Properties

Label 702.2.bb.a.71.7
Level $702$
Weight $2$
Character 702.71
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(71,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 71.7
Character \(\chi\) \(=\) 702.71
Dual form 702.2.bb.a.89.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(3.36565 - 0.901822i) q^{5} +(0.0541850 - 0.0145188i) q^{7} +(0.707107 - 0.707107i) q^{8} +O(q^{10})\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(3.36565 - 0.901822i) q^{5} +(0.0541850 - 0.0145188i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-3.01756 - 1.74219i) q^{10} +(3.65076 - 3.65076i) q^{11} +(-3.37979 - 1.25580i) q^{13} +(-0.0485810 - 0.0280482i) q^{14} -1.00000 q^{16} +(1.83057 + 3.17065i) q^{17} +(0.677531 + 0.181544i) q^{19} +(0.901822 + 3.36565i) q^{20} -5.16296 q^{22} +(-2.89347 - 5.01164i) q^{23} +(6.18416 - 3.57043i) q^{25} +(1.50189 + 3.27785i) q^{26} +(0.0145188 + 0.0541850i) q^{28} +3.45319i q^{29} +(1.54108 + 5.75138i) q^{31} +(0.707107 + 0.707107i) q^{32} +(0.947575 - 3.53640i) q^{34} +(0.169274 - 0.0977305i) q^{35} +(7.28892 - 1.95306i) q^{37} +(-0.350716 - 0.607458i) q^{38} +(1.74219 - 3.01756i) q^{40} +(0.780112 - 2.91142i) q^{41} +(-4.70232 - 2.71489i) q^{43} +(3.65076 + 3.65076i) q^{44} +(-1.49777 + 5.58976i) q^{46} +(4.82793 + 1.29364i) q^{47} +(-6.05945 + 3.49843i) q^{49} +(-6.89754 - 1.84819i) q^{50} +(1.25580 - 3.37979i) q^{52} -3.89525i q^{53} +(8.99483 - 15.5795i) q^{55} +(0.0280482 - 0.0485810i) q^{56} +(2.44178 - 2.44178i) q^{58} +(-0.745519 + 0.745519i) q^{59} +(1.50195 - 2.60145i) q^{61} +(2.97713 - 5.15654i) q^{62} -1.00000i q^{64} +(-12.5077 - 1.17860i) q^{65} +(-10.5121 - 2.81672i) q^{67} +(-3.17065 + 1.83057i) q^{68} +(-0.188801 - 0.0505890i) q^{70} +(3.98742 - 14.8813i) q^{71} +(5.86521 + 5.86521i) q^{73} +(-6.53507 - 3.77302i) q^{74} +(-0.181544 + 0.677531i) q^{76} +(0.144812 - 0.250821i) q^{77} +(2.76723 + 4.79298i) q^{79} +(-3.36565 + 0.901822i) q^{80} +(-2.61030 + 1.50706i) q^{82} +(4.13340 - 15.4261i) q^{83} +(9.02042 + 9.02042i) q^{85} +(1.40533 + 5.24476i) q^{86} -5.16296i q^{88} +(4.41179 + 16.4650i) q^{89} +(-0.201367 - 0.0189747i) q^{91} +(5.01164 - 2.89347i) q^{92} +(-2.49912 - 4.32861i) q^{94} +2.44405 q^{95} +(-0.595628 - 2.22292i) q^{97} +(6.75844 + 1.81092i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73} - 48 q^{74} + 4 q^{76} + 24 q^{77} - 24 q^{79} + 60 q^{83} - 48 q^{86} + 4 q^{91} + 24 q^{92} + 20 q^{97} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 3.36565 0.901822i 1.50516 0.403307i 0.590337 0.807157i \(-0.298995\pi\)
0.914825 + 0.403850i \(0.132328\pi\)
\(6\) 0 0
\(7\) 0.0541850 0.0145188i 0.0204800 0.00548760i −0.248564 0.968615i \(-0.579959\pi\)
0.269045 + 0.963128i \(0.413292\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) −3.01756 1.74219i −0.954235 0.550928i
\(11\) 3.65076 3.65076i 1.10075 1.10075i 0.106426 0.994321i \(-0.466059\pi\)
0.994321 0.106426i \(-0.0339406\pi\)
\(12\) 0 0
\(13\) −3.37979 1.25580i −0.937385 0.348295i
\(14\) −0.0485810 0.0280482i −0.0129838 0.00749621i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.83057 + 3.17065i 0.443979 + 0.768995i 0.997980 0.0635211i \(-0.0202330\pi\)
−0.554001 + 0.832516i \(0.686900\pi\)
\(18\) 0 0
\(19\) 0.677531 + 0.181544i 0.155436 + 0.0416491i 0.335698 0.941970i \(-0.391028\pi\)
−0.180262 + 0.983619i \(0.557694\pi\)
\(20\) 0.901822 + 3.36565i 0.201654 + 0.752581i
\(21\) 0 0
\(22\) −5.16296 −1.10075
\(23\) −2.89347 5.01164i −0.603330 1.04500i −0.992313 0.123754i \(-0.960507\pi\)
0.388982 0.921245i \(-0.372827\pi\)
\(24\) 0 0
\(25\) 6.18416 3.57043i 1.23683 0.714085i
\(26\) 1.50189 + 3.27785i 0.294545 + 0.642840i
\(27\) 0 0
\(28\) 0.0145188 + 0.0541850i 0.00274380 + 0.0102400i
\(29\) 3.45319i 0.641242i 0.947208 + 0.320621i \(0.103892\pi\)
−0.947208 + 0.320621i \(0.896108\pi\)
\(30\) 0 0
\(31\) 1.54108 + 5.75138i 0.276786 + 1.03298i 0.954635 + 0.297778i \(0.0962454\pi\)
−0.677850 + 0.735201i \(0.737088\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 0.947575 3.53640i 0.162508 0.606487i
\(35\) 0.169274 0.0977305i 0.0286126 0.0165195i
\(36\) 0 0
\(37\) 7.28892 1.95306i 1.19829 0.321081i 0.396134 0.918193i \(-0.370352\pi\)
0.802158 + 0.597112i \(0.203685\pi\)
\(38\) −0.350716 0.607458i −0.0568937 0.0985427i
\(39\) 0 0
\(40\) 1.74219 3.01756i 0.275464 0.477117i
\(41\) 0.780112 2.91142i 0.121833 0.454687i −0.877874 0.478892i \(-0.841039\pi\)
0.999707 + 0.0242048i \(0.00770537\pi\)
\(42\) 0 0
\(43\) −4.70232 2.71489i −0.717097 0.414016i 0.0965863 0.995325i \(-0.469208\pi\)
−0.813683 + 0.581309i \(0.802541\pi\)
\(44\) 3.65076 + 3.65076i 0.550373 + 0.550373i
\(45\) 0 0
\(46\) −1.49777 + 5.58976i −0.220834 + 0.824165i
\(47\) 4.82793 + 1.29364i 0.704226 + 0.188697i 0.593123 0.805112i \(-0.297895\pi\)
0.111103 + 0.993809i \(0.464561\pi\)
\(48\) 0 0
\(49\) −6.05945 + 3.49843i −0.865636 + 0.499775i
\(50\) −6.89754 1.84819i −0.975459 0.261373i
\(51\) 0 0
\(52\) 1.25580 3.37979i 0.174148 0.468692i
\(53\) 3.89525i 0.535053i −0.963550 0.267527i \(-0.913794\pi\)
0.963550 0.267527i \(-0.0862064\pi\)
\(54\) 0 0
\(55\) 8.99483 15.5795i 1.21286 2.10074i
\(56\) 0.0280482 0.0485810i 0.00374810 0.00649190i
\(57\) 0 0
\(58\) 2.44178 2.44178i 0.320621 0.320621i
\(59\) −0.745519 + 0.745519i −0.0970583 + 0.0970583i −0.753969 0.656910i \(-0.771863\pi\)
0.656910 + 0.753969i \(0.271863\pi\)
\(60\) 0 0
\(61\) 1.50195 2.60145i 0.192305 0.333082i −0.753709 0.657209i \(-0.771737\pi\)
0.946014 + 0.324127i \(0.105070\pi\)
\(62\) 2.97713 5.15654i 0.378096 0.654882i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −12.5077 1.17860i −1.55139 0.146187i
\(66\) 0 0
\(67\) −10.5121 2.81672i −1.28426 0.344117i −0.448784 0.893640i \(-0.648143\pi\)
−0.835478 + 0.549524i \(0.814809\pi\)
\(68\) −3.17065 + 1.83057i −0.384497 + 0.221990i
\(69\) 0 0
\(70\) −0.188801 0.0505890i −0.0225660 0.00604655i
\(71\) 3.98742 14.8813i 0.473220 1.76608i −0.154865 0.987936i \(-0.549494\pi\)
0.628085 0.778145i \(-0.283839\pi\)
\(72\) 0 0
\(73\) 5.86521 + 5.86521i 0.686471 + 0.686471i 0.961450 0.274979i \(-0.0886710\pi\)
−0.274979 + 0.961450i \(0.588671\pi\)
\(74\) −6.53507 3.77302i −0.759687 0.438605i
\(75\) 0 0
\(76\) −0.181544 + 0.677531i −0.0208245 + 0.0777182i
\(77\) 0.144812 0.250821i 0.0165028 0.0285838i
\(78\) 0 0
\(79\) 2.76723 + 4.79298i 0.311338 + 0.539253i 0.978652 0.205523i \(-0.0658896\pi\)
−0.667314 + 0.744776i \(0.732556\pi\)
\(80\) −3.36565 + 0.901822i −0.376291 + 0.100827i
\(81\) 0 0
\(82\) −2.61030 + 1.50706i −0.288260 + 0.166427i
\(83\) 4.13340 15.4261i 0.453699 1.69323i −0.238184 0.971220i \(-0.576552\pi\)
0.691883 0.722009i \(-0.256781\pi\)
\(84\) 0 0
\(85\) 9.02042 + 9.02042i 0.978402 + 0.978402i
\(86\) 1.40533 + 5.24476i 0.151540 + 0.565556i
\(87\) 0 0
\(88\) 5.16296i 0.550373i
\(89\) 4.41179 + 16.4650i 0.467649 + 1.74529i 0.647955 + 0.761679i \(0.275625\pi\)
−0.180306 + 0.983611i \(0.557709\pi\)
\(90\) 0 0
\(91\) −0.201367 0.0189747i −0.0211090 0.00198909i
\(92\) 5.01164 2.89347i 0.522500 0.301665i
\(93\) 0 0
\(94\) −2.49912 4.32861i −0.257765 0.446462i
\(95\) 2.44405 0.250754
\(96\) 0 0
\(97\) −0.595628 2.22292i −0.0604769 0.225703i 0.929072 0.369898i \(-0.120607\pi\)
−0.989549 + 0.144195i \(0.953941\pi\)
\(98\) 6.75844 + 1.81092i 0.682706 + 0.182930i
\(99\) 0 0
\(100\) 3.57043 + 6.18416i 0.357043 + 0.618416i
\(101\) 3.52328 0.350580 0.175290 0.984517i \(-0.443914\pi\)
0.175290 + 0.984517i \(0.443914\pi\)
\(102\) 0 0
\(103\) 5.20698 + 3.00625i 0.513059 + 0.296215i 0.734090 0.679052i \(-0.237609\pi\)
−0.221031 + 0.975267i \(0.570942\pi\)
\(104\) −3.27785 + 1.50189i −0.321420 + 0.147272i
\(105\) 0 0
\(106\) −2.75436 + 2.75436i −0.267527 + 0.267527i
\(107\) −14.5555 8.40363i −1.40714 0.812410i −0.412024 0.911173i \(-0.635178\pi\)
−0.995111 + 0.0987630i \(0.968511\pi\)
\(108\) 0 0
\(109\) −14.0667 + 14.0667i −1.34734 + 1.34734i −0.458806 + 0.888537i \(0.651723\pi\)
−0.888537 + 0.458806i \(0.848277\pi\)
\(110\) −17.3767 + 4.65607i −1.65680 + 0.443939i
\(111\) 0 0
\(112\) −0.0541850 + 0.0145188i −0.00512000 + 0.00137190i
\(113\) 19.5681i 1.84082i 0.390960 + 0.920408i \(0.372143\pi\)
−0.390960 + 0.920408i \(0.627857\pi\)
\(114\) 0 0
\(115\) −14.2580 14.2580i −1.32957 1.32957i
\(116\) −3.45319 −0.320621
\(117\) 0 0
\(118\) 1.05432 0.0970583
\(119\) 0.145224 + 0.145224i 0.0133126 + 0.0133126i
\(120\) 0 0
\(121\) 15.6561i 1.42328i
\(122\) −2.90154 + 0.777466i −0.262693 + 0.0703885i
\(123\) 0 0
\(124\) −5.75138 + 1.54108i −0.516489 + 0.138393i
\(125\) 5.27469 5.27469i 0.471782 0.471782i
\(126\) 0 0
\(127\) −0.00248320 0.00143368i −0.000220349 0.000127218i 0.499890 0.866089i \(-0.333374\pi\)
−0.500110 + 0.865962i \(0.666707\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 8.01087 + 9.67766i 0.702600 + 0.848787i
\(131\) 10.8797 + 6.28138i 0.950562 + 0.548807i 0.893255 0.449550i \(-0.148416\pi\)
0.0573063 + 0.998357i \(0.481749\pi\)
\(132\) 0 0
\(133\) 0.0393479 0.00341189
\(134\) 5.44148 + 9.42492i 0.470072 + 0.814189i
\(135\) 0 0
\(136\) 3.53640 + 0.947575i 0.303244 + 0.0812539i
\(137\) 3.63959 + 13.5832i 0.310952 + 1.16049i 0.927700 + 0.373327i \(0.121783\pi\)
−0.616748 + 0.787160i \(0.711550\pi\)
\(138\) 0 0
\(139\) 0.313887 0.0266236 0.0133118 0.999911i \(-0.495763\pi\)
0.0133118 + 0.999911i \(0.495763\pi\)
\(140\) 0.0977305 + 0.169274i 0.00825973 + 0.0143063i
\(141\) 0 0
\(142\) −13.3422 + 7.70311i −1.11965 + 0.646430i
\(143\) −16.9234 + 7.75420i −1.41521 + 0.648438i
\(144\) 0 0
\(145\) 3.11417 + 11.6222i 0.258617 + 0.965173i
\(146\) 8.29466i 0.686471i
\(147\) 0 0
\(148\) 1.95306 + 7.28892i 0.160541 + 0.599146i
\(149\) −4.31299 4.31299i −0.353334 0.353334i 0.508014 0.861349i \(-0.330380\pi\)
−0.861349 + 0.508014i \(0.830380\pi\)
\(150\) 0 0
\(151\) −2.90331 + 10.8353i −0.236268 + 0.881766i 0.741305 + 0.671169i \(0.234207\pi\)
−0.977573 + 0.210597i \(0.932459\pi\)
\(152\) 0.607458 0.350716i 0.0492714 0.0284468i
\(153\) 0 0
\(154\) −0.279755 + 0.0749601i −0.0225433 + 0.00604046i
\(155\) 10.3734 + 17.9673i 0.833215 + 1.44317i
\(156\) 0 0
\(157\) −6.52002 + 11.2930i −0.520354 + 0.901280i 0.479366 + 0.877615i \(0.340867\pi\)
−0.999720 + 0.0236645i \(0.992467\pi\)
\(158\) 1.43242 5.34588i 0.113958 0.425295i
\(159\) 0 0
\(160\) 3.01756 + 1.74219i 0.238559 + 0.137732i
\(161\) −0.229546 0.229546i −0.0180908 0.0180908i
\(162\) 0 0
\(163\) −1.44937 + 5.40913i −0.113524 + 0.423676i −0.999172 0.0406802i \(-0.987048\pi\)
0.885649 + 0.464356i \(0.153714\pi\)
\(164\) 2.91142 + 0.780112i 0.227343 + 0.0609165i
\(165\) 0 0
\(166\) −13.8306 + 7.98511i −1.07346 + 0.619765i
\(167\) −8.94898 2.39787i −0.692493 0.185553i −0.104627 0.994512i \(-0.533365\pi\)
−0.587866 + 0.808959i \(0.700032\pi\)
\(168\) 0 0
\(169\) 9.84595 + 8.48865i 0.757381 + 0.652973i
\(170\) 12.7568i 0.978402i
\(171\) 0 0
\(172\) 2.71489 4.70232i 0.207008 0.358548i
\(173\) 4.92325 8.52731i 0.374307 0.648319i −0.615916 0.787812i \(-0.711214\pi\)
0.990223 + 0.139493i \(0.0445471\pi\)
\(174\) 0 0
\(175\) 0.283250 0.283250i 0.0214117 0.0214117i
\(176\) −3.65076 + 3.65076i −0.275187 + 0.275187i
\(177\) 0 0
\(178\) 8.52292 14.7621i 0.638820 1.10647i
\(179\) −7.69779 + 13.3330i −0.575360 + 0.996553i 0.420642 + 0.907227i \(0.361805\pi\)
−0.996002 + 0.0893264i \(0.971529\pi\)
\(180\) 0 0
\(181\) 17.1903i 1.27774i 0.769314 + 0.638871i \(0.220598\pi\)
−0.769314 + 0.638871i \(0.779402\pi\)
\(182\) 0.128971 + 0.155805i 0.00955993 + 0.0115490i
\(183\) 0 0
\(184\) −5.58976 1.49777i −0.412082 0.110417i
\(185\) 22.7706 13.1466i 1.67413 0.966559i
\(186\) 0 0
\(187\) 18.2583 + 4.89229i 1.33518 + 0.357760i
\(188\) −1.29364 + 4.82793i −0.0943484 + 0.352113i
\(189\) 0 0
\(190\) −1.72821 1.72821i −0.125377 0.125377i
\(191\) 7.39988 + 4.27232i 0.535436 + 0.309134i 0.743227 0.669039i \(-0.233294\pi\)
−0.207791 + 0.978173i \(0.566627\pi\)
\(192\) 0 0
\(193\) 0.157908 0.589319i 0.0113664 0.0424201i −0.960010 0.279967i \(-0.909677\pi\)
0.971376 + 0.237547i \(0.0763432\pi\)
\(194\) −1.15067 + 1.99301i −0.0826130 + 0.143090i
\(195\) 0 0
\(196\) −3.49843 6.05945i −0.249888 0.432818i
\(197\) −17.3239 + 4.64193i −1.23428 + 0.330724i −0.816244 0.577707i \(-0.803948\pi\)
−0.418035 + 0.908431i \(0.637281\pi\)
\(198\) 0 0
\(199\) 17.2644 9.96763i 1.22384 0.706586i 0.258108 0.966116i \(-0.416901\pi\)
0.965735 + 0.259530i \(0.0835675\pi\)
\(200\) 1.84819 6.89754i 0.130687 0.487729i
\(201\) 0 0
\(202\) −2.49134 2.49134i −0.175290 0.175290i
\(203\) 0.0501363 + 0.187111i 0.00351888 + 0.0131326i
\(204\) 0 0
\(205\) 10.5023i 0.733514i
\(206\) −1.55615 5.80763i −0.108422 0.404637i
\(207\) 0 0
\(208\) 3.37979 + 1.25580i 0.234346 + 0.0870738i
\(209\) 3.13628 1.81073i 0.216941 0.125251i
\(210\) 0 0
\(211\) −0.727198 1.25954i −0.0500623 0.0867105i 0.839908 0.542728i \(-0.182609\pi\)
−0.889971 + 0.456018i \(0.849275\pi\)
\(212\) 3.89525 0.267527
\(213\) 0 0
\(214\) 4.35004 + 16.2346i 0.297363 + 1.10977i
\(215\) −18.2747 4.89669i −1.24632 0.333951i
\(216\) 0 0
\(217\) 0.167007 + 0.289264i 0.0113371 + 0.0196365i
\(218\) 19.8933 1.34734
\(219\) 0 0
\(220\) 15.5795 + 8.99483i 1.05037 + 0.606432i
\(221\) −2.20527 13.0149i −0.148342 0.875480i
\(222\) 0 0
\(223\) −3.00391 + 3.00391i −0.201157 + 0.201157i −0.800496 0.599339i \(-0.795430\pi\)
0.599339 + 0.800496i \(0.295430\pi\)
\(224\) 0.0485810 + 0.0280482i 0.00324595 + 0.00187405i
\(225\) 0 0
\(226\) 13.8368 13.8368i 0.920408 0.920408i
\(227\) −22.5667 + 6.04673i −1.49780 + 0.401335i −0.912364 0.409380i \(-0.865745\pi\)
−0.585440 + 0.810716i \(0.699078\pi\)
\(228\) 0 0
\(229\) 5.96935 1.59948i 0.394466 0.105697i −0.0561332 0.998423i \(-0.517877\pi\)
0.450599 + 0.892727i \(0.351210\pi\)
\(230\) 20.1639i 1.32957i
\(231\) 0 0
\(232\) 2.44178 + 2.44178i 0.160310 + 0.160310i
\(233\) −1.20969 −0.0792497 −0.0396249 0.999215i \(-0.512616\pi\)
−0.0396249 + 0.999215i \(0.512616\pi\)
\(234\) 0 0
\(235\) 17.4157 1.13608
\(236\) −0.745519 0.745519i −0.0485292 0.0485292i
\(237\) 0 0
\(238\) 0.205377i 0.0133126i
\(239\) −13.1345 + 3.51937i −0.849599 + 0.227649i −0.657246 0.753676i \(-0.728279\pi\)
−0.192353 + 0.981326i \(0.561612\pi\)
\(240\) 0 0
\(241\) −6.88614 + 1.84513i −0.443575 + 0.118856i −0.473692 0.880691i \(-0.657079\pi\)
0.0301165 + 0.999546i \(0.490412\pi\)
\(242\) −11.0706 + 11.0706i −0.711642 + 0.711642i
\(243\) 0 0
\(244\) 2.60145 + 1.50195i 0.166541 + 0.0961524i
\(245\) −17.2390 + 17.2390i −1.10136 + 1.10136i
\(246\) 0 0
\(247\) −2.06193 1.46442i −0.131198 0.0931789i
\(248\) 5.15654 + 2.97713i 0.327441 + 0.189048i
\(249\) 0 0
\(250\) −7.45953 −0.471782
\(251\) −2.50999 4.34744i −0.158429 0.274408i 0.775873 0.630889i \(-0.217310\pi\)
−0.934302 + 0.356481i \(0.883976\pi\)
\(252\) 0 0
\(253\) −28.8597 7.73293i −1.81439 0.486165i
\(254\) 0.000742127 0.00276966i 4.65652e−5 0.000173784i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −2.47055 4.27912i −0.154109 0.266924i 0.778625 0.627489i \(-0.215917\pi\)
−0.932734 + 0.360565i \(0.882584\pi\)
\(258\) 0 0
\(259\) 0.366594 0.211653i 0.0227791 0.0131515i
\(260\) 1.17860 12.5077i 0.0730934 0.775693i
\(261\) 0 0
\(262\) −3.25148 12.1347i −0.200877 0.749684i
\(263\) 12.9065i 0.795849i 0.917418 + 0.397925i \(0.130269\pi\)
−0.917418 + 0.397925i \(0.869731\pi\)
\(264\) 0 0
\(265\) −3.51282 13.1100i −0.215791 0.805342i
\(266\) −0.0278231 0.0278231i −0.00170595 0.00170595i
\(267\) 0 0
\(268\) 2.81672 10.5121i 0.172058 0.642131i
\(269\) 22.4600 12.9673i 1.36941 0.790630i 0.378558 0.925577i \(-0.376420\pi\)
0.990853 + 0.134948i \(0.0430866\pi\)
\(270\) 0 0
\(271\) −15.7870 + 4.23012i −0.958992 + 0.256961i −0.704174 0.710028i \(-0.748682\pi\)
−0.254819 + 0.966989i \(0.582016\pi\)
\(272\) −1.83057 3.17065i −0.110995 0.192249i
\(273\) 0 0
\(274\) 7.03116 12.1783i 0.424768 0.735719i
\(275\) 9.54212 35.6117i 0.575412 2.14747i
\(276\) 0 0
\(277\) −14.7653 8.52472i −0.887158 0.512201i −0.0141462 0.999900i \(-0.504503\pi\)
−0.873012 + 0.487699i \(0.837836\pi\)
\(278\) −0.221952 0.221952i −0.0133118 0.0133118i
\(279\) 0 0
\(280\) 0.0505890 0.188801i 0.00302327 0.0112830i
\(281\) 3.85082 + 1.03182i 0.229721 + 0.0615535i 0.371843 0.928296i \(-0.378726\pi\)
−0.142122 + 0.989849i \(0.545393\pi\)
\(282\) 0 0
\(283\) −15.7258 + 9.07928i −0.934801 + 0.539707i −0.888327 0.459212i \(-0.848132\pi\)
−0.0464740 + 0.998920i \(0.514798\pi\)
\(284\) 14.8813 + 3.98742i 0.883040 + 0.236610i
\(285\) 0 0
\(286\) 17.4497 + 6.48362i 1.03182 + 0.383385i
\(287\) 0.169081i 0.00998056i
\(288\) 0 0
\(289\) 1.79800 3.11423i 0.105765 0.183190i
\(290\) 6.01611 10.4202i 0.353278 0.611895i
\(291\) 0 0
\(292\) −5.86521 + 5.86521i −0.343235 + 0.343235i
\(293\) −14.4630 + 14.4630i −0.844940 + 0.844940i −0.989497 0.144557i \(-0.953824\pi\)
0.144557 + 0.989497i \(0.453824\pi\)
\(294\) 0 0
\(295\) −1.83683 + 3.18148i −0.106944 + 0.185233i
\(296\) 3.77302 6.53507i 0.219303 0.379843i
\(297\) 0 0
\(298\) 6.09950i 0.353334i
\(299\) 3.48573 + 20.5719i 0.201585 + 1.18970i
\(300\) 0 0
\(301\) −0.294212 0.0788339i −0.0169581 0.00454391i
\(302\) 9.71468 5.60877i 0.559017 0.322749i
\(303\) 0 0
\(304\) −0.677531 0.181544i −0.0388591 0.0104123i
\(305\) 2.70898 10.1101i 0.155116 0.578900i
\(306\) 0 0
\(307\) −6.72055 6.72055i −0.383562 0.383562i 0.488822 0.872384i \(-0.337427\pi\)
−0.872384 + 0.488822i \(0.837427\pi\)
\(308\) 0.250821 + 0.144812i 0.0142919 + 0.00825142i
\(309\) 0 0
\(310\) 5.36969 20.0399i 0.304978 1.13819i
\(311\) 1.80968 3.13446i 0.102618 0.177739i −0.810145 0.586230i \(-0.800612\pi\)
0.912762 + 0.408491i \(0.133945\pi\)
\(312\) 0 0
\(313\) −9.03947 15.6568i −0.510941 0.884975i −0.999920 0.0126797i \(-0.995964\pi\)
0.488979 0.872296i \(-0.337370\pi\)
\(314\) 12.5957 3.37501i 0.710817 0.190463i
\(315\) 0 0
\(316\) −4.79298 + 2.76723i −0.269626 + 0.155669i
\(317\) 2.76420 10.3161i 0.155253 0.579412i −0.843830 0.536610i \(-0.819705\pi\)
0.999084 0.0428025i \(-0.0136286\pi\)
\(318\) 0 0
\(319\) 12.6068 + 12.6068i 0.705845 + 0.705845i
\(320\) −0.901822 3.36565i −0.0504134 0.188145i
\(321\) 0 0
\(322\) 0.324627i 0.0180908i
\(323\) 0.664659 + 2.48054i 0.0369826 + 0.138021i
\(324\) 0 0
\(325\) −25.3849 + 4.30125i −1.40810 + 0.238590i
\(326\) 4.84969 2.79997i 0.268600 0.155076i
\(327\) 0 0
\(328\) −1.50706 2.61030i −0.0832135 0.144130i
\(329\) 0.280384 0.0154581
\(330\) 0 0
\(331\) −0.861097 3.21366i −0.0473301 0.176639i 0.938215 0.346054i \(-0.112479\pi\)
−0.985545 + 0.169416i \(0.945812\pi\)
\(332\) 15.4261 + 4.13340i 0.846615 + 0.226850i
\(333\) 0 0
\(334\) 4.63233 + 8.02344i 0.253470 + 0.439023i
\(335\) −37.9203 −2.07181
\(336\) 0 0
\(337\) 2.50494 + 1.44623i 0.136453 + 0.0787811i 0.566672 0.823943i \(-0.308231\pi\)
−0.430220 + 0.902724i \(0.641564\pi\)
\(338\) −0.959757 12.9645i −0.0522039 0.705177i
\(339\) 0 0
\(340\) −9.02042 + 9.02042i −0.489201 + 0.489201i
\(341\) 26.6230 + 15.3708i 1.44172 + 0.832376i
\(342\) 0 0
\(343\) −0.555202 + 0.555202i −0.0299781 + 0.0299781i
\(344\) −5.24476 + 1.40533i −0.282778 + 0.0757702i
\(345\) 0 0
\(346\) −9.51098 + 2.54846i −0.511313 + 0.137006i
\(347\) 17.9932i 0.965923i −0.875642 0.482962i \(-0.839561\pi\)
0.875642 0.482962i \(-0.160439\pi\)
\(348\) 0 0
\(349\) 18.3144 + 18.3144i 0.980348 + 0.980348i 0.999811 0.0194630i \(-0.00619566\pi\)
−0.0194630 + 0.999811i \(0.506196\pi\)
\(350\) −0.400577 −0.0214117
\(351\) 0 0
\(352\) 5.16296 0.275187
\(353\) 2.10008 + 2.10008i 0.111776 + 0.111776i 0.760783 0.649007i \(-0.224815\pi\)
−0.649007 + 0.760783i \(0.724815\pi\)
\(354\) 0 0
\(355\) 53.6810i 2.84909i
\(356\) −16.4650 + 4.41179i −0.872645 + 0.233824i
\(357\) 0 0
\(358\) 14.8710 3.98467i 0.785957 0.210596i
\(359\) −0.0334095 + 0.0334095i −0.00176329 + 0.00176329i −0.707988 0.706225i \(-0.750397\pi\)
0.706225 + 0.707988i \(0.250397\pi\)
\(360\) 0 0
\(361\) −16.0284 9.25400i −0.843600 0.487052i
\(362\) 12.1554 12.1554i 0.638871 0.638871i
\(363\) 0 0
\(364\) 0.0189747 0.201367i 0.000994546 0.0105545i
\(365\) 25.0296 + 14.4508i 1.31011 + 0.756392i
\(366\) 0 0
\(367\) −9.50010 −0.495901 −0.247951 0.968773i \(-0.579757\pi\)
−0.247951 + 0.968773i \(0.579757\pi\)
\(368\) 2.89347 + 5.01164i 0.150833 + 0.261250i
\(369\) 0 0
\(370\) −25.3973 6.80519i −1.32034 0.353785i
\(371\) −0.0565545 0.211064i −0.00293616 0.0109579i
\(372\) 0 0
\(373\) 26.8580 1.39066 0.695328 0.718693i \(-0.255259\pi\)
0.695328 + 0.718693i \(0.255259\pi\)
\(374\) −9.45117 16.3699i −0.488709 0.846468i
\(375\) 0 0
\(376\) 4.32861 2.49912i 0.223231 0.128882i
\(377\) 4.33651 11.6711i 0.223341 0.601090i
\(378\) 0 0
\(379\) 4.93097 + 18.4026i 0.253287 + 0.945279i 0.969036 + 0.246921i \(0.0794189\pi\)
−0.715749 + 0.698358i \(0.753914\pi\)
\(380\) 2.44405i 0.125377i
\(381\) 0 0
\(382\) −2.21152 8.25349i −0.113151 0.422285i
\(383\) 6.76886 + 6.76886i 0.345873 + 0.345873i 0.858570 0.512697i \(-0.171354\pi\)
−0.512697 + 0.858570i \(0.671354\pi\)
\(384\) 0 0
\(385\) 0.261189 0.974771i 0.0133114 0.0496789i
\(386\) −0.528369 + 0.305054i −0.0268933 + 0.0155268i
\(387\) 0 0
\(388\) 2.22292 0.595628i 0.112851 0.0302384i
\(389\) −4.60612 7.97804i −0.233540 0.404502i 0.725308 0.688425i \(-0.241698\pi\)
−0.958847 + 0.283922i \(0.908364\pi\)
\(390\) 0 0
\(391\) 10.5934 18.3484i 0.535733 0.927916i
\(392\) −1.81092 + 6.75844i −0.0914652 + 0.341353i
\(393\) 0 0
\(394\) 15.5322 + 8.96753i 0.782502 + 0.451777i
\(395\) 13.6359 + 13.6359i 0.686098 + 0.686098i
\(396\) 0 0
\(397\) 7.23488 27.0009i 0.363108 1.35514i −0.506859 0.862029i \(-0.669194\pi\)
0.869967 0.493110i \(-0.164140\pi\)
\(398\) −19.2560 5.15962i −0.965215 0.258629i
\(399\) 0 0
\(400\) −6.18416 + 3.57043i −0.309208 + 0.178521i
\(401\) 8.59039 + 2.30179i 0.428984 + 0.114946i 0.466849 0.884337i \(-0.345389\pi\)
−0.0378654 + 0.999283i \(0.512056\pi\)
\(402\) 0 0
\(403\) 2.01404 21.3737i 0.100327 1.06470i
\(404\) 3.52328i 0.175290i
\(405\) 0 0
\(406\) 0.0968559 0.167759i 0.00480688 0.00832576i
\(407\) 19.4800 33.7403i 0.965586 1.67244i
\(408\) 0 0
\(409\) −24.6479 + 24.6479i −1.21876 + 1.21876i −0.250692 + 0.968067i \(0.580658\pi\)
−0.968067 + 0.250692i \(0.919342\pi\)
\(410\) −7.42626 + 7.42626i −0.366757 + 0.366757i
\(411\) 0 0
\(412\) −3.00625 + 5.20698i −0.148107 + 0.256529i
\(413\) −0.0295719 + 0.0512200i −0.00145514 + 0.00252037i
\(414\) 0 0
\(415\) 55.6462i 2.73157i
\(416\) −1.50189 3.27785i −0.0736362 0.160710i
\(417\) 0 0
\(418\) −3.49807 0.937304i −0.171096 0.0458450i
\(419\) −14.9055 + 8.60570i −0.728182 + 0.420416i −0.817757 0.575564i \(-0.804783\pi\)
0.0895746 + 0.995980i \(0.471449\pi\)
\(420\) 0 0
\(421\) 3.68017 + 0.986098i 0.179360 + 0.0480595i 0.347381 0.937724i \(-0.387071\pi\)
−0.168021 + 0.985783i \(0.553738\pi\)
\(422\) −0.376425 + 1.40484i −0.0183241 + 0.0683864i
\(423\) 0 0
\(424\) −2.75436 2.75436i −0.133763 0.133763i
\(425\) 22.6411 + 13.0719i 1.09826 + 0.634078i
\(426\) 0 0
\(427\) 0.0436131 0.162766i 0.00211059 0.00787681i
\(428\) 8.40363 14.5555i 0.406205 0.703568i
\(429\) 0 0
\(430\) 9.45967 + 16.3846i 0.456186 + 0.790137i
\(431\) 20.9081 5.60231i 1.00711 0.269854i 0.282687 0.959212i \(-0.408774\pi\)
0.724420 + 0.689358i \(0.242107\pi\)
\(432\) 0 0
\(433\) 15.1421 8.74227i 0.727681 0.420127i −0.0898923 0.995951i \(-0.528652\pi\)
0.817573 + 0.575825i \(0.195319\pi\)
\(434\) 0.0864490 0.322632i 0.00414968 0.0154868i
\(435\) 0 0
\(436\) −14.0667 14.0667i −0.673671 0.673671i
\(437\) −1.05058 3.92084i −0.0502563 0.187559i
\(438\) 0 0
\(439\) 6.29999i 0.300682i 0.988634 + 0.150341i \(0.0480372\pi\)
−0.988634 + 0.150341i \(0.951963\pi\)
\(440\) −4.65607 17.3767i −0.221969 0.828401i
\(441\) 0 0
\(442\) −7.64360 + 10.7623i −0.363569 + 0.511911i
\(443\) 13.9547 8.05675i 0.663007 0.382788i −0.130414 0.991460i \(-0.541631\pi\)
0.793422 + 0.608672i \(0.208297\pi\)
\(444\) 0 0
\(445\) 29.6970 + 51.4368i 1.40778 + 2.43834i
\(446\) 4.24818 0.201157
\(447\) 0 0
\(448\) −0.0145188 0.0541850i −0.000685950 0.00256000i
\(449\) 18.3173 + 4.90811i 0.864447 + 0.231628i 0.663685 0.748012i \(-0.268991\pi\)
0.200762 + 0.979640i \(0.435658\pi\)
\(450\) 0 0
\(451\) −7.78089 13.4769i −0.366388 0.634602i
\(452\) −19.5681 −0.920408
\(453\) 0 0
\(454\) 20.2327 + 11.6814i 0.949570 + 0.548234i
\(455\) −0.694841 + 0.117735i −0.0325746 + 0.00551949i
\(456\) 0 0
\(457\) −11.9721 + 11.9721i −0.560032 + 0.560032i −0.929316 0.369285i \(-0.879603\pi\)
0.369285 + 0.929316i \(0.379603\pi\)
\(458\) −5.35197 3.08996i −0.250081 0.144384i
\(459\) 0 0
\(460\) 14.2580 14.2580i 0.664783 0.664783i
\(461\) −12.5113 + 3.35240i −0.582711 + 0.156137i −0.538120 0.842868i \(-0.680865\pi\)
−0.0445913 + 0.999005i \(0.514199\pi\)
\(462\) 0 0
\(463\) 17.0527 4.56925i 0.792505 0.212351i 0.160214 0.987082i \(-0.448782\pi\)
0.632291 + 0.774731i \(0.282115\pi\)
\(464\) 3.45319i 0.160310i
\(465\) 0 0
\(466\) 0.855383 + 0.855383i 0.0396249 + 0.0396249i
\(467\) −21.1177 −0.977210 −0.488605 0.872505i \(-0.662494\pi\)
−0.488605 + 0.872505i \(0.662494\pi\)
\(468\) 0 0
\(469\) −0.610496 −0.0281901
\(470\) −12.3148 12.3148i −0.568039 0.568039i
\(471\) 0 0
\(472\) 1.05432i 0.0485292i
\(473\) −27.0784 + 7.25565i −1.24507 + 0.333615i
\(474\) 0 0
\(475\) 4.83815 1.29638i 0.221990 0.0594820i
\(476\) −0.145224 + 0.145224i −0.00665632 + 0.00665632i
\(477\) 0 0
\(478\) 11.7761 + 6.79891i 0.538624 + 0.310975i
\(479\) 10.8748 10.8748i 0.496883 0.496883i −0.413583 0.910466i \(-0.635723\pi\)
0.910466 + 0.413583i \(0.135723\pi\)
\(480\) 0 0
\(481\) −27.0877 2.55246i −1.23509 0.116382i
\(482\) 6.17394 + 3.56453i 0.281215 + 0.162360i
\(483\) 0 0
\(484\) 15.6561 0.711642
\(485\) −4.00935 6.94439i −0.182055 0.315329i
\(486\) 0 0
\(487\) −15.1707 4.06498i −0.687450 0.184202i −0.101848 0.994800i \(-0.532475\pi\)
−0.585603 + 0.810598i \(0.699142\pi\)
\(488\) −0.777466 2.90154i −0.0351942 0.131347i
\(489\) 0 0
\(490\) 24.3796 1.10136
\(491\) 3.19734 + 5.53796i 0.144294 + 0.249925i 0.929109 0.369805i \(-0.120576\pi\)
−0.784815 + 0.619730i \(0.787242\pi\)
\(492\) 0 0
\(493\) −10.9489 + 6.32132i −0.493112 + 0.284698i
\(494\) 0.422503 + 2.49351i 0.0190093 + 0.112188i
\(495\) 0 0
\(496\) −1.54108 5.75138i −0.0691964 0.258245i
\(497\) 0.864234i 0.0387662i
\(498\) 0 0
\(499\) −1.98095 7.39299i −0.0886794 0.330956i 0.907306 0.420471i \(-0.138135\pi\)
−0.995985 + 0.0895148i \(0.971468\pi\)
\(500\) 5.27469 + 5.27469i 0.235891 + 0.235891i
\(501\) 0 0
\(502\) −1.29927 + 4.84894i −0.0579892 + 0.216419i
\(503\) −6.97222 + 4.02541i −0.310876 + 0.179484i −0.647318 0.762220i \(-0.724110\pi\)
0.336442 + 0.941704i \(0.390776\pi\)
\(504\) 0 0
\(505\) 11.8581 3.17737i 0.527679 0.141391i
\(506\) 14.9389 + 25.8749i 0.664114 + 1.15028i
\(507\) 0 0
\(508\) 0.00143368 0.00248320i 6.36092e−5 0.000110174i
\(509\) 8.37966 31.2733i 0.371422 1.38617i −0.487081 0.873357i \(-0.661938\pi\)
0.858503 0.512809i \(-0.171395\pi\)
\(510\) 0 0
\(511\) 0.402962 + 0.232651i 0.0178260 + 0.0102919i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) −1.27885 + 4.77274i −0.0564077 + 0.210517i
\(515\) 20.2359 + 5.42221i 0.891702 + 0.238931i
\(516\) 0 0
\(517\) 22.3484 12.9029i 0.982882 0.567467i
\(518\) −0.408883 0.109560i −0.0179653 0.00481378i
\(519\) 0 0
\(520\) −9.67766 + 8.01087i −0.424393 + 0.351300i
\(521\) 3.95332i 0.173198i 0.996243 + 0.0865990i \(0.0275999\pi\)
−0.996243 + 0.0865990i \(0.972400\pi\)
\(522\) 0 0
\(523\) −19.7397 + 34.1901i −0.863155 + 1.49503i 0.00571276 + 0.999984i \(0.498182\pi\)
−0.868868 + 0.495044i \(0.835152\pi\)
\(524\) −6.28138 + 10.8797i −0.274403 + 0.475281i
\(525\) 0 0
\(526\) 9.12628 9.12628i 0.397925 0.397925i
\(527\) −15.4145 + 15.4145i −0.671468 + 0.671468i
\(528\) 0 0
\(529\) −5.24435 + 9.08349i −0.228015 + 0.394934i
\(530\) −6.78625 + 11.7541i −0.294776 + 0.510567i
\(531\) 0 0
\(532\) 0.0393479i 0.00170595i
\(533\) −6.29276 + 8.86031i −0.272570 + 0.383783i
\(534\) 0 0
\(535\) −56.5673 15.1572i −2.44562 0.655301i
\(536\) −9.42492 + 5.44148i −0.407095 + 0.235036i
\(537\) 0 0
\(538\) −25.0509 6.71236i −1.08002 0.289391i
\(539\) −9.34970 + 34.8935i −0.402720 + 1.50297i
\(540\) 0 0
\(541\) 8.65093 + 8.65093i 0.371933 + 0.371933i 0.868181 0.496248i \(-0.165289\pi\)
−0.496248 + 0.868181i \(0.665289\pi\)
\(542\) 14.1542 + 8.17196i 0.607977 + 0.351016i
\(543\) 0 0
\(544\) −0.947575 + 3.53640i −0.0406269 + 0.151622i
\(545\) −34.6578 + 60.0291i −1.48458 + 2.57136i
\(546\) 0 0
\(547\) 12.5519 + 21.7406i 0.536681 + 0.929559i 0.999080 + 0.0428870i \(0.0136556\pi\)
−0.462399 + 0.886672i \(0.653011\pi\)
\(548\) −13.5832 + 3.63959i −0.580243 + 0.155476i
\(549\) 0 0
\(550\) −31.9286 + 18.4340i −1.36144 + 0.786027i
\(551\) −0.626906 + 2.33965i −0.0267071 + 0.0996723i
\(552\) 0 0
\(553\) 0.219531 + 0.219531i 0.00933541 + 0.00933541i
\(554\) 4.41272 + 16.4685i 0.187479 + 0.699680i
\(555\) 0 0
\(556\) 0.313887i 0.0133118i
\(557\) 2.76078 + 10.3034i 0.116978 + 0.436567i 0.999427 0.0338399i \(-0.0107736\pi\)
−0.882449 + 0.470407i \(0.844107\pi\)
\(558\) 0 0
\(559\) 12.4835 + 15.0809i 0.527996 + 0.637854i
\(560\) −0.169274 + 0.0977305i −0.00715314 + 0.00412987i
\(561\) 0 0
\(562\) −1.99333 3.45255i −0.0840836 0.145637i
\(563\) 29.8646 1.25864 0.629322 0.777144i \(-0.283333\pi\)
0.629322 + 0.777144i \(0.283333\pi\)
\(564\) 0 0
\(565\) 17.6470 + 65.8594i 0.742414 + 2.77073i
\(566\) 17.5398 + 4.69978i 0.737254 + 0.197547i
\(567\) 0 0
\(568\) −7.70311 13.3422i −0.323215 0.559825i
\(569\) −45.0588 −1.88896 −0.944482 0.328563i \(-0.893436\pi\)
−0.944482 + 0.328563i \(0.893436\pi\)
\(570\) 0 0
\(571\) 23.2043 + 13.3970i 0.971071 + 0.560648i 0.899562 0.436792i \(-0.143885\pi\)
0.0715081 + 0.997440i \(0.477219\pi\)
\(572\) −7.75420 16.9234i −0.324219 0.707604i
\(573\) 0 0
\(574\) −0.119559 + 0.119559i −0.00499028 + 0.00499028i
\(575\) −35.7874 20.6619i −1.49244 0.861659i
\(576\) 0 0
\(577\) −20.9051 + 20.9051i −0.870292 + 0.870292i −0.992504 0.122212i \(-0.961001\pi\)
0.122212 + 0.992504i \(0.461001\pi\)
\(578\) −3.47347 + 0.930713i −0.144477 + 0.0387126i
\(579\) 0 0
\(580\) −11.6222 + 3.11417i −0.482587 + 0.129309i
\(581\) 0.895873i 0.0371671i
\(582\) 0 0
\(583\) −14.2206 14.2206i −0.588958 0.588958i
\(584\) 8.29466 0.343235
\(585\) 0 0
\(586\) 20.4538 0.844940
\(587\) 17.7153 + 17.7153i 0.731190 + 0.731190i 0.970856 0.239665i \(-0.0770378\pi\)
−0.239665 + 0.970856i \(0.577038\pi\)
\(588\) 0 0
\(589\) 4.17651i 0.172090i
\(590\) 3.54848 0.950812i 0.146089 0.0391443i
\(591\) 0 0
\(592\) −7.28892 + 1.95306i −0.299573 + 0.0802703i
\(593\) 13.5809 13.5809i 0.557700 0.557700i −0.370952 0.928652i \(-0.620969\pi\)
0.928652 + 0.370952i \(0.120969\pi\)
\(594\) 0 0
\(595\) 0.619738 + 0.357806i 0.0254068 + 0.0146686i
\(596\) 4.31299 4.31299i 0.176667 0.176667i
\(597\) 0 0
\(598\) 12.0817 17.0113i 0.494059 0.695644i
\(599\) −12.8779 7.43506i −0.526176 0.303788i 0.213282 0.976991i \(-0.431585\pi\)
−0.739458 + 0.673203i \(0.764918\pi\)
\(600\) 0 0
\(601\) −23.1090 −0.942636 −0.471318 0.881963i \(-0.656222\pi\)
−0.471318 + 0.881963i \(0.656222\pi\)
\(602\) 0.152295 + 0.263783i 0.00620710 + 0.0107510i
\(603\) 0 0
\(604\) −10.8353 2.90331i −0.440883 0.118134i
\(605\) −14.1190 52.6930i −0.574021 2.14228i
\(606\) 0 0
\(607\) 29.8697 1.21238 0.606188 0.795322i \(-0.292698\pi\)
0.606188 + 0.795322i \(0.292698\pi\)
\(608\) 0.350716 + 0.607458i 0.0142234 + 0.0246357i
\(609\) 0 0
\(610\) −9.06443 + 5.23335i −0.367008 + 0.211892i
\(611\) −14.6928 10.4351i −0.594409 0.422160i
\(612\) 0 0
\(613\) −8.88349 33.1536i −0.358801 1.33906i −0.875633 0.482977i \(-0.839556\pi\)
0.516832 0.856087i \(-0.327111\pi\)
\(614\) 9.50429i 0.383562i
\(615\) 0 0
\(616\) −0.0749601 0.279755i −0.00302023 0.0112716i
\(617\) −1.94352 1.94352i −0.0782432 0.0782432i 0.666902 0.745145i \(-0.267620\pi\)
−0.745145 + 0.666902i \(0.767620\pi\)
\(618\) 0 0
\(619\) 4.73494 17.6710i 0.190313 0.710259i −0.803117 0.595821i \(-0.796827\pi\)
0.993430 0.114438i \(-0.0365066\pi\)
\(620\) −17.9673 + 10.3734i −0.721585 + 0.416607i
\(621\) 0 0
\(622\) −3.49603 + 0.936759i −0.140178 + 0.0375606i
\(623\) 0.478106 + 0.828104i 0.0191549 + 0.0331773i
\(624\) 0 0
\(625\) −4.85624 + 8.41125i −0.194250 + 0.336450i
\(626\) −4.67917 + 17.4629i −0.187017 + 0.697958i
\(627\) 0 0
\(628\) −11.2930 6.52002i −0.450640 0.260177i
\(629\) 19.5354 + 19.5354i 0.778927 + 0.778927i
\(630\) 0 0
\(631\) −8.90171 + 33.2216i −0.354371 + 1.32253i 0.526902 + 0.849926i \(0.323353\pi\)
−0.881274 + 0.472606i \(0.843313\pi\)
\(632\) 5.34588 + 1.43242i 0.212648 + 0.0569788i
\(633\) 0 0
\(634\) −9.24920 + 5.34003i −0.367333 + 0.212080i
\(635\) −0.00965051 0.00258585i −0.000382969 0.000102616i
\(636\) 0 0
\(637\) 24.8730 4.21451i 0.985503 0.166985i
\(638\) 17.8287i 0.705845i
\(639\) 0 0
\(640\) −1.74219 + 3.01756i −0.0688660 + 0.119279i
\(641\) 6.77781 11.7395i 0.267707 0.463683i −0.700562 0.713592i \(-0.747067\pi\)
0.968269 + 0.249909i \(0.0804006\pi\)
\(642\) 0 0
\(643\) 28.1744 28.1744i 1.11109 1.11109i 0.118088 0.993003i \(-0.462324\pi\)
0.993003 0.118088i \(-0.0376765\pi\)
\(644\) 0.229546 0.229546i 0.00904538 0.00904538i
\(645\) 0 0
\(646\) 1.28402 2.22399i 0.0505192 0.0875019i
\(647\) 11.0797 19.1906i 0.435588 0.754460i −0.561756 0.827303i \(-0.689874\pi\)
0.997343 + 0.0728432i \(0.0232073\pi\)
\(648\) 0 0
\(649\) 5.44343i 0.213673i
\(650\) 20.9913 + 14.9084i 0.823345 + 0.584755i
\(651\) 0 0
\(652\) −5.40913 1.44937i −0.211838 0.0567618i
\(653\) 29.5307 17.0495i 1.15562 0.667200i 0.205372 0.978684i \(-0.434159\pi\)
0.950251 + 0.311484i \(0.100826\pi\)
\(654\) 0 0
\(655\) 42.2818 + 11.3294i 1.65209 + 0.442675i
\(656\) −0.780112 + 2.91142i −0.0304582 + 0.113672i
\(657\) 0 0
\(658\) −0.198261 0.198261i −0.00772903 0.00772903i
\(659\) −4.93704 2.85040i −0.192320 0.111036i 0.400748 0.916188i \(-0.368750\pi\)
−0.593068 + 0.805152i \(0.702084\pi\)
\(660\) 0 0
\(661\) 2.37504 8.86377i 0.0923783 0.344761i −0.904231 0.427044i \(-0.859555\pi\)
0.996609 + 0.0822839i \(0.0262214\pi\)
\(662\) −1.66351 + 2.88129i −0.0646542 + 0.111984i
\(663\) 0 0
\(664\) −7.98511 13.8306i −0.309882 0.536732i
\(665\) 0.132431 0.0354848i 0.00513545 0.00137604i
\(666\) 0 0
\(667\) 17.3062 9.99171i 0.670097 0.386881i
\(668\) 2.39787 8.94898i 0.0927765 0.346246i
\(669\) 0 0
\(670\) 26.8137 + 26.8137i 1.03590 + 1.03590i
\(671\) −4.01402 14.9805i −0.154960 0.578318i
\(672\) 0 0
\(673\) 30.8722i 1.19004i 0.803713 + 0.595018i \(0.202855\pi\)
−0.803713 + 0.595018i \(0.797145\pi\)
\(674\) −0.748623 2.79390i −0.0288359 0.107617i
\(675\) 0 0
\(676\) −8.48865 + 9.84595i −0.326487 + 0.378691i
\(677\) 3.80387 2.19617i 0.146195 0.0844055i −0.425118 0.905138i \(-0.639768\pi\)
0.571313 + 0.820732i \(0.306434\pi\)
\(678\) 0 0
\(679\) −0.0645483 0.111801i −0.00247714 0.00429052i
\(680\) 12.7568 0.489201
\(681\) 0 0
\(682\) −7.95652 29.6941i −0.304671 1.13705i
\(683\) −11.2191 3.00615i −0.429287 0.115027i 0.0377045 0.999289i \(-0.487995\pi\)
−0.466991 + 0.884262i \(0.654662\pi\)
\(684\) 0 0
\(685\) 24.4992 + 42.4338i 0.936065 + 1.62131i
\(686\) 0.785174 0.0299781
\(687\) 0 0
\(688\) 4.70232 + 2.71489i 0.179274 + 0.103504i
\(689\) −4.89164 + 13.1651i −0.186356 + 0.501551i
\(690\) 0 0
\(691\) 7.51539 7.51539i 0.285899 0.285899i −0.549557 0.835456i \(-0.685204\pi\)
0.835456 + 0.549557i \(0.185204\pi\)
\(692\) 8.52731 + 4.92325i 0.324160 + 0.187154i
\(693\) 0 0
\(694\) −12.7231 + 12.7231i −0.482962 + 0.482962i
\(695\) 1.05643 0.283070i 0.0400728 0.0107375i
\(696\) 0 0
\(697\) 10.6591 2.85610i 0.403743 0.108183i
\(698\) 25.9005i 0.980348i
\(699\) 0 0
\(700\) 0.283250 + 0.283250i 0.0107059 + 0.0107059i
\(701\) −10.2778 −0.388185 −0.194093 0.980983i \(-0.562176\pi\)
−0.194093 + 0.980983i \(0.562176\pi\)
\(702\) 0 0
\(703\) 5.29304 0.199631
\(704\) −3.65076 3.65076i −0.137593 0.137593i
\(705\) 0 0
\(706\) 2.96995i 0.111776i
\(707\) 0.190909 0.0511539i 0.00717988 0.00192384i
\(708\) 0 0
\(709\) 35.0211 9.38387i 1.31524 0.352419i 0.468050 0.883702i \(-0.344957\pi\)
0.847194 + 0.531283i \(0.178290\pi\)
\(710\) −37.9582 + 37.9582i −1.42455 + 1.42455i
\(711\) 0 0
\(712\) 14.7621 + 8.52292i 0.553235 + 0.319410i
\(713\) 24.3648 24.3648i 0.912468 0.912468i
\(714\) 0 0
\(715\) −49.9653 + 41.3598i −1.86860 + 1.54677i
\(716\) −13.3330 7.69779i −0.498276 0.287680i
\(717\) 0 0
\(718\) 0.0472482 0.00176329
\(719\) −0.703567 1.21861i −0.0262386 0.0454466i 0.852608 0.522551i \(-0.175020\pi\)
−0.878847 + 0.477105i \(0.841686\pi\)
\(720\) 0 0
\(721\) 0.325787 + 0.0872945i 0.0121330 + 0.00325102i
\(722\) 4.79022 + 17.8773i 0.178274 + 0.665326i
\(723\) 0 0
\(724\) −17.1903 −0.638871
\(725\) 12.3294 + 21.3551i 0.457901 + 0.793108i
\(726\) 0 0
\(727\) −32.7077 + 18.8838i −1.21306 + 0.700361i −0.963425 0.267978i \(-0.913644\pi\)
−0.249636 + 0.968340i \(0.580311\pi\)
\(728\) −0.155805 + 0.128971i −0.00577451 + 0.00477997i
\(729\) 0 0
\(730\) −7.48031 27.9169i −0.276859 1.03325i
\(731\) 19.8792i 0.735258i
\(732\) 0 0
\(733\) −8.62288 32.1810i −0.318493 1.18863i −0.920693 0.390288i \(-0.872375\pi\)
0.602199 0.798346i \(-0.294291\pi\)
\(734\) 6.71759 + 6.71759i 0.247951 + 0.247951i
\(735\) 0 0
\(736\) 1.49777 5.58976i 0.0552086 0.206041i
\(737\) −48.6605 + 28.0941i −1.79243 + 1.03486i
\(738\) 0 0
\(739\) −23.0630 + 6.17972i −0.848388 + 0.227325i −0.656719 0.754135i \(-0.728056\pi\)
−0.191668 + 0.981460i \(0.561390\pi\)
\(740\) 13.1466 + 22.7706i 0.483280 + 0.837065i
\(741\) 0 0
\(742\) −0.109255 + 0.189235i −0.00401087 + 0.00694703i
\(743\) 3.12072 11.6467i 0.114488 0.427275i −0.884760 0.466047i \(-0.845678\pi\)
0.999248 + 0.0387716i \(0.0123445\pi\)
\(744\) 0 0
\(745\) −18.4056 10.6265i −0.674328 0.389323i
\(746\) −18.9915 18.9915i −0.695328 0.695328i
\(747\) 0 0
\(748\) −4.89229 + 18.2583i −0.178880 + 0.667588i
\(749\) −0.910702 0.244022i −0.0332763 0.00891637i
\(750\) 0 0
\(751\) 26.0668 15.0497i 0.951192 0.549171i 0.0577408 0.998332i \(-0.481610\pi\)
0.893451 + 0.449161i \(0.148277\pi\)
\(752\) −4.82793 1.29364i −0.176057 0.0471742i
\(753\) 0 0
\(754\) −11.3191 + 5.18632i −0.412216 + 0.188875i
\(755\) 39.0861i 1.42249i
\(756\) 0 0
\(757\) 25.3503 43.9080i 0.921371 1.59586i 0.124076 0.992273i \(-0.460403\pi\)
0.797296 0.603589i \(-0.206263\pi\)
\(758\) 9.52590 16.4993i 0.345996 0.599283i
\(759\) 0 0
\(760\) 1.72821 1.72821i 0.0626886 0.0626886i
\(761\) −10.5364 + 10.5364i −0.381943 + 0.381943i −0.871802 0.489859i \(-0.837048\pi\)
0.489859 + 0.871802i \(0.337048\pi\)
\(762\) 0 0
\(763\) −0.557971 + 0.966434i −0.0201999 + 0.0349873i
\(764\) −4.27232 + 7.39988i −0.154567 + 0.267718i
\(765\) 0 0
\(766\) 9.57262i 0.345873i
\(767\) 3.45592 1.58348i 0.124786 0.0571761i
\(768\) 0 0
\(769\) 25.6571 + 6.87479i 0.925218 + 0.247911i 0.689814 0.723986i \(-0.257692\pi\)
0.235404 + 0.971898i \(0.424359\pi\)
\(770\) −0.873955 + 0.504578i −0.0314952 + 0.0181837i
\(771\) 0 0
\(772\) 0.589319 + 0.157908i 0.0212101 + 0.00568322i
\(773\) 11.3267 42.2718i 0.407393 1.52041i −0.392206 0.919877i \(-0.628288\pi\)
0.799599 0.600534i \(-0.205045\pi\)
\(774\) 0 0
\(775\) 30.0651 + 30.0651i 1.07997 + 1.07997i
\(776\) −1.99301 1.15067i −0.0715449 0.0413065i
\(777\) 0 0
\(778\) −2.38430 + 8.89834i −0.0854814 + 0.319021i
\(779\) 1.05710 1.83095i 0.0378745 0.0656006i
\(780\) 0 0
\(781\) −39.7708 68.8851i −1.42311 2.46490i
\(782\) −20.4649 + 5.48356i −0.731824 + 0.196092i
\(783\) 0 0
\(784\) 6.05945 3.49843i <