Properties

Label 702.2.bb.a.71.6
Level $702$
Weight $2$
Character 702.71
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(71,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 71.6
Character \(\chi\) \(=\) 702.71
Dual form 702.2.bb.a.89.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(2.64098 - 0.707650i) q^{5} +(3.36644 - 0.902034i) q^{7} +(0.707107 - 0.707107i) q^{8} +O(q^{10})\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(2.64098 - 0.707650i) q^{5} +(3.36644 - 0.902034i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-2.36784 - 1.36707i) q^{10} +(1.29045 - 1.29045i) q^{11} +(2.77764 + 2.29885i) q^{13} +(-3.01826 - 1.74260i) q^{14} -1.00000 q^{16} +(0.419403 + 0.726428i) q^{17} +(-6.94825 - 1.86178i) q^{19} +(0.707650 + 2.64098i) q^{20} -1.82497 q^{22} +(3.18965 + 5.52464i) q^{23} +(2.14391 - 1.23778i) q^{25} +(-0.338562 - 3.58962i) q^{26} +(0.902034 + 3.36644i) q^{28} +6.05100i q^{29} +(-1.99320 - 7.43873i) q^{31} +(0.707107 + 0.707107i) q^{32} +(0.217099 - 0.810225i) q^{34} +(8.25239 - 4.76452i) q^{35} +(-4.09570 + 1.09744i) q^{37} +(3.59668 + 6.22963i) q^{38} +(1.36707 - 2.36784i) q^{40} +(1.07586 - 4.01515i) q^{41} +(7.47357 + 4.31487i) q^{43} +(1.29045 + 1.29045i) q^{44} +(1.65109 - 6.16194i) q^{46} +(-7.46630 - 2.00059i) q^{47} +(4.45706 - 2.57328i) q^{49} +(-2.39122 - 0.640725i) q^{50} +(-2.29885 + 2.77764i) q^{52} -3.92979i q^{53} +(2.49486 - 4.32123i) q^{55} +(1.74260 - 3.01826i) q^{56} +(4.27871 - 4.27871i) q^{58} +(5.26591 - 5.26591i) q^{59} +(0.247438 - 0.428575i) q^{61} +(-3.85057 + 6.66938i) q^{62} -1.00000i q^{64} +(8.96250 + 4.10562i) q^{65} +(5.34607 + 1.43247i) q^{67} +(-0.726428 + 0.419403i) q^{68} +(-9.20434 - 2.46630i) q^{70} +(-1.48865 + 5.55573i) q^{71} +(-9.66963 - 9.66963i) q^{73} +(3.67210 + 2.12009i) q^{74} +(1.86178 - 6.94825i) q^{76} +(3.18018 - 5.50823i) q^{77} +(-0.892374 - 1.54564i) q^{79} +(-2.64098 + 0.707650i) q^{80} +(-3.59989 + 2.07840i) q^{82} +(4.07375 - 15.2034i) q^{83} +(1.62169 + 1.62169i) q^{85} +(-2.23354 - 8.33569i) q^{86} -1.82497i q^{88} +(-0.385644 - 1.43924i) q^{89} +(11.4244 + 5.23339i) q^{91} +(-5.52464 + 3.18965i) q^{92} +(3.86484 + 6.69410i) q^{94} -19.6677 q^{95} +(4.50154 + 16.8000i) q^{97} +(-4.97120 - 1.33203i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73} - 48 q^{74} + 4 q^{76} + 24 q^{77} - 24 q^{79} + 60 q^{83} - 48 q^{86} + 4 q^{91} + 24 q^{92} + 20 q^{97} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 2.64098 0.707650i 1.18108 0.316471i 0.385728 0.922613i \(-0.373950\pi\)
0.795356 + 0.606142i \(0.207284\pi\)
\(6\) 0 0
\(7\) 3.36644 0.902034i 1.27239 0.340937i 0.441446 0.897288i \(-0.354466\pi\)
0.830947 + 0.556351i \(0.187799\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) −2.36784 1.36707i −0.748777 0.432307i
\(11\) 1.29045 1.29045i 0.389084 0.389084i −0.485277 0.874361i \(-0.661281\pi\)
0.874361 + 0.485277i \(0.161281\pi\)
\(12\) 0 0
\(13\) 2.77764 + 2.29885i 0.770380 + 0.637585i
\(14\) −3.01826 1.74260i −0.806665 0.465728i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 0.419403 + 0.726428i 0.101720 + 0.176185i 0.912393 0.409314i \(-0.134232\pi\)
−0.810673 + 0.585499i \(0.800899\pi\)
\(18\) 0 0
\(19\) −6.94825 1.86178i −1.59404 0.427121i −0.650802 0.759247i \(-0.725567\pi\)
−0.943235 + 0.332126i \(0.892234\pi\)
\(20\) 0.707650 + 2.64098i 0.158235 + 0.590542i
\(21\) 0 0
\(22\) −1.82497 −0.389084
\(23\) 3.18965 + 5.52464i 0.665089 + 1.15197i 0.979261 + 0.202602i \(0.0649397\pi\)
−0.314172 + 0.949366i \(0.601727\pi\)
\(24\) 0 0
\(25\) 2.14391 1.23778i 0.428781 0.247557i
\(26\) −0.338562 3.58962i −0.0663975 0.703983i
\(27\) 0 0
\(28\) 0.902034 + 3.36644i 0.170468 + 0.636197i
\(29\) 6.05100i 1.12364i 0.827258 + 0.561822i \(0.189899\pi\)
−0.827258 + 0.561822i \(0.810101\pi\)
\(30\) 0 0
\(31\) −1.99320 7.43873i −0.357990 1.33604i −0.876680 0.481074i \(-0.840247\pi\)
0.518691 0.854962i \(-0.326420\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 0.217099 0.810225i 0.0372322 0.138952i
\(35\) 8.25239 4.76452i 1.39491 0.805350i
\(36\) 0 0
\(37\) −4.09570 + 1.09744i −0.673328 + 0.180418i −0.579254 0.815147i \(-0.696656\pi\)
−0.0940746 + 0.995565i \(0.529989\pi\)
\(38\) 3.59668 + 6.22963i 0.583458 + 1.01058i
\(39\) 0 0
\(40\) 1.36707 2.36784i 0.216153 0.374389i
\(41\) 1.07586 4.01515i 0.168021 0.627062i −0.829615 0.558336i \(-0.811440\pi\)
0.997636 0.0687257i \(-0.0218933\pi\)
\(42\) 0 0
\(43\) 7.47357 + 4.31487i 1.13971 + 0.658011i 0.946359 0.323118i \(-0.104731\pi\)
0.193351 + 0.981130i \(0.438065\pi\)
\(44\) 1.29045 + 1.29045i 0.194542 + 0.194542i
\(45\) 0 0
\(46\) 1.65109 6.16194i 0.243439 0.908528i
\(47\) −7.46630 2.00059i −1.08907 0.291816i −0.330765 0.943713i \(-0.607307\pi\)
−0.758307 + 0.651897i \(0.773973\pi\)
\(48\) 0 0
\(49\) 4.45706 2.57328i 0.636722 0.367612i
\(50\) −2.39122 0.640725i −0.338169 0.0906121i
\(51\) 0 0
\(52\) −2.29885 + 2.77764i −0.318792 + 0.385190i
\(53\) 3.92979i 0.539798i −0.962889 0.269899i \(-0.913010\pi\)
0.962889 0.269899i \(-0.0869903\pi\)
\(54\) 0 0
\(55\) 2.49486 4.32123i 0.336408 0.582675i
\(56\) 1.74260 3.01826i 0.232864 0.403333i
\(57\) 0 0
\(58\) 4.27871 4.27871i 0.561822 0.561822i
\(59\) 5.26591 5.26591i 0.685564 0.685564i −0.275685 0.961248i \(-0.588905\pi\)
0.961248 + 0.275685i \(0.0889045\pi\)
\(60\) 0 0
\(61\) 0.247438 0.428575i 0.0316812 0.0548734i −0.849750 0.527186i \(-0.823247\pi\)
0.881431 + 0.472312i \(0.156581\pi\)
\(62\) −3.85057 + 6.66938i −0.489023 + 0.847013i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 8.96250 + 4.10562i 1.11166 + 0.509239i
\(66\) 0 0
\(67\) 5.34607 + 1.43247i 0.653126 + 0.175005i 0.570142 0.821546i \(-0.306888\pi\)
0.0829842 + 0.996551i \(0.473555\pi\)
\(68\) −0.726428 + 0.419403i −0.0880923 + 0.0508601i
\(69\) 0 0
\(70\) −9.20434 2.46630i −1.10013 0.294779i
\(71\) −1.48865 + 5.55573i −0.176671 + 0.659344i 0.819591 + 0.572950i \(0.194201\pi\)
−0.996261 + 0.0863938i \(0.972466\pi\)
\(72\) 0 0
\(73\) −9.66963 9.66963i −1.13174 1.13174i −0.989887 0.141858i \(-0.954693\pi\)
−0.141858 0.989887i \(-0.545307\pi\)
\(74\) 3.67210 + 2.12009i 0.426873 + 0.246455i
\(75\) 0 0
\(76\) 1.86178 6.94825i 0.213560 0.797018i
\(77\) 3.18018 5.50823i 0.362415 0.627721i
\(78\) 0 0
\(79\) −0.892374 1.54564i −0.100400 0.173898i 0.811450 0.584422i \(-0.198679\pi\)
−0.911849 + 0.410525i \(0.865346\pi\)
\(80\) −2.64098 + 0.707650i −0.295271 + 0.0791177i
\(81\) 0 0
\(82\) −3.59989 + 2.07840i −0.397541 + 0.229520i
\(83\) 4.07375 15.2034i 0.447152 1.66879i −0.263039 0.964785i \(-0.584725\pi\)
0.710191 0.704009i \(-0.248609\pi\)
\(84\) 0 0
\(85\) 1.62169 + 1.62169i 0.175897 + 0.175897i
\(86\) −2.23354 8.33569i −0.240849 0.898860i
\(87\) 0 0
\(88\) 1.82497i 0.194542i
\(89\) −0.385644 1.43924i −0.0408782 0.152559i 0.942470 0.334290i \(-0.108497\pi\)
−0.983348 + 0.181731i \(0.941830\pi\)
\(90\) 0 0
\(91\) 11.4244 + 5.23339i 1.19760 + 0.548608i
\(92\) −5.52464 + 3.18965i −0.575984 + 0.332544i
\(93\) 0 0
\(94\) 3.86484 + 6.69410i 0.398628 + 0.690444i
\(95\) −19.6677 −2.01786
\(96\) 0 0
\(97\) 4.50154 + 16.8000i 0.457062 + 1.70578i 0.681954 + 0.731395i \(0.261130\pi\)
−0.224892 + 0.974384i \(0.572203\pi\)
\(98\) −4.97120 1.33203i −0.502167 0.134555i
\(99\) 0 0
\(100\) 1.23778 + 2.14391i 0.123778 + 0.214391i
\(101\) −0.0847306 −0.00843101 −0.00421550 0.999991i \(-0.501342\pi\)
−0.00421550 + 0.999991i \(0.501342\pi\)
\(102\) 0 0
\(103\) −7.73765 4.46733i −0.762413 0.440179i 0.0677484 0.997702i \(-0.478418\pi\)
−0.830161 + 0.557523i \(0.811752\pi\)
\(104\) 3.58962 0.338562i 0.351991 0.0331988i
\(105\) 0 0
\(106\) −2.77878 + 2.77878i −0.269899 + 0.269899i
\(107\) −12.3692 7.14138i −1.19578 0.690384i −0.236168 0.971712i \(-0.575892\pi\)
−0.959611 + 0.281329i \(0.909225\pi\)
\(108\) 0 0
\(109\) −9.68492 + 9.68492i −0.927647 + 0.927647i −0.997554 0.0699067i \(-0.977730\pi\)
0.0699067 + 0.997554i \(0.477730\pi\)
\(110\) −4.81971 + 1.29144i −0.459541 + 0.123134i
\(111\) 0 0
\(112\) −3.36644 + 0.902034i −0.318098 + 0.0852342i
\(113\) 7.95653i 0.748487i 0.927330 + 0.374244i \(0.122098\pi\)
−0.927330 + 0.374244i \(0.877902\pi\)
\(114\) 0 0
\(115\) 12.3333 + 12.3333i 1.15009 + 1.15009i
\(116\) −6.05100 −0.561822
\(117\) 0 0
\(118\) −7.44713 −0.685564
\(119\) 2.06716 + 2.06716i 0.189496 + 0.189496i
\(120\) 0 0
\(121\) 7.66950i 0.697227i
\(122\) −0.478014 + 0.128083i −0.0432773 + 0.0115961i
\(123\) 0 0
\(124\) 7.43873 1.99320i 0.668018 0.178995i
\(125\) −4.88057 + 4.88057i −0.436531 + 0.436531i
\(126\) 0 0
\(127\) 10.0640 + 5.81045i 0.893035 + 0.515594i 0.874934 0.484242i \(-0.160905\pi\)
0.0181011 + 0.999836i \(0.494238\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) −3.43433 9.24055i −0.301211 0.810450i
\(131\) 4.16625 + 2.40538i 0.364007 + 0.210159i 0.670837 0.741605i \(-0.265935\pi\)
−0.306830 + 0.951764i \(0.599268\pi\)
\(132\) 0 0
\(133\) −25.0702 −2.17386
\(134\) −2.76733 4.79315i −0.239061 0.414065i
\(135\) 0 0
\(136\) 0.810225 + 0.217099i 0.0694762 + 0.0186161i
\(137\) −2.00715 7.49077i −0.171482 0.639980i −0.997124 0.0757856i \(-0.975854\pi\)
0.825642 0.564194i \(-0.190813\pi\)
\(138\) 0 0
\(139\) −4.82707 −0.409427 −0.204713 0.978822i \(-0.565626\pi\)
−0.204713 + 0.978822i \(0.565626\pi\)
\(140\) 4.76452 + 8.25239i 0.402675 + 0.697454i
\(141\) 0 0
\(142\) 4.98113 2.87586i 0.418007 0.241336i
\(143\) 6.55094 0.617865i 0.547817 0.0516685i
\(144\) 0 0
\(145\) 4.28199 + 15.9806i 0.355600 + 1.32712i
\(146\) 13.6749i 1.13174i
\(147\) 0 0
\(148\) −1.09744 4.09570i −0.0902089 0.336664i
\(149\) 9.23003 + 9.23003i 0.756153 + 0.756153i 0.975620 0.219467i \(-0.0704317\pi\)
−0.219467 + 0.975620i \(0.570432\pi\)
\(150\) 0 0
\(151\) 2.95315 11.0213i 0.240324 0.896900i −0.735353 0.677685i \(-0.762984\pi\)
0.975676 0.219216i \(-0.0703498\pi\)
\(152\) −6.22963 + 3.59668i −0.505289 + 0.291729i
\(153\) 0 0
\(154\) −6.14363 + 1.64618i −0.495068 + 0.132653i
\(155\) −10.5280 18.2351i −0.845632 1.46468i
\(156\) 0 0
\(157\) 2.16879 3.75646i 0.173089 0.299798i −0.766409 0.642352i \(-0.777959\pi\)
0.939498 + 0.342554i \(0.111292\pi\)
\(158\) −0.461927 + 1.72393i −0.0367489 + 0.137149i
\(159\) 0 0
\(160\) 2.36784 + 1.36707i 0.187194 + 0.108077i
\(161\) 15.7212 + 15.7212i 1.23900 + 1.23900i
\(162\) 0 0
\(163\) 4.75149 17.7328i 0.372166 1.38894i −0.485277 0.874361i \(-0.661281\pi\)
0.857442 0.514580i \(-0.172052\pi\)
\(164\) 4.01515 + 1.07586i 0.313531 + 0.0840103i
\(165\) 0 0
\(166\) −13.6310 + 7.86988i −1.05797 + 0.610821i
\(167\) −2.35159 0.630107i −0.181972 0.0487591i 0.166682 0.986011i \(-0.446695\pi\)
−0.348654 + 0.937251i \(0.613361\pi\)
\(168\) 0 0
\(169\) 2.43062 + 12.7708i 0.186971 + 0.982365i
\(170\) 2.29342i 0.175897i
\(171\) 0 0
\(172\) −4.31487 + 7.47357i −0.329006 + 0.569855i
\(173\) −5.08757 + 8.81194i −0.386801 + 0.669959i −0.992017 0.126102i \(-0.959753\pi\)
0.605216 + 0.796061i \(0.293087\pi\)
\(174\) 0 0
\(175\) 6.10080 6.10080i 0.461177 0.461177i
\(176\) −1.29045 + 1.29045i −0.0972710 + 0.0972710i
\(177\) 0 0
\(178\) −0.745007 + 1.29039i −0.0558406 + 0.0967188i
\(179\) −6.54598 + 11.3380i −0.489270 + 0.847440i −0.999924 0.0123463i \(-0.996070\pi\)
0.510654 + 0.859786i \(0.329403\pi\)
\(180\) 0 0
\(181\) 10.0606i 0.747798i 0.927469 + 0.373899i \(0.121979\pi\)
−0.927469 + 0.373899i \(0.878021\pi\)
\(182\) −4.37771 11.7788i −0.324497 0.873105i
\(183\) 0 0
\(184\) 6.16194 + 1.65109i 0.454264 + 0.121720i
\(185\) −10.0401 + 5.79664i −0.738160 + 0.426177i
\(186\) 0 0
\(187\) 1.47863 + 0.396198i 0.108128 + 0.0289729i
\(188\) 2.00059 7.46630i 0.145908 0.544536i
\(189\) 0 0
\(190\) 13.9072 + 13.9072i 1.00893 + 1.00893i
\(191\) −16.1899 9.34724i −1.17146 0.676343i −0.217437 0.976074i \(-0.569770\pi\)
−0.954024 + 0.299732i \(0.903103\pi\)
\(192\) 0 0
\(193\) −1.33858 + 4.99566i −0.0963533 + 0.359595i −0.997221 0.0744981i \(-0.976265\pi\)
0.900868 + 0.434093i \(0.142931\pi\)
\(194\) 8.69631 15.0624i 0.624358 1.08142i
\(195\) 0 0
\(196\) 2.57328 + 4.45706i 0.183806 + 0.318361i
\(197\) −8.85907 + 2.37378i −0.631183 + 0.169125i −0.560206 0.828353i \(-0.689278\pi\)
−0.0709764 + 0.997478i \(0.522612\pi\)
\(198\) 0 0
\(199\) −11.5728 + 6.68158i −0.820376 + 0.473644i −0.850546 0.525900i \(-0.823728\pi\)
0.0301700 + 0.999545i \(0.490395\pi\)
\(200\) 0.640725 2.39122i 0.0453061 0.169085i
\(201\) 0 0
\(202\) 0.0599135 + 0.0599135i 0.00421550 + 0.00421550i
\(203\) 5.45821 + 20.3703i 0.383091 + 1.42972i
\(204\) 0 0
\(205\) 11.3653i 0.793786i
\(206\) 2.31246 + 8.63023i 0.161117 + 0.601296i
\(207\) 0 0
\(208\) −2.77764 2.29885i −0.192595 0.159396i
\(209\) −11.3689 + 6.56381i −0.786401 + 0.454029i
\(210\) 0 0
\(211\) 5.98953 + 10.3742i 0.412336 + 0.714187i 0.995145 0.0984226i \(-0.0313797\pi\)
−0.582809 + 0.812609i \(0.698046\pi\)
\(212\) 3.92979 0.269899
\(213\) 0 0
\(214\) 3.69665 + 13.7961i 0.252698 + 0.943081i
\(215\) 22.7910 + 6.10683i 1.55433 + 0.416483i
\(216\) 0 0
\(217\) −13.4200 23.2441i −0.911007 1.57791i
\(218\) 13.6965 0.927647
\(219\) 0 0
\(220\) 4.32123 + 2.49486i 0.291337 + 0.168204i
\(221\) −0.504992 + 2.98190i −0.0339694 + 0.200584i
\(222\) 0 0
\(223\) −1.24226 + 1.24226i −0.0831878 + 0.0831878i −0.747476 0.664288i \(-0.768735\pi\)
0.664288 + 0.747476i \(0.268735\pi\)
\(224\) 3.01826 + 1.74260i 0.201666 + 0.116432i
\(225\) 0 0
\(226\) 5.62611 5.62611i 0.374244 0.374244i
\(227\) −10.4293 + 2.79453i −0.692218 + 0.185479i −0.587742 0.809048i \(-0.699983\pi\)
−0.104476 + 0.994527i \(0.533316\pi\)
\(228\) 0 0
\(229\) 2.29318 0.614457i 0.151538 0.0406044i −0.182253 0.983252i \(-0.558339\pi\)
0.333790 + 0.942647i \(0.391672\pi\)
\(230\) 17.4420i 1.15009i
\(231\) 0 0
\(232\) 4.27871 + 4.27871i 0.280911 + 0.280911i
\(233\) 14.8461 0.972602 0.486301 0.873791i \(-0.338346\pi\)
0.486301 + 0.873791i \(0.338346\pi\)
\(234\) 0 0
\(235\) −21.1341 −1.37864
\(236\) 5.26591 + 5.26591i 0.342782 + 0.342782i
\(237\) 0 0
\(238\) 2.92340i 0.189496i
\(239\) −28.5302 + 7.64464i −1.84546 + 0.494491i −0.999264 0.0383723i \(-0.987783\pi\)
−0.846201 + 0.532863i \(0.821116\pi\)
\(240\) 0 0
\(241\) −19.8922 + 5.33009i −1.28137 + 0.343341i −0.834376 0.551196i \(-0.814171\pi\)
−0.446992 + 0.894538i \(0.647505\pi\)
\(242\) 5.42315 5.42315i 0.348614 0.348614i
\(243\) 0 0
\(244\) 0.428575 + 0.247438i 0.0274367 + 0.0158406i
\(245\) 9.95003 9.95003i 0.635684 0.635684i
\(246\) 0 0
\(247\) −15.0198 21.1443i −0.955688 1.34538i
\(248\) −6.66938 3.85057i −0.423506 0.244511i
\(249\) 0 0
\(250\) 6.90217 0.436531
\(251\) −10.3116 17.8602i −0.650861 1.12732i −0.982914 0.184064i \(-0.941075\pi\)
0.332053 0.943261i \(-0.392259\pi\)
\(252\) 0 0
\(253\) 11.2453 + 3.01318i 0.706988 + 0.189437i
\(254\) −3.00771 11.2249i −0.188721 0.704315i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 4.26967 + 7.39529i 0.266335 + 0.461305i 0.967912 0.251288i \(-0.0808540\pi\)
−0.701578 + 0.712593i \(0.747521\pi\)
\(258\) 0 0
\(259\) −12.7980 + 7.38891i −0.795227 + 0.459125i
\(260\) −4.10562 + 8.96250i −0.254620 + 0.555830i
\(261\) 0 0
\(262\) −1.24512 4.64685i −0.0769237 0.287083i
\(263\) 2.64515i 0.163107i −0.996669 0.0815535i \(-0.974012\pi\)
0.996669 0.0815535i \(-0.0259881\pi\)
\(264\) 0 0
\(265\) −2.78091 10.3785i −0.170830 0.637547i
\(266\) 17.7273 + 17.7273i 1.08693 + 1.08693i
\(267\) 0 0
\(268\) −1.43247 + 5.34607i −0.0875023 + 0.326563i
\(269\) 14.9308 8.62028i 0.910345 0.525588i 0.0298029 0.999556i \(-0.490512\pi\)
0.880542 + 0.473968i \(0.157179\pi\)
\(270\) 0 0
\(271\) 14.5522 3.89924i 0.883981 0.236862i 0.211857 0.977301i \(-0.432049\pi\)
0.672124 + 0.740439i \(0.265382\pi\)
\(272\) −0.419403 0.726428i −0.0254301 0.0440461i
\(273\) 0 0
\(274\) −3.87751 + 6.71604i −0.234249 + 0.405731i
\(275\) 1.16930 4.36389i 0.0705115 0.263153i
\(276\) 0 0
\(277\) −11.8455 6.83901i −0.711728 0.410916i 0.0999726 0.994990i \(-0.468124\pi\)
−0.811700 + 0.584074i \(0.801458\pi\)
\(278\) 3.41325 + 3.41325i 0.204713 + 0.204713i
\(279\) 0 0
\(280\) 2.46630 9.20434i 0.147389 0.550065i
\(281\) 12.8651 + 3.44720i 0.767468 + 0.205643i 0.621253 0.783610i \(-0.286624\pi\)
0.146216 + 0.989253i \(0.453291\pi\)
\(282\) 0 0
\(283\) −2.19846 + 1.26928i −0.130685 + 0.0754510i −0.563917 0.825831i \(-0.690706\pi\)
0.433232 + 0.901282i \(0.357373\pi\)
\(284\) −5.55573 1.48865i −0.329672 0.0883353i
\(285\) 0 0
\(286\) −5.06911 4.19532i −0.299743 0.248074i
\(287\) 14.4872i 0.855154i
\(288\) 0 0
\(289\) 8.14820 14.1131i 0.479306 0.830182i
\(290\) 8.27217 14.3278i 0.485759 0.841359i
\(291\) 0 0
\(292\) 9.66963 9.66963i 0.565872 0.565872i
\(293\) 9.85394 9.85394i 0.575674 0.575674i −0.358035 0.933708i \(-0.616553\pi\)
0.933708 + 0.358035i \(0.116553\pi\)
\(294\) 0 0
\(295\) 10.1808 17.6336i 0.592748 1.02667i
\(296\) −2.12009 + 3.67210i −0.123228 + 0.213436i
\(297\) 0 0
\(298\) 13.0532i 0.756153i
\(299\) −3.84057 + 22.6780i −0.222106 + 1.31150i
\(300\) 0 0
\(301\) 29.0515 + 7.78432i 1.67450 + 0.448681i
\(302\) −9.88142 + 5.70504i −0.568612 + 0.328288i
\(303\) 0 0
\(304\) 6.94825 + 1.86178i 0.398509 + 0.106780i
\(305\) 0.350199 1.30696i 0.0200523 0.0748363i
\(306\) 0 0
\(307\) −6.54395 6.54395i −0.373483 0.373483i 0.495261 0.868744i \(-0.335072\pi\)
−0.868744 + 0.495261i \(0.835072\pi\)
\(308\) 5.50823 + 3.18018i 0.313861 + 0.181208i
\(309\) 0 0
\(310\) −5.44971 + 20.3386i −0.309523 + 1.15515i
\(311\) 8.02003 13.8911i 0.454774 0.787692i −0.543901 0.839149i \(-0.683053\pi\)
0.998675 + 0.0514573i \(0.0163866\pi\)
\(312\) 0 0
\(313\) −9.30369 16.1145i −0.525875 0.910843i −0.999546 0.0301408i \(-0.990404\pi\)
0.473670 0.880702i \(-0.342929\pi\)
\(314\) −4.18979 + 1.12265i −0.236444 + 0.0633549i
\(315\) 0 0
\(316\) 1.54564 0.892374i 0.0869489 0.0501999i
\(317\) −1.93565 + 7.22395i −0.108717 + 0.405737i −0.998740 0.0501776i \(-0.984021\pi\)
0.890023 + 0.455915i \(0.150688\pi\)
\(318\) 0 0
\(319\) 7.80849 + 7.80849i 0.437192 + 0.437192i
\(320\) −0.707650 2.64098i −0.0395588 0.147636i
\(321\) 0 0
\(322\) 22.2331i 1.23900i
\(323\) −1.56167 5.82823i −0.0868937 0.324292i
\(324\) 0 0
\(325\) 8.80049 + 1.49038i 0.488163 + 0.0826715i
\(326\) −15.8988 + 9.17918i −0.880553 + 0.508388i
\(327\) 0 0
\(328\) −2.07840 3.59989i −0.114760 0.198771i
\(329\) −26.9394 −1.48522
\(330\) 0 0
\(331\) −2.94858 11.0042i −0.162069 0.604848i −0.998396 0.0566177i \(-0.981968\pi\)
0.836327 0.548230i \(-0.184698\pi\)
\(332\) 15.2034 + 4.07375i 0.834397 + 0.223576i
\(333\) 0 0
\(334\) 1.21727 + 2.10838i 0.0666062 + 0.115365i
\(335\) 15.1326 0.826781
\(336\) 0 0
\(337\) −14.3804 8.30252i −0.783349 0.452267i 0.0542666 0.998526i \(-0.482718\pi\)
−0.837616 + 0.546259i \(0.816051\pi\)
\(338\) 7.31158 10.7490i 0.397697 0.584668i
\(339\) 0 0
\(340\) −1.62169 + 1.62169i −0.0879487 + 0.0879487i
\(341\) −12.1714 7.02716i −0.659118 0.380542i
\(342\) 0 0
\(343\) −4.56761 + 4.56761i −0.246628 + 0.246628i
\(344\) 8.33569 2.23354i 0.449430 0.120424i
\(345\) 0 0
\(346\) 9.82844 2.63352i 0.528380 0.141579i
\(347\) 14.0776i 0.755726i 0.925862 + 0.377863i \(0.123341\pi\)
−0.925862 + 0.377863i \(0.876659\pi\)
\(348\) 0 0
\(349\) −1.81786 1.81786i −0.0973080 0.0973080i 0.656777 0.754085i \(-0.271919\pi\)
−0.754085 + 0.656777i \(0.771919\pi\)
\(350\) −8.62784 −0.461177
\(351\) 0 0
\(352\) 1.82497 0.0972710
\(353\) −4.48187 4.48187i −0.238546 0.238546i 0.577702 0.816248i \(-0.303950\pi\)
−0.816248 + 0.577702i \(0.803950\pi\)
\(354\) 0 0
\(355\) 15.7260i 0.834651i
\(356\) 1.43924 0.385644i 0.0762797 0.0204391i
\(357\) 0 0
\(358\) 12.6459 3.38845i 0.668355 0.179085i
\(359\) 15.0107 15.0107i 0.792236 0.792236i −0.189622 0.981857i \(-0.560726\pi\)
0.981857 + 0.189622i \(0.0607261\pi\)
\(360\) 0 0
\(361\) 28.3574 + 16.3722i 1.49250 + 0.861693i
\(362\) 7.11392 7.11392i 0.373899 0.373899i
\(363\) 0 0
\(364\) −5.23339 + 11.4244i −0.274304 + 0.598801i
\(365\) −32.3801 18.6946i −1.69485 0.978522i
\(366\) 0 0
\(367\) 16.7751 0.875655 0.437828 0.899059i \(-0.355748\pi\)
0.437828 + 0.899059i \(0.355748\pi\)
\(368\) −3.18965 5.52464i −0.166272 0.287992i
\(369\) 0 0
\(370\) 11.1982 + 3.00056i 0.582169 + 0.155992i
\(371\) −3.54480 13.2294i −0.184037 0.686835i
\(372\) 0 0
\(373\) −10.9205 −0.565440 −0.282720 0.959202i \(-0.591237\pi\)
−0.282720 + 0.959202i \(0.591237\pi\)
\(374\) −0.765397 1.32571i −0.0395777 0.0685506i
\(375\) 0 0
\(376\) −6.69410 + 3.86484i −0.345222 + 0.199314i
\(377\) −13.9103 + 16.8075i −0.716418 + 0.865632i
\(378\) 0 0
\(379\) 1.57730 + 5.88656i 0.0810203 + 0.302372i 0.994531 0.104443i \(-0.0333060\pi\)
−0.913511 + 0.406815i \(0.866639\pi\)
\(380\) 19.6677i 1.00893i
\(381\) 0 0
\(382\) 4.83849 + 18.0575i 0.247559 + 0.923901i
\(383\) 22.6794 + 22.6794i 1.15886 + 1.15886i 0.984720 + 0.174143i \(0.0557154\pi\)
0.174143 + 0.984720i \(0.444285\pi\)
\(384\) 0 0
\(385\) 4.50091 16.7976i 0.229387 0.856086i
\(386\) 4.47898 2.58594i 0.227974 0.131621i
\(387\) 0 0
\(388\) −16.8000 + 4.50154i −0.852889 + 0.228531i
\(389\) 16.7063 + 28.9362i 0.847043 + 1.46712i 0.883835 + 0.467798i \(0.154953\pi\)
−0.0367925 + 0.999323i \(0.511714\pi\)
\(390\) 0 0
\(391\) −2.67550 + 4.63411i −0.135306 + 0.234357i
\(392\) 1.33203 4.97120i 0.0672776 0.251083i
\(393\) 0 0
\(394\) 7.94283 + 4.58579i 0.400154 + 0.231029i
\(395\) −3.45052 3.45052i −0.173614 0.173614i
\(396\) 0 0
\(397\) −5.37105 + 20.0450i −0.269565 + 1.00603i 0.689832 + 0.723970i \(0.257685\pi\)
−0.959397 + 0.282061i \(0.908982\pi\)
\(398\) 12.9078 + 3.45864i 0.647010 + 0.173366i
\(399\) 0 0
\(400\) −2.14391 + 1.23778i −0.107195 + 0.0618892i
\(401\) −19.5869 5.24830i −0.978125 0.262088i −0.265870 0.964009i \(-0.585659\pi\)
−0.712255 + 0.701921i \(0.752326\pi\)
\(402\) 0 0
\(403\) 11.5641 25.2442i 0.576048 1.25750i
\(404\) 0.0847306i 0.00421550i
\(405\) 0 0
\(406\) 10.5445 18.2635i 0.523313 0.906404i
\(407\) −3.86909 + 6.70146i −0.191784 + 0.332179i
\(408\) 0 0
\(409\) 3.94732 3.94732i 0.195183 0.195183i −0.602749 0.797931i \(-0.705928\pi\)
0.797931 + 0.602749i \(0.205928\pi\)
\(410\) −8.03647 + 8.03647i −0.396893 + 0.396893i
\(411\) 0 0
\(412\) 4.46733 7.73765i 0.220090 0.381207i
\(413\) 12.9773 22.4774i 0.638573 1.10604i
\(414\) 0 0
\(415\) 43.0348i 2.11250i
\(416\) 0.338562 + 3.58962i 0.0165994 + 0.175996i
\(417\) 0 0
\(418\) 12.6803 + 3.39768i 0.620215 + 0.166186i
\(419\) 27.1430 15.6710i 1.32602 0.765578i 0.341339 0.939940i \(-0.389120\pi\)
0.984682 + 0.174362i \(0.0557863\pi\)
\(420\) 0 0
\(421\) 26.5626 + 7.11743i 1.29458 + 0.346882i 0.839399 0.543516i \(-0.182907\pi\)
0.455183 + 0.890398i \(0.349574\pi\)
\(422\) 3.10041 11.5709i 0.150925 0.563261i
\(423\) 0 0
\(424\) −2.77878 2.77878i −0.134949 0.134949i
\(425\) 1.79832 + 1.03826i 0.0872314 + 0.0503631i
\(426\) 0 0
\(427\) 0.446395 1.66597i 0.0216026 0.0806219i
\(428\) 7.14138 12.3692i 0.345192 0.597890i
\(429\) 0 0
\(430\) −11.7975 20.4339i −0.568926 0.985408i
\(431\) −26.7454 + 7.16641i −1.28828 + 0.345194i −0.837007 0.547192i \(-0.815697\pi\)
−0.451274 + 0.892386i \(0.649030\pi\)
\(432\) 0 0
\(433\) −27.2596 + 15.7383i −1.31001 + 0.756336i −0.982098 0.188372i \(-0.939679\pi\)
−0.327914 + 0.944708i \(0.606346\pi\)
\(434\) −6.94669 + 25.9254i −0.333452 + 1.24446i
\(435\) 0 0
\(436\) −9.68492 9.68492i −0.463823 0.463823i
\(437\) −11.8768 44.3250i −0.568147 2.12035i
\(438\) 0 0
\(439\) 26.2573i 1.25319i 0.779344 + 0.626596i \(0.215552\pi\)
−0.779344 + 0.626596i \(0.784448\pi\)
\(440\) −1.29144 4.81971i −0.0615669 0.229771i
\(441\) 0 0
\(442\) 2.46561 1.75144i 0.117277 0.0833075i
\(443\) 23.2806 13.4410i 1.10609 0.638604i 0.168279 0.985739i \(-0.446179\pi\)
0.937815 + 0.347136i \(0.112846\pi\)
\(444\) 0 0
\(445\) −2.03696 3.52812i −0.0965612 0.167249i
\(446\) 1.75682 0.0831878
\(447\) 0 0
\(448\) −0.902034 3.36644i −0.0426171 0.159049i
\(449\) 1.60200 + 0.429254i 0.0756029 + 0.0202577i 0.296422 0.955057i \(-0.404206\pi\)
−0.220819 + 0.975315i \(0.570873\pi\)
\(450\) 0 0
\(451\) −3.79300 6.56968i −0.178606 0.309354i
\(452\) −7.95653 −0.374244
\(453\) 0 0
\(454\) 9.35067 + 5.39861i 0.438849 + 0.253369i
\(455\) 33.8751 + 5.73682i 1.58809 + 0.268946i
\(456\) 0 0
\(457\) 25.6564 25.6564i 1.20015 1.20015i 0.226036 0.974119i \(-0.427423\pi\)
0.974119 0.226036i \(-0.0725767\pi\)
\(458\) −2.05601 1.18704i −0.0960711 0.0554667i
\(459\) 0 0
\(460\) −12.3333 + 12.3333i −0.575045 + 0.575045i
\(461\) 21.4084 5.73636i 0.997087 0.267169i 0.276863 0.960910i \(-0.410705\pi\)
0.720225 + 0.693741i \(0.244039\pi\)
\(462\) 0 0
\(463\) −28.8741 + 7.73679i −1.34189 + 0.359559i −0.857136 0.515090i \(-0.827758\pi\)
−0.484756 + 0.874649i \(0.661092\pi\)
\(464\) 6.05100i 0.280911i
\(465\) 0 0
\(466\) −10.4978 10.4978i −0.486301 0.486301i
\(467\) 36.5666 1.69210 0.846051 0.533102i \(-0.178974\pi\)
0.846051 + 0.533102i \(0.178974\pi\)
\(468\) 0 0
\(469\) 19.2893 0.890699
\(470\) 14.9441 + 14.9441i 0.689318 + 0.689318i
\(471\) 0 0
\(472\) 7.44713i 0.342782i
\(473\) 15.2123 4.07614i 0.699465 0.187421i
\(474\) 0 0
\(475\) −17.2009 + 4.60896i −0.789230 + 0.211474i
\(476\) −2.06716 + 2.06716i −0.0947480 + 0.0947480i
\(477\) 0 0
\(478\) 25.5795 + 14.7683i 1.16998 + 0.675487i
\(479\) −24.0481 + 24.0481i −1.09879 + 1.09879i −0.104234 + 0.994553i \(0.533239\pi\)
−0.994553 + 0.104234i \(0.966761\pi\)
\(480\) 0 0
\(481\) −13.8992 6.36708i −0.633750 0.290314i
\(482\) 17.8348 + 10.2969i 0.812355 + 0.469013i
\(483\) 0 0
\(484\) −7.66950 −0.348614
\(485\) 23.7770 + 41.1830i 1.07966 + 1.87002i
\(486\) 0 0
\(487\) 12.0435 + 3.22705i 0.545744 + 0.146232i 0.521149 0.853466i \(-0.325504\pi\)
0.0245951 + 0.999697i \(0.492170\pi\)
\(488\) −0.128083 0.478014i −0.00579806 0.0216387i
\(489\) 0 0
\(490\) −14.0715 −0.635684
\(491\) 2.76676 + 4.79216i 0.124862 + 0.216267i 0.921679 0.387953i \(-0.126818\pi\)
−0.796817 + 0.604221i \(0.793485\pi\)
\(492\) 0 0
\(493\) −4.39562 + 2.53781i −0.197969 + 0.114297i
\(494\) −4.33066 + 25.5719i −0.194846 + 1.15053i
\(495\) 0 0
\(496\) 1.99320 + 7.43873i 0.0894974 + 0.334009i
\(497\) 20.0458i 0.899178i
\(498\) 0 0
\(499\) −0.641188 2.39294i −0.0287035 0.107123i 0.950088 0.311982i \(-0.100993\pi\)
−0.978791 + 0.204859i \(0.934326\pi\)
\(500\) −4.88057 4.88057i −0.218266 0.218266i
\(501\) 0 0
\(502\) −5.33767 + 19.9204i −0.238232 + 0.889093i
\(503\) −32.0788 + 18.5207i −1.43032 + 0.825798i −0.997145 0.0755096i \(-0.975942\pi\)
−0.433179 + 0.901308i \(0.642608\pi\)
\(504\) 0 0
\(505\) −0.223772 + 0.0599596i −0.00995773 + 0.00266817i
\(506\) −5.82101 10.0823i −0.258776 0.448212i
\(507\) 0 0
\(508\) −5.81045 + 10.0640i −0.257797 + 0.446518i
\(509\) −8.65075 + 32.2850i −0.383438 + 1.43101i 0.457177 + 0.889376i \(0.348861\pi\)
−0.840615 + 0.541634i \(0.817806\pi\)
\(510\) 0 0
\(511\) −41.2745 23.8299i −1.82588 1.05417i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 2.21014 8.24837i 0.0974853 0.363820i
\(515\) −23.5963 6.32261i −1.03978 0.278608i
\(516\) 0 0
\(517\) −12.2165 + 7.05321i −0.537282 + 0.310200i
\(518\) 14.2743 + 3.82478i 0.627176 + 0.168051i
\(519\) 0 0
\(520\) 9.24055 3.43433i 0.405225 0.150605i
\(521\) 6.65944i 0.291755i 0.989303 + 0.145878i \(0.0466006\pi\)
−0.989303 + 0.145878i \(0.953399\pi\)
\(522\) 0 0
\(523\) 0.581243 1.00674i 0.0254160 0.0440218i −0.853038 0.521849i \(-0.825242\pi\)
0.878454 + 0.477828i \(0.158576\pi\)
\(524\) −2.40538 + 4.16625i −0.105080 + 0.182003i
\(525\) 0 0
\(526\) −1.87040 + 1.87040i −0.0815535 + 0.0815535i
\(527\) 4.56774 4.56774i 0.198974 0.198974i
\(528\) 0 0
\(529\) −8.84778 + 15.3248i −0.384686 + 0.666296i
\(530\) −5.37231 + 9.30512i −0.233358 + 0.404189i
\(531\) 0 0
\(532\) 25.0702i 1.08693i
\(533\) 12.2186 8.67944i 0.529245 0.375948i
\(534\) 0 0
\(535\) −37.7206 10.1072i −1.63080 0.436972i
\(536\) 4.79315 2.76733i 0.207033 0.119530i
\(537\) 0 0
\(538\) −16.6531 4.46219i −0.717967 0.192379i
\(539\) 2.43091 9.07227i 0.104707 0.390770i
\(540\) 0 0
\(541\) 15.5641 + 15.5641i 0.669152 + 0.669152i 0.957520 0.288368i \(-0.0931126\pi\)
−0.288368 + 0.957520i \(0.593113\pi\)
\(542\) −13.0471 7.53275i −0.560421 0.323559i
\(543\) 0 0
\(544\) −0.217099 + 0.810225i −0.00930805 + 0.0347381i
\(545\) −18.7242 + 32.4313i −0.802056 + 1.38920i
\(546\) 0 0
\(547\) −4.14533 7.17992i −0.177241 0.306991i 0.763693 0.645579i \(-0.223384\pi\)
−0.940935 + 0.338588i \(0.890051\pi\)
\(548\) 7.49077 2.00715i 0.319990 0.0857411i
\(549\) 0 0
\(550\) −3.91256 + 2.25892i −0.166832 + 0.0963205i
\(551\) 11.2656 42.0439i 0.479932 1.79113i
\(552\) 0 0
\(553\) −4.39834 4.39834i −0.187036 0.187036i
\(554\) 3.54013 + 13.2120i 0.150406 + 0.561322i
\(555\) 0 0
\(556\) 4.82707i 0.204713i
\(557\) −5.76476 21.5144i −0.244261 0.911594i −0.973754 0.227605i \(-0.926910\pi\)
0.729493 0.683989i \(-0.239756\pi\)
\(558\) 0 0
\(559\) 10.8397 + 29.1658i 0.458471 + 1.23358i
\(560\) −8.25239 + 4.76452i −0.348727 + 0.201338i
\(561\) 0 0
\(562\) −6.65947 11.5345i −0.280913 0.486555i
\(563\) −28.1745 −1.18741 −0.593707 0.804682i \(-0.702336\pi\)
−0.593707 + 0.804682i \(0.702336\pi\)
\(564\) 0 0
\(565\) 5.63043 + 21.0131i 0.236874 + 0.884026i
\(566\) 2.45206 + 0.657028i 0.103068 + 0.0276170i
\(567\) 0 0
\(568\) 2.87586 + 4.98113i 0.120668 + 0.209004i
\(569\) −29.1878 −1.22362 −0.611808 0.791007i \(-0.709557\pi\)
−0.611808 + 0.791007i \(0.709557\pi\)
\(570\) 0 0
\(571\) 36.5099 + 21.0790i 1.52789 + 0.882129i 0.999450 + 0.0331604i \(0.0105572\pi\)
0.528443 + 0.848969i \(0.322776\pi\)
\(572\) 0.617865 + 6.55094i 0.0258342 + 0.273908i
\(573\) 0 0
\(574\) −10.2440 + 10.2440i −0.427577 + 0.427577i
\(575\) 13.6766 + 7.89621i 0.570355 + 0.329295i
\(576\) 0 0
\(577\) 13.8702 13.8702i 0.577425 0.577425i −0.356768 0.934193i \(-0.616121\pi\)
0.934193 + 0.356768i \(0.116121\pi\)
\(578\) −15.7411 + 4.21782i −0.654744 + 0.175438i
\(579\) 0 0
\(580\) −15.9806 + 4.28199i −0.663559 + 0.177800i
\(581\) 54.8561i 2.27581i
\(582\) 0 0
\(583\) −5.07118 5.07118i −0.210027 0.210027i
\(584\) −13.6749 −0.565872
\(585\) 0 0
\(586\) −13.9356 −0.575674
\(587\) 5.61049 + 5.61049i 0.231570 + 0.231570i 0.813348 0.581778i \(-0.197643\pi\)
−0.581778 + 0.813348i \(0.697643\pi\)
\(588\) 0 0
\(589\) 55.3970i 2.28259i
\(590\) −19.6678 + 5.26996i −0.809708 + 0.216961i
\(591\) 0 0
\(592\) 4.09570 1.09744i 0.168332 0.0451044i
\(593\) −23.8412 + 23.8412i −0.979040 + 0.979040i −0.999785 0.0207452i \(-0.993396\pi\)
0.0207452 + 0.999785i \(0.493396\pi\)
\(594\) 0 0
\(595\) 6.92215 + 3.99651i 0.283781 + 0.163841i
\(596\) −9.23003 + 9.23003i −0.378077 + 0.378077i
\(597\) 0 0
\(598\) 18.7515 13.3201i 0.766805 0.544699i
\(599\) −5.64668 3.26011i −0.230717 0.133205i 0.380186 0.924910i \(-0.375860\pi\)
−0.610903 + 0.791706i \(0.709193\pi\)
\(600\) 0 0
\(601\) −27.5743 −1.12478 −0.562390 0.826872i \(-0.690118\pi\)
−0.562390 + 0.826872i \(0.690118\pi\)
\(602\) −15.0381 26.0468i −0.612909 1.06159i
\(603\) 0 0
\(604\) 11.0213 + 2.95315i 0.448450 + 0.120162i
\(605\) 5.42732 + 20.2550i 0.220652 + 0.823484i
\(606\) 0 0
\(607\) 5.91621 0.240132 0.120066 0.992766i \(-0.461689\pi\)
0.120066 + 0.992766i \(0.461689\pi\)
\(608\) −3.59668 6.22963i −0.145865 0.252645i
\(609\) 0 0
\(610\) −1.17179 + 0.676532i −0.0474443 + 0.0273920i
\(611\) −16.1397 22.7208i −0.652942 0.919185i
\(612\) 0 0
\(613\) 4.10104 + 15.3053i 0.165639 + 0.618175i 0.997958 + 0.0638768i \(0.0203465\pi\)
−0.832318 + 0.554298i \(0.812987\pi\)
\(614\) 9.25454i 0.373483i
\(615\) 0 0
\(616\) −1.64618 6.14363i −0.0663266 0.247534i
\(617\) 18.4697 + 18.4697i 0.743561 + 0.743561i 0.973261 0.229700i \(-0.0737746\pi\)
−0.229700 + 0.973261i \(0.573775\pi\)
\(618\) 0 0
\(619\) −3.16658 + 11.8178i −0.127276 + 0.474999i −0.999911 0.0133740i \(-0.995743\pi\)
0.872635 + 0.488373i \(0.162409\pi\)
\(620\) 18.2351 10.5280i 0.732339 0.422816i
\(621\) 0 0
\(622\) −15.4935 + 4.15147i −0.621233 + 0.166459i
\(623\) −2.59649 4.49726i −0.104026 0.180179i
\(624\) 0 0
\(625\) −15.6247 + 27.0628i −0.624988 + 1.08251i
\(626\) −4.81594 + 17.9733i −0.192484 + 0.718359i
\(627\) 0 0
\(628\) 3.75646 + 2.16879i 0.149899 + 0.0865443i
\(629\) −2.51496 2.51496i −0.100278 0.100278i
\(630\) 0 0
\(631\) 2.72399 10.1661i 0.108440 0.404704i −0.890272 0.455428i \(-0.849486\pi\)
0.998713 + 0.0507238i \(0.0161528\pi\)
\(632\) −1.72393 0.461927i −0.0685744 0.0183745i
\(633\) 0 0
\(634\) 6.47682 3.73939i 0.257227 0.148510i
\(635\) 30.6906 + 8.22353i 1.21792 + 0.326341i
\(636\) 0 0
\(637\) 18.2957 + 3.09842i 0.724902 + 0.122764i
\(638\) 11.0429i 0.437192i
\(639\) 0 0
\(640\) −1.36707 + 2.36784i −0.0540384 + 0.0935972i
\(641\) −2.46006 + 4.26095i −0.0971666 + 0.168297i −0.910511 0.413485i \(-0.864311\pi\)
0.813344 + 0.581783i \(0.197645\pi\)
\(642\) 0 0
\(643\) 23.8644 23.8644i 0.941119 0.941119i −0.0572415 0.998360i \(-0.518230\pi\)
0.998360 + 0.0572415i \(0.0182305\pi\)
\(644\) −15.7212 + 15.7212i −0.619501 + 0.619501i
\(645\) 0 0
\(646\) −3.01692 + 5.22545i −0.118699 + 0.205593i
\(647\) 2.54755 4.41248i 0.100154 0.173473i −0.811594 0.584222i \(-0.801400\pi\)
0.911748 + 0.410750i \(0.134733\pi\)
\(648\) 0 0
\(649\) 13.5908i 0.533484i
\(650\) −5.16902 7.27674i −0.202746 0.285417i
\(651\) 0 0
\(652\) 17.7328 + 4.75149i 0.694470 + 0.186083i
\(653\) 34.2634 19.7820i 1.34083 0.774129i 0.353901 0.935283i \(-0.384855\pi\)
0.986929 + 0.161154i \(0.0515216\pi\)
\(654\) 0 0
\(655\) 12.7052 + 3.40434i 0.496432 + 0.133019i
\(656\) −1.07586 + 4.01515i −0.0420052 + 0.156765i
\(657\) 0 0
\(658\) 19.0491 + 19.0491i 0.742609 + 0.742609i
\(659\) −13.1719 7.60483i −0.513106 0.296242i 0.221003 0.975273i \(-0.429067\pi\)
−0.734110 + 0.679031i \(0.762400\pi\)
\(660\) 0 0
\(661\) 3.06267 11.4300i 0.119124 0.444577i −0.880438 0.474161i \(-0.842752\pi\)
0.999562 + 0.0295837i \(0.00941817\pi\)
\(662\) −5.69622 + 9.86614i −0.221390 + 0.383458i
\(663\) 0 0
\(664\) −7.86988 13.6310i −0.305411 0.528987i
\(665\) −66.2101 + 17.7409i −2.56752 + 0.687964i
\(666\) 0 0
\(667\) −33.4296 + 19.3006i −1.29440 + 0.747323i
\(668\) 0.630107 2.35159i 0.0243796 0.0909858i
\(669\) 0 0
\(670\) −10.7003 10.7003i −0.413390 0.413390i
\(671\) −0.233748 0.872359i −0.00902373 0.0336770i
\(672\) 0 0
\(673\) 19.5423i 0.753299i 0.926356 + 0.376650i \(0.122924\pi\)
−0.926356 + 0.376650i \(0.877076\pi\)
\(674\) 4.29770 + 16.0392i 0.165541 + 0.617808i
\(675\) 0 0
\(676\) −12.7708 + 2.43062i −0.491183 + 0.0934854i
\(677\) 7.33732 4.23620i 0.281996 0.162811i −0.352331 0.935876i \(-0.614611\pi\)
0.634327 + 0.773065i \(0.281277\pi\)
\(678\) 0 0
\(679\) 30.3083 + 52.4955i 1.16313 + 2.01459i
\(680\) 2.29342 0.0879487
\(681\) 0 0
\(682\) 3.63753 + 13.5754i 0.139288 + 0.519830i
\(683\) −13.4051 3.59188i −0.512930 0.137439i −0.00693584 0.999976i \(-0.502208\pi\)
−0.505995 + 0.862537i \(0.668874\pi\)
\(684\) 0 0
\(685\) −10.6017 18.3627i −0.405070 0.701601i
\(686\) 6.45958 0.246628
\(687\) 0 0
\(688\) −7.47357 4.31487i −0.284927 0.164503i
\(689\) 9.03398 10.9156i 0.344167 0.415850i
\(690\) 0 0
\(691\) 3.25059 3.25059i 0.123658 0.123658i −0.642569 0.766228i \(-0.722132\pi\)
0.766228 + 0.642569i \(0.222132\pi\)
\(692\) −8.81194 5.08757i −0.334980 0.193401i
\(693\) 0 0
\(694\) 9.95438 9.95438i 0.377863 0.377863i
\(695\) −12.7482 + 3.41587i −0.483567 + 0.129571i
\(696\) 0 0
\(697\) 3.36794 0.902436i 0.127570 0.0341822i
\(698\) 2.57085i 0.0973080i
\(699\) 0 0
\(700\) 6.10080 + 6.10080i 0.230589 + 0.230589i
\(701\) 3.27106 0.123546 0.0617731 0.998090i \(-0.480324\pi\)
0.0617731 + 0.998090i \(0.480324\pi\)
\(702\) 0 0
\(703\) 30.5011 1.15037
\(704\) −1.29045 1.29045i −0.0486355 0.0486355i
\(705\) 0 0
\(706\) 6.33832i 0.238546i
\(707\) −0.285240 + 0.0764298i −0.0107276 + 0.00287444i
\(708\) 0 0
\(709\) 17.9894 4.82025i 0.675606 0.181028i 0.0953275 0.995446i \(-0.469610\pi\)
0.580279 + 0.814418i \(0.302944\pi\)
\(710\) 11.1200 11.1200i 0.417326 0.417326i
\(711\) 0 0
\(712\) −1.29039 0.745007i −0.0483594 0.0279203i
\(713\) 34.7387 34.7387i 1.30097 1.30097i
\(714\) 0 0
\(715\) 16.8637 6.26754i 0.630666 0.234393i
\(716\) −11.3380 6.54598i −0.423720 0.244635i
\(717\) 0 0
\(718\) −21.2284 −0.792236
\(719\) 6.22658 + 10.7848i 0.232212 + 0.402204i 0.958459 0.285231i \(-0.0920703\pi\)
−0.726247 + 0.687434i \(0.758737\pi\)
\(720\) 0 0
\(721\) −30.0780 8.05937i −1.12016 0.300147i
\(722\) −8.47486 31.6286i −0.315402 1.17709i
\(723\) 0 0
\(724\) −10.0606 −0.373899
\(725\) 7.48984 + 12.9728i 0.278166 + 0.481797i
\(726\) 0 0
\(727\) 0.202128 0.116699i 0.00749650 0.00432811i −0.496247 0.868181i \(-0.665289\pi\)
0.503744 + 0.863853i \(0.331956\pi\)
\(728\) 11.7788 4.37771i 0.436553 0.162249i
\(729\) 0 0
\(730\) 9.67706 + 36.1153i 0.358164 + 1.33669i
\(731\) 7.23868i 0.267732i
\(732\) 0 0
\(733\) −7.31715 27.3080i −0.270265 1.00864i −0.958948 0.283580i \(-0.908478\pi\)
0.688684 0.725062i \(-0.258189\pi\)
\(734\) −11.8618 11.8618i −0.437828 0.437828i
\(735\) 0 0
\(736\) −1.65109 + 6.16194i −0.0608599 + 0.227132i
\(737\) 8.74734 5.05028i 0.322213 0.186030i
\(738\) 0 0
\(739\) 34.3558 9.20561i 1.26380 0.338634i 0.436146 0.899876i \(-0.356343\pi\)
0.827652 + 0.561242i \(0.189676\pi\)
\(740\) −5.79664 10.0401i −0.213089 0.369080i
\(741\) 0 0
\(742\) −6.84803 + 11.8611i −0.251399 + 0.435436i
\(743\) −6.78006 + 25.3035i −0.248736 + 0.928297i 0.722732 + 0.691128i \(0.242886\pi\)
−0.971469 + 0.237168i \(0.923781\pi\)
\(744\) 0 0
\(745\) 30.9080 + 17.8447i 1.13238 + 0.653781i
\(746\) 7.72193 + 7.72193i 0.282720 + 0.282720i
\(747\) 0 0
\(748\) −0.396198 + 1.47863i −0.0144865 + 0.0540642i
\(749\) −48.0820 12.8835i −1.75688 0.470754i
\(750\) 0 0
\(751\) 25.3210 14.6191i 0.923975 0.533457i 0.0390742 0.999236i \(-0.487559\pi\)
0.884901 + 0.465779i \(0.154226\pi\)
\(752\) 7.46630 + 2.00059i 0.272268 + 0.0729540i
\(753\) 0 0
\(754\) 21.7208 2.04864i 0.791025 0.0746071i
\(755\) 31.1969i 1.13537i
\(756\) 0 0
\(757\) 0.560080 0.970087i 0.0203565 0.0352584i −0.855668 0.517526i \(-0.826853\pi\)
0.876024 + 0.482267i \(0.160187\pi\)
\(758\) 3.04711 5.27774i 0.110676 0.191696i
\(759\) 0 0
\(760\) −13.9072 + 13.9072i −0.504466 + 0.504466i
\(761\) 8.74376 8.74376i 0.316961 0.316961i −0.530638 0.847599i \(-0.678048\pi\)
0.847599 + 0.530638i \(0.178048\pi\)
\(762\) 0 0
\(763\) −23.8675 + 41.3398i −0.864063 + 1.49660i
\(764\) 9.34724 16.1899i 0.338171 0.585730i
\(765\) 0 0
\(766\) 32.0735i 1.15886i
\(767\) 26.7324 2.52132i 0.965250 0.0910395i
\(768\) 0 0
\(769\) −21.2688 5.69895i −0.766971 0.205509i −0.145938 0.989294i \(-0.546620\pi\)
−0.621033 + 0.783785i \(0.713287\pi\)
\(770\) −15.0603 + 8.69508i −0.542737 + 0.313349i
\(771\) 0 0
\(772\) −4.99566 1.33858i −0.179798 0.0481766i
\(773\) −4.66222 + 17.3997i −0.167689 + 0.625822i 0.829993 + 0.557773i \(0.188344\pi\)
−0.997682 + 0.0680490i \(0.978323\pi\)
\(774\) 0 0
\(775\) −13.4808 13.4808i −0.484244 0.484244i
\(776\) 15.0624 + 8.69631i 0.540710 + 0.312179i
\(777\) 0 0
\(778\) 8.64781 32.2741i 0.310039 1.15708i
\(779\) −14.9506 + 25.8953i −0.535662 + 0.927794i
\(780\) 0 0
\(781\) 5.24834 + 9.09039i 0.187800 + 0.325280i
\(782\) 5.16867 1.38494i 0.184831 0.0495254i
\(783\) 0 0
\(784\) −4.45706 + 2.57328i −0.159181 +