + 6.26331i −0.477111 + 0.275460i
\(518\) 6.88828 + 1.84571i 0.302654 + 0.0810958i
\(519\) 0 0
\(520\) −13.9238 3.27875i −0.610599 0.143783i
\(521\) 2.05915i 0.0902131i −0.998982 0.0451065i \(-0.985637\pi\)
0.998982 0.0451065i \(-0.0143627\pi\)
\(522\) 0 0
\(523\) −10.5734 + 18.3136i −0.462342 + 0.800800i −0.999077 0.0429511i \(-0.986324\pi\)
0.536735 + 0.843751i \(0.319657\pi\)
\(524\) 0.980422 1.69814i 0.0428299 0.0741836i
\(525\) 0 0
\(526\) −0.924955 + 0.924955i −0.0403299 + 0.0403299i
\(527\) −6.20386 + 6.20386i −0.270244 + 0.270244i
\(528\) 0 0
\(529\) 6.15355 10.6583i 0.267546 0.463403i
\(530\) −13.0960 + 22.6829i −0.568853 + 0.985282i
\(531\) 0 0
\(532\) 6.92955i 0.300434i
\(533\) −20.1890 + 0.616657i −0.874484 + 0.0267104i
\(534\) 0 0
\(535\) −39.4206 10.5627i −1.70430 0.456666i
\(536\) 2.86212 1.65245i 0.123625 0.0713749i
\(537\) 0 0
\(538\) −27.5407 7.37950i −1.18736 0.318153i
\(539\) −5.67712 + 21.1873i −0.244531 + 0.912601i
\(540\) 0 0
\(541\) −5.41302 5.41302i −0.232724 0.232724i 0.581105 0.813829i \(-0.302621\pi\)
−0.813829 + 0.581105i \(0.802621\pi\)
\(542\) 0.947591 + 0.547092i 0.0407025 + 0.0234996i
\(543\) 0 0
\(544\) −0.302342 + 1.12836i −0.0129628 + 0.0483779i
\(545\) −16.6422 + 28.8251i −0.712873 + 1.23473i
\(546\) 0 0
\(547\) 10.3483 + 17.9238i 0.442461 + 0.766365i 0.997871 0.0652117i \(-0.0207723\pi\)
−0.555411 + 0.831576i \(0.687439\pi\)
\(548\) 16.2478 4.35359i 0.694073 0.185976i
\(549\) 0 0
\(550\) 46.1674 26.6548i 1.96858 1.13656i
\(551\) 8.37937 31.2722i 0.356973 1.33224i
\(552\) 0 0
\(553\) 2.65593 + 2.65593i 0.112942 + 0.112942i
\(554\) −3.56526 13.3057i −0.151473 0.565306i
\(555\) 0 0
\(556\) 16.0718i 0.681597i
\(557\) 2.69183 + 10.0460i 0.114056 + 0.425664i 0.999215 0.0396260i \(-0.0126167\pi\)
−0.885158 + 0.465290i \(0.845950\pi\)
\(558\) 0 0
\(559\) −0.735204 + 3.12218i −0.0310958 + 0.132054i
\(560\) −5.51972 + 3.18681i −0.233251 + 0.134667i
\(561\) 0 0
\(562\) 2.26259 + 3.91892i 0.0954415 + 0.165310i
\(563\) −12.0716 −0.508759 −0.254379 0.967104i \(-0.581871\pi\)
−0.254379 + 0.967104i \(0.581871\pi\)
\(564\) 0 0
\(565\) −3.62452 13.5269i −0.152485 0.569081i
\(566\) −3.75139 1.00518i −0.157683 0.0422509i
\(567\) 0 0
\(568\) −1.82116 3.15434i −0.0764141 0.132353i
\(569\) −3.09992 −0.129955 −0.0649777 0.997887i \(-0.520698\pi\)
−0.0649777 + 0.997887i \(0.520698\pi\)
\(570\) 0 0
\(571\) −16.8061 9.70302i −0.703314 0.406059i 0.105266 0.994444i \(-0.466431\pi\)
−0.808581 + 0.588385i \(0.799764\pi\)
\(572\) 8.47083 15.7647i 0.354183 0.659153i
\(573\) 0 0
\(574\) −6.36374 + 6.36374i −0.265617 + 0.265617i
\(575\) −30.4152 17.5602i −1.26840 0.732311i
\(576\) 0 0
\(577\) −13.0940 + 13.0940i −0.545109 + 0.545109i −0.925022 0.379913i \(-0.875954\pi\)
0.379913 + 0.925022i \(0.375954\pi\)
\(578\) 15.1026 4.04674i 0.628187 0.168322i
\(579\) 0 0
\(580\) 28.7634 7.70712i 1.19433 0.320021i
\(581\) 17.5518i 0.728172i
\(582\) 0 0
\(583\) −23.1708 23.1708i −0.959635 0.959635i
\(584\) 4.71419 0.195074
\(585\) 0 0
\(586\) 5.47836 0.226309
\(587\) −3.53264 3.53264i −0.145808 0.145808i 0.630435 0.776242i \(-0.282877\pi\)
−0.776242 + 0.630435i \(0.782877\pi\)
\(588\) 0 0
\(589\) 32.3965i 1.33487i
\(590\) 31.5024 8.44105i 1.29693 0.347513i
\(591\) 0 0
\(592\) 4.28775 1.14890i 0.176226 0.0472195i
\(593\) 6.13688 6.13688i 0.252012 0.252012i −0.569783 0.821795i \(-0.692973\pi\)
0.821795 + 0.569783i \(0.192973\pi\)
\(594\) 0 0
\(595\) −6.44792 3.72271i −0.264339 0.152616i
\(596\) −2.01440 + 2.01440i −0.0825132 + 0.0825132i
\(597\) 0 0
\(598\) −11.7847 + 0.359953i −0.481910 + 0.0147196i
\(599\) 14.0676 + 8.12194i 0.574787 + 0.331853i 0.759059 0.651022i \(-0.225659\pi\)
−0.184272 + 0.982875i \(0.558993\pi\)
\(600\) 0 0
\(601\) −12.6796 −0.517213 −0.258607 0.965983i \(-0.583263\pi\)
−0.258607 + 0.965983i \(0.583263\pi\)
\(602\) 0.714589 + 1.23770i 0.0291245 + 0.0504450i
\(603\) 0 0
\(604\) −4.59840 1.23214i −0.187106 0.0501350i
\(605\) 14.0028 + 52.2592i 0.569296 + 2.12464i
\(606\) 0 0
\(607\) 10.0497 0.407903 0.203951 0.978981i \(-0.434622\pi\)
0.203951 + 0.978981i \(0.434622\pi\)
\(608\) 2.15672 + 3.73555i 0.0874666 + 0.151497i
\(609\) 0 0
\(610\) 48.5094 28.0069i 1.96409 1.13397i
\(611\) 0.277804 + 9.09517i 0.0112388 + 0.367951i
\(612\) 0 0
\(613\) −1.97714 7.37880i −0.0798561 0.298027i 0.914434 0.404734i \(-0.132636\pi\)
−0.994290 + 0.106707i \(0.965969\pi\)
\(614\) 0.334882i 0.0135148i
\(615\) 0 0
\(616\) −2.06381 7.70225i −0.0831533 0.310332i
\(617\) −25.8657 25.8657i −1.04131 1.04131i −0.999109 0.0422041i \(-0.986562\pi\)
−0.0422041 0.999109i \(-0.513438\pi\)
\(618\) 0 0
\(619\) −11.4452 + 42.7139i −0.460020 + 1.71682i 0.212877 + 0.977079i \(0.431717\pi\)
−0.672896 + 0.739737i \(0.734950\pi\)
\(620\) −25.8054 + 14.8987i −1.03637 + 0.598347i
\(621\) 0 0
\(622\) 14.6310 3.92038i 0.586652 0.157193i
\(623\) −5.53350 9.58430i −0.221695 0.383987i
\(624\) 0 0
\(625\) 18.3254 31.7405i 0.733015 1.26962i
\(626\) 3.20787 11.9719i 0.128212 0.478495i
\(627\) 0 0
\(628\) 6.86259 + 3.96212i 0.273847 + 0.158106i
\(629\) 3.66669 + 3.66669i 0.146200 + 0.146200i
\(630\) 0 0
\(631\) 5.78419 21.5869i 0.230265 0.859360i −0.749962 0.661481i \(-0.769928\pi\)
0.980226 0.197879i \(-0.0634053\pi\)
\(632\) 2.25837 + 0.605128i 0.0898331 + 0.0240707i
\(633\) 0 0
\(634\) 10.9404 6.31645i 0.434499 0.250858i
\(635\) −49.6449 13.3023i −1.97010 0.527886i
\(636\) 0 0
\(637\) 11.6054 + 10.9175i 0.459822 + 0.432565i
\(638\) 37.2549i 1.47494i
\(639\) 0 0
\(640\) −1.98370 + 3.43586i −0.0784124 + 0.135814i
\(641\) −1.06735 + 1.84870i −0.0421577 + 0.0730192i −0.886334 0.463046i \(-0.846757\pi\)
0.844177 + 0.536065i \(0.180090\pi\)
\(642\) 0 0
\(643\) −8.55199 + 8.55199i −0.337258 + 0.337258i −0.855334 0.518077i \(-0.826648\pi\)
0.518077 + 0.855334i \(0.326648\pi\)
\(644\) −3.71461 + 3.71461i −0.146376 + 0.146376i
\(645\) 0 0
\(646\) −2.51940 + 4.36372i −0.0991243 + 0.171688i
\(647\) 0.758934 1.31451i 0.0298368 0.0516788i −0.850721 0.525617i \(-0.823835\pi\)
0.880558 + 0.473938i \(0.157168\pi\)
\(648\) 0 0
\(649\) 40.8026i 1.60164i
\(650\) −1.18225 38.7063i −0.0463717 1.51818i
\(651\) 0 0
\(652\) −17.1461 4.59427i −0.671492 0.179926i
\(653\) −4.79770 + 2.76995i −0.187748 + 0.108397i −0.590928 0.806724i \(-0.701238\pi\)
0.403180 + 0.915121i \(0.367905\pi\)
\(654\) 0 0
\(655\) 7.51436 + 2.01347i 0.293610 + 0.0786726i
\(656\) −1.44991 + 5.41115i −0.0566097 + 0.211270i
\(657\) 0 0
\(658\) 2.86687 + 2.86687i 0.111762 + 0.111762i
\(659\) 26.0385 + 15.0334i 1.01432 + 0.585616i 0.912453 0.409182i \(-0.134186\pi\)
0.101865 + 0.994798i \(0.467519\pi\)
\(660\) 0 0
\(661\) −7.83198 + 29.2293i −0.304629 + 1.13689i 0.628636 + 0.777700i \(0.283614\pi\)
−0.933264 + 0.359190i \(0.883053\pi\)
\(662\) 0.718896 1.24516i 0.0279407 0.0483947i
\(663\) 0 0
\(664\) 5.46274 + 9.46175i 0.211996 + 0.367187i
\(665\) −26.5555 + 7.11551i −1.02978 + 0.275928i
\(666\) 0 0
\(667\) 21.2554 12.2718i 0.823012 0.475166i
\(668\) 2.93613 10.9578i 0.113602 0.423969i
\(669\) 0 0
\(670\) 9.27146 + 9.27146i 0.358188 + 0.358188i
\(671\) 18.1376 + 67.6903i 0.700193 + 2.61315i
\(672\) 0 0
\(673\) 27.8812i 1.07474i 0.843346 + 0.537371i \(0.180582\pi\)
−0.843346 + 0.537371i \(0.819418\pi\)
\(674\) 4.95000 + 18.4736i 0.190667 + 0.711578i
\(675\) 0 0
\(676\) −7.17499 10.8406i −0.275961 0.416948i
\(677\) 33.3037 19.2279i 1.27997 0.738989i 0.303124 0.952951i \(-0.401970\pi\)
0.976842 + 0.213962i \(0.0686369\pi\)
\(678\) 0 0
\(679\) 5.13895 + 8.90093i 0.197215 + 0.341586i
\(680\) −4.63455 −0.177727
\(681\) 0 0
\(682\) −9.64857 36.0090i −0.369463 1.37885i
\(683\) −27.1625 7.27817i −1.03934 0.278491i −0.301502 0.953465i \(-0.597488\pi\)
−0.737841 + 0.674974i \(0.764155\pi\)
\(684\) 0 0
\(685\) 33.3677 + 57.7946i 1.27492 + 2.20822i
\(686\) 18.3449 0.700411
\(687\) 0 0
\(688\) 0.770434 + 0.444811i 0.0293725 + 0.0169582i
\(689\) −22.7933 + 6.85979i −0.868355 + 0.261337i
\(690\) 0 0
\(691\) −20.5446 + 20.5446i −0.781554 + 0.781554i −0.980093 0.198539i \(-0.936380\pi\)
0.198539 + 0.980093i \(0.436380\pi\)
\(692\) 14.5024 + 8.37298i 0.551300 + 0.318293i
\(693\) 0 0
\(694\) −21.3821 + 21.3821i −0.811655 + 0.811655i
\(695\) −61.5905 + 16.5031i −2.33626 + 0.625999i
\(696\) 0 0
\(697\) −6.32110 + 1.69373i −0.239429 + 0.0641547i
\(698\) 18.4110i 0.696868i
\(699\) 0 0
\(700\) −12.2005 12.2005i −0.461136 0.461136i
\(701\) 24.1668 0.912769 0.456384 0.889783i \(-0.349144\pi\)
0.456384 + 0.889783i \(0.349144\pi\)
\(702\) 0 0
\(703\) 19.1474 0.722158
\(704\) −3.50976 3.50976i −0.132279 0.132279i
\(705\) 0 0
\(706\) 19.2625i 0.724955i
\(707\) 25.2877 6.77582i 0.951041 0.254831i
\(708\) 0 0
\(709\) 46.0830 12.3479i 1.73068 0.463735i 0.750342 0.661050i \(-0.229889\pi\)
0.980340 + 0.197316i \(0.0632224\pi\)
\(710\) 10.2180 10.2180i 0.383476 0.383476i
\(711\) 0 0
\(712\) −5.96594 3.44444i −0.223583 0.129086i
\(713\) −17.3663 + 17.3663i −0.650372 + 0.650372i
\(714\) 0 0
\(715\) 69.1115 + 16.2742i 2.58462 + 0.608622i
\(716\) −3.61317 2.08607i −0.135031 0.0779600i
\(717\) 0 0
\(718\) 21.0796 0.786685
\(719\) 22.5283 + 39.0202i 0.840165 + 1.45521i 0.889755 + 0.456438i \(0.150875\pi\)
−0.0495902 + 0.998770i \(0.515792\pi\)
\(720\) 0 0
\(721\) −3.58778 0.961344i −0.133616 0.0358023i
\(722\) −0.102031 0.380787i −0.00379722 0.0141714i
\(723\) 0 0
\(724\) −7.52589 −0.279698
\(725\) 40.3063 + 69.8126i 1.49694 + 2.59277i
\(726\) 0 0
\(727\) −41.1027 + 23.7307i −1.52442 + 0.880122i −0.524834 + 0.851205i \(0.675872\pi\)
−0.999582 + 0.0289169i \(0.990794\pi\)
\(728\) −5.63812 1.32765i −0.208962 0.0492060i
\(729\) 0 0
\(730\) 4.84070 + 18.0657i 0.179162 + 0.668643i
\(731\) 1.03922i 0.0384370i
\(732\) 0 0
\(733\) −3.96299 14.7901i −0.146377 0.546285i −0.999690 0.0248869i \(-0.992077\pi\)
0.853314 0.521398i \(-0.174589\pi\)
\(734\) 15.0384 + 15.0384i 0.555079 + 0.555079i
\(735\) 0 0
\(736\) −0.846338 + 3.15858i −0.0311964 + 0.116427i
\(737\) −14.2063 + 8.20202i −0.523296 + 0.302125i
\(738\) 0 0
\(739\) −39.2148 + 10.5076i −1.44254 + 0.386527i −0.893422 0.449218i \(-0.851702\pi\)
−0.549117 + 0.835746i \(0.685036\pi\)
\(740\) 8.80564 + 15.2518i 0.323702 + 0.560668i
\(741\) 0 0
\(742\) −5.30291 + 9.18490i −0.194676 + 0.337188i
\(743\) 5.31877 19.8499i 0.195127 0.728223i −0.797107 0.603838i \(-0.793637\pi\)
0.992234 0.124385i \(-0.0396959\pi\)
\(744\) 0 0
\(745\) −9.78808 5.65115i −0.358607 0.207042i
\(746\) −14.1002 14.1002i −0.516246 0.516246i
\(747\) 0 0
\(748\) 1.50069 5.60066i 0.0548707 0.204780i
\(749\) −15.9625 4.27713i −0.583255 0.156283i
\(750\) 0 0
\(751\) 2.70228 1.56016i 0.0986078 0.0569312i −0.449885 0.893086i \(-0.648535\pi\)
0.548493 + 0.836155i \(0.315202\pi\)
\(752\) 2.43773 + 0.653187i 0.0888948 + 0.0238193i
\(753\) 0 0
\(754\) 23.8387 + 12.8093i 0.868154 + 0.466486i
\(755\) 18.8872i 0.687377i
\(756\) 0 0
\(757\) 16.5089 28.5942i 0.600026 1.03928i −0.392791 0.919628i \(-0.628490\pi\)
0.992816 0.119647i \(-0.0381764\pi\)
\(758\) 14.4177 24.9723i 0.523676 0.907033i
\(759\) 0 0
\(760\) −12.1008 + 12.1008i −0.438942 + 0.438942i
\(761\) 1.09462 1.09462i 0.0396798 0.0396798i −0.686988 0.726668i \(-0.741068\pi\)
0.726668 + 0.686988i \(0.241068\pi\)
\(762\) 0 0
\(763\) −6.73886 + 11.6721i −0.243963 + 0.422557i
\(764\) −6.05149 + 10.4815i −0.218935 + 0.379207i
\(765\) 0 0
\(766\) 19.6989i 0.711750i
\(767\) 26.1088 + 14.0291i 0.942734 + 0.506560i
\(768\) 0 0
\(769\) 41.6581 + 11.1623i 1.50223 + 0.402522i 0.913847 0.406060i \(-0.133097\pi\)
0.588385 + 0.808581i \(0.299764\pi\)
\(770\) 27.3974 15.8179i 0.987334 0.570037i
\(771\) 0 0
\(772\) 15.3990 + 4.12614i 0.554221 + 0.148503i
\(773\) −1.57719 + 5.88615i −0.0567275 + 0.211710i −0.988472 0.151405i \(-0.951620\pi\)
0.931744 + 0.363115i \(0.118287\pi\)
\(774\) 0 0
\(775\) −57.0389 57.0389i −2.04890 2.04890i
\(776\) 5.54057 + 3.19885i 0.198895 + 0.114832i
\(777\) 0 0
\(778\) 0.907648 3.38739i 0.0325407 0.121444i
\(779\) −12.0820 + 20.9267i −0.432884 + 0.749777i
\(780\) 0 0
\(781\) 9.03942 + 15.6567i 0.323456 + 0.560242i
\(782\) −3.68972 + 0.988659i −0.131944 + 0.0353544i
\(783\) 0 0
\(784\) 3.82710 2.20958i 0.136682 0.0789135i